Book-Value Wealth Taxation, Capital Income Taxation, and Innovation

Fatih Guvenen, Gueorgui Kambourov, Burhan Kuruscu, Sergio Ocampo

Pontificia Universidad Javeriana, March 2024

Taxing Capital

How to optimally tax wealth & capital income when returns are heterogeneous?

How to optimally tax wealth & capital income when returns are heterogeneous?

▶ If returns, r, are the same for everyone, the two taxes are equivalent with $\tau_a = r \cdot \tau_k$

How to optimally tax wealth & capital income when returns are heterogeneous?

▶ If returns, r, are the same for everyone, the two taxes are equivalent with $\tau_a = r \cdot \tau_k$

Our earlier work: Quantitative analysis of optimal capital income versus wealth tax (Guvenen, Kambourov, Kuruscu, Ocampo, Chen, QJE 2023)

▶ Rich OLG model; Large gains from *replacing* capital income tax with wealth tax

How to optimally tax wealth & capital income when returns are heterogeneous?

• If returns, r, are the same for everyone, the two taxes are equivalent with $\tau_a = r \cdot \tau_k$

Our earlier work: Quantitative analysis of optimal capital income versus wealth tax (Guvenen, Kambourov, Kuruscu, Ocampo, Chen, QJE 2023)

▶ Rich OLG model; Large gains from *replacing* capital income tax with wealth tax

This paper: Theoretical analysis of optimal combination of taxes

- ► Analytical model with workers, heterogeneous entrepreneurs, and innovation
- ► Result: characterize (i) productivity (ii) welfare (iii) optimal taxes (iv) innovation

Guvenen, Kambourov, Kuruscu, Ocampo

1. Empirical: A growing literature documents persistent return heterogeneity.

Bach, Calvet, Sodini (2020); Fagereng, Guiso, Malacrino, Pistaferri (2020); Smith, Yagan, Zidar, Zwick (2023)

1. Empirical: A growing literature documents persistent return heterogeneity.

Bach, Calvet, Sodini (2020); Fagereng, Guiso, Malacrino, Pistaferri (2020); Smith, Yagan, Zidar, Zwick (2023)

- 2. Technical: Capital taxes paid by the very wealthy.
 - But models struggle to generate plausible wealth inequality.

Pareto Tail vs. Models

■ Return heterogeneity → concentration at very top + Pareto tail + fast wealth growth Benhabib, Bisin, et al (2011–2018); Gabaix, Lasry, Lions, Moll (2016); Jones, Kim (2018); Guvenen, Kambourov, Kuruscu, Ocampo, Chen (2023)

1. Empirical: A growing literature documents persistent return heterogeneity.

Bach, Calvet, Sodini (2020); Fagereng, Guiso, Malacrino, Pistaferri (2020); Smith, Yagan, Zidar, Zwick (2023)

2. Technical: Capital taxes paid by the very wealthy.

But models struggle to generate plausible wealth inequality.

Pareto Tail vs. Models

■ Return heterogeneity → concentration at very top + Pareto tail + fast wealth growth Benhabib, Bisin, et al (2011–2018); Gabaix, Lasry, Lions, Moll (2016); Jones, Kim (2018); Guvenen, Kambourov, Kuruscu, Ocampo, Chen (2023)

3. Practical: Wealth taxation widely used by governments \longrightarrow Need better guidance

Guvenen, Kambourov, Kuruscu, Ocampo

1. Empirical: A growing literature documents persistent return heterogeneity.

Bach, Calvet, Sodini (2020); Fagereng, Guiso, Malacrino, Pistaferri (2020); Smith, Yagan, Zidar, Zwick (2023)

2. Technical: Capital taxes paid by the very wealthy.

But models struggle to generate plausible wealth inequality.

Pareto Tail vs. Models

- Return heterogeneity → concentration at very top + Pareto tail + fast wealth growth Benhabib, Bisin, et al (2011–2018); Gabaix, Lasry, Lions, Moll (2016); Jones, Kim (2018); Guvenen, Kambourov, Kuruscu, Ocampo, Chen (2023)
- 3. Practical: Wealth taxation widely used by governments \longrightarrow Need better guidance
- 4. Theoretical: Interesting new economic mechanisms → Example next. *Allais* (1977), *Guvenen, Kambourov, Kuruscu, Ocampo, Chen* (2023)

Guvenen, Kambourov, Kuruscu, Ocampo

Book-Value Wealth Taxation, Capital Income Taxation, and Innovation

► One-period model.

- Government taxes to finance G = \$50K.
- ► Two brothers: Fredo and Mike, each with \$1M of wealth.

► One-period model.

- Government taxes to finance G = \$50K.
- ► Two brothers: Fredo and Mike, each with \$1M of wealth.
- **Key heterogeneity:** investment/entrepreneurial ability.
 - (Fredo) Low ability: earns $r_f = 0\%$ rate of return.
 - (Mike) High ability: earns $r_m = 20\%$ rate of return.

► One-period model.

- Government taxes to finance G = \$50K.
- ► Two brothers: Fredo and Mike, each with \$1M of wealth.
- **Key heterogeneity:** investment/entrepreneurial ability.
 - (Fredo) Low ability: earns $r_f = 0\%$ rate of return.
 - (Mike) High ability: earns $r_m = 20\%$ rate of return.
- **Objective:** illustrate key tradeoffs b/w capital income tax (τ_k) and wealth tax (τ_a)

	Capital Income Tax		
	$a_{i, ext{after-tax}} = a_i + (1 - au_k) r_i a_i$		ĺ
	Fredo ($r_f = 0\%$)	Mike (<i>r_m</i> = 20%)	
Wealth	\$1M	\$1M	
Before-tax Income	\$0	\$200K	
Tax liability			-
After-tax return			
After-tax wealth ratio			

	Capital Income Tax	
	$a_{i, ext{after-tax}} = a_i + (1 - au_k) r_i a_i$	
	Fredo ($r_f = 0\%$)	Mike (<i>r_m</i> = 20%)
Wealth	\$1M	\$1M
Before-tax Income	\$0	\$200K
	$ au_k = 50/200 = 25\%$	
Tax liability	0	50 K (= 200 $ au_k$)
After-tax return		
After-tax wealth ratio		

	Capital Income Tax	
	$a_{i, ext{after-tax}} = a_i + (1 - au_k) r_i a_i$	
	Fredo ($r_f = 0\%$)	Mike (<i>r_m</i> = 20%)
Wealth	\$1M	\$1M
Before-tax Income	\$0	\$200K
	$ au_k = 50/200 = 25\%$	
Tax liability	0	50 K (= 200 $ au_k$)
After-tax return	0%	$15\% \left(= \frac{200-50}{1000} \right)$
After-tax wealth ratio	1.15 (=	1150/1000)

	Capital Income Tax $a_{i,after-tax} = a_i + (1 - \tau_k)r_ia_i$		Wealth Tax (on book value)
			$a_{i, ext{after-tax}} = (1 - au_{ extbf{a}})a_i + r_ia_i$
	Fredo ($r_f = 0\%$)	Mike ($r_m = 20\%$)	
Wealth	\$1M	\$1M	
Before-tax Income	\$0	\$200K	
	$ au_k = 50/200 = 25\%$		
Tax liability	0	$50K (= 200 au_k)$	
After-tax return	0%	$15\% \left(= rac{200-50}{1000} ight)$	
After-tax wealth ratio	$1.15(={}^{1150}\!/_{1000})$		

	Capital Income Tax $a_{i, ext{after-tax}} = a_i + (1 - au_k)r_ia_i$		Wealth Tax (on book value) $a_{i, ext{after-tax}} = (1 - au_a)a_i + r_ia_i$	
	Fredo ($r_f = 0\%$)	Mike (<i>r_m</i> = 20%)	Fredo ($r_f = 0\%$)	Mike (<i>r_m</i> = 20%)
Wealth	\$1M	\$1M	\$1M	\$1M
Before-tax Income	\$0	\$200K	0	\$200K
	$ au_k = 50/200 = 25\%$			
Tax liability	0	50 K ($=200 au_k$)		
After-tax return	0%	$15\% \left(= \frac{200-50}{1000} \right)$		
After-tax wealth ratio	1.15(=1150/1000)			

	Capital Income Tax $a_{i, ext{after-tax}} = a_i + (1 - au_k)r_ia_i$		Wealth Tax (on book value) $a_{i, ext{after-tax}} = (1 - au_{a})a_{i} + r_{i}a_{i}$	
	Fredo ($r_f = 0\%$)	Mike (<i>r_m</i> = 20%)	Fredo ($r_f = 0\%$)	Mike (<i>r_m</i> = 20%)
Wealth	\$1M	\$1M	\$1M	\$1M
Before-tax Income	\$0	\$200K	0	\$200K
	$ au_k=50/200=25\%$		$ au_{a}=2.5\%$	
Tax liability	0	50 K (= 200 $ au_k$)	25 K ($=1000 au_a$) \$25K (= $1000\tau_a$)
After-tax return	0%	$15\% \left(= rac{200-50}{1000} ight)$		
After-tax wealth ratio	1.15(=1150/1000)			

	Capital Income Tax $a_{i,after-tax} = a_i + (1 - \tau_k)r_ia_i$		Wealth Tax (on book value)	
			$a_{i, ext{after-tax}} = (1 - au_a)a_i + r_ia_i$	
	Fredo ($r_f = 0\%$)	Mike (<i>r_m</i> = 20%)	Fredo ($r_f = 0\%$)	Mike (<i>r_m</i> = 20%)
Wealth	\$1M	\$1M	\$1M	\$1M
Before-tax Income	\$0	\$200K	0	\$200K
	$ au_k=$ 50/200 $=$ 25%		$ au_{a}=$ 2.5%	
Tax liability	0	50 K (= 200 $ au_k$)	25K ($=1000 au$	a) \$25K (= $1000 au_a$)
After-tax return	0%	$15\% \left(= rac{200-50}{1000} ight)$	$-2.5\% (= rac{0-25}{1000}$) 17.5% (= $\frac{200-25}{1000}$)
After-tax wealth ratio	1.15 (= 1150/1000)		1.20(pprox 1175/975)	

	Capital Income Tax		Wealth Tax <mark>(on book value)</mark>	
	$a_{i, ext{after-tax}} = a_i + (1 - au_k) r_i a_i$		$a_{i, ext{after-tax}} = (1 - au_a)a_i + r_ia_i$	
	Fredo ($r_f = 0\%$)	Mike (<i>r_m</i> = 20%)	Fredo ($r_f = 0\%$)	Mike (<i>r_m</i> = 20%)
Wealth	\$1M	\$1M	\$1M	\$1M
Before-tax Income	\$0	\$200K	0	\$200K
	$ au_k = 50/200 = 25\%$		1	$r_a = 2.5\%$
Tax liability	0	50 K (= 200 $ au_k$)	25K ($=1000 au$	a) \$25K (= $1000 au_a$)
After-tax return	0%	$15\% \left(= rac{200-50}{1000} ight)$	$-2.5\% (= rac{0-25}{1000}$) 17.5% $\left(=\frac{200-25}{1000}\right)$
After-tax wealth ratio	$1.15(={}^{1150}\!/_{1000})$		1.20 (≈ ¹¹⁷⁵ /975)	

► Replacing τ_k with τ_a→ reallocates assets to high-return agents (use it or lose it) + increases dispersion in after-tax returns & wealth.

Guvenen, Kambourov, Kuruscu, Ocampo

Book-Value Wealth Taxation, Capital Income Taxation, and Innovation

1. Efficiency Gains: An increase in wealth tax increases TFP

- 1. Efficiency Gains: An increase in wealth tax increases TFP
- 2. Welfare Effects: Replacing capital income tax with wealth tax

Workers & Productive entrepreneurs gain

Unproductive entrepreneurs "typically" lose

- 1. Efficiency Gains: An increase in wealth tax increases TFP
- 2. Welfare Effects: Replacing capital income tax with wealth tax

Workers & Productive entrepreneurs gain

Unproductive entrepreneurs "typically" lose

3. Optimal Taxes: Depend on TFP pass-through to wages and K (given by capital intensity, α)

Low Pass-Through: $\alpha < \underline{\alpha}$		High Pass-Through: $\alpha > \overline{\alpha}$
$ au_a^\star < 0$, $ au_k^\star > 0$	$ au_{a}^{\star}>0$, $ au_{k}^{\star}>0$	$ au_{a}^{\star}>0$, $ au_{k}^{\star}<0$
0 <u>c</u>	$\underline{\chi}$ \overline{c}	$\overline{\overline{x}}$ 1

- 1. Efficiency Gains: An increase in wealth tax increases TFP
- 2. Welfare Effects: Replacing capital income tax with wealth tax

Workers & Productive entrepreneurs gain

Unproductive entrepreneurs "typically" lose

3. Optimal Taxes: Depend on TFP pass-through to wages and K (given by capital intensity, α)

Low Pass-Through: $\alpha < \underline{\alpha}$		High Pass-Through: $\alpha > \overline{\alpha}$
$ au_{a}^{\star} < 0$, $ au_{k}^{\star} > 0$	$ au_{a}^{\star}>0$, $ au_{k}^{\star}>0$	$ au_{s}^{\star} > 0$, $ au_{k}^{\star} < 0$
) <u>(</u>	$\frac{\chi}{2}$ \overline{c}	$\overline{\overline{x}}$ 1

4. Endogenous innovation: increase effect of τ_a on TFP, leading to higher optimal wealth tax

Outline

- 1. Benchmark model with exogenous entrepreneurial productivity process
- 2. Efficiency gains from wealth taxation
- 3. Welfare effects of wealth taxation
- 4. Optimal taxation
- 5. Model with endogenous entrepreneurial productivity
- 6. Extensions
- 7. Quantitative Analysis

Guvenen, Kambourov, Kuruscu, Ocampo

Benchmark Model with Exogenous Entrepreneurial Productivity

- 1. Homogenous workers (size L)
 - Supply labor inelastically + consume wage income and government transfers (hand-to-mouth)

- 1. Homogenous workers (size L)
 - Supply labor inelastically + consume wage income and government transfers (hand-to-mouth)
- 2. Heterogenous entrepreneurs (size 1)
 - Produce final goods using capital and labor + consume/save
 - Heterogeneity in productivity (z) and wealth (a)
 - Initial (inherited) wealth a common across entrepreneurs (a determined endogenously later)

- 1. Homogenous workers (size L)
 - Supply labor inelastically + consume wage income and government transfers (hand-to-mouth)
- 2. Heterogenous entrepreneurs (size 1)
 - Produce final goods using capital and labor + consume/save
 - Heterogeneity in productivity (z) and wealth (a)
 - Initial (inherited) wealth a common across entrepreneurs (a determined endogenously later)

Preferences (of workers and entrepreneurs):

$$E_0 \sum_{t=0}^{\infty} \left(\beta\delta\right)^t \log\left(c_t\right)$$

where $\beta < 1$ and $\delta < 1$ is the conditional survival probability

Technology, Production, and Taxes

Entrepreneurial technology:

$$y_i = \left(z_i k_i\right)^{\alpha} n_i^{1-\alpha}$$

- ▶ Productivity $z_i \in \{z_\ell, z_h\}$, where $z_h > z_\ell \ge 0$
- Each entrepreneur draws z_i randomly at birth
 - μ fraction of entrepreneurs have $z_i = z_h$, 1μ have $z_i = z_\ell$
 - Productivity constant over lifetime (results robust to Markov productivity process)

Technology, Production, and Taxes

Entrepreneurial technology:

$$y_i = \left(z_i k_i\right)^{\alpha} n_i^{1-\alpha}$$

- ▶ Productivity $z_i \in \{z_\ell, z_h\}$, where $z_h > z_\ell \ge 0$
- Each entrepreneur draws z_i randomly at birth
 - μ fraction of entrepreneurs have $z_i = z_h$, 1μ have $z_i = z_\ell$
 - Productivity constant over lifetime (results robust to Markov productivity process)
- ► Later: Productivity as endogenous outcome of innovation effort at birth

Technology, Production, and Taxes

Entrepreneurial technology:

$$y_i = (z_i k_i)^{\alpha} n_i^{1-\alpha}$$

• Productivity
$$z_i \in \{z_\ell, z_h\}$$
, where $z_h > z_\ell \ge 0$

Each entrepreneur draws z_i randomly at birth

- μ fraction of entrepreneurs have $z_i = z_h$, 1μ have $z_i = z_\ell$
- Productivity constant over lifetime (results robust to Markov productivity process)
- **Later:** Productivity as endogenous outcome of innovation effort at birth

Aggregate output:
$$Y = \int y_i di = \int (z_i k_i)^{\alpha} n_i^{1-\alpha} di$$

Government: Finances exogenous expenditure G and transfers T with τ_k and τ_a

Guvenen, Kambourov, Kuruscu, Ocampo

Financial markets:

- Collateral constraint: $k \leq \lambda a$, where *a* is entrepreneur's wealth and $\lambda \geq 1$
- Bonds are in zero net supply \rightarrow rate *r* determined endogenously

Financial markets:

- Collateral constraint: $k \leq \lambda a$, where *a* is entrepreneur's wealth and $\lambda \geq 1$
- Bonds are in zero net supply \rightarrow rate *r* determined endogenously

Entrepreneurs' Production Decision:

$$\Pi^{*}(z,a) = \max_{\mathbf{k} \le \lambda \mathbf{a},n} (zk)^{\alpha} n^{1-\alpha} - rk - wr$$

Solution:
$$\Pi^{*}(z,a) = \underbrace{\pi^{*}(z)}_{\text{Excess return above } r} \times a$$

Guvenen, Kambourov, Kuruscu, Ocampo
Entrepreneur's Dynamic Problem

$$V(a, z) = \max_{c, a'} \log (c) + \beta \delta V(a', z)$$

s.t. $c + a' = \underbrace{(1 - \tau_a) a + (1 - \tau_k) (r + \pi^* (z)) a}_{\text{After-tax wealth}}$

► Define (after-tax) gross return as:

$$R_{i}\equiv\left(1- au_{a}
ight)+\left(1- au_{k}
ight)\left(r+\pi^{\star}\left(z_{i}
ight)
ight) \quad ext{for }i\in\left\{\ell,h
ight\}$$

Entrepreneur's Dynamic Problem

$$V(a, z) = \max_{c, a'} \log (c) + \beta \delta V(a', z)$$

s.t. $c + a' = \underbrace{(1 - \tau_a) a + (1 - \tau_k) (r + \pi^* (z)) a}_{\text{After-tax wealth}}$

► Define (after-tax) gross return as:

$$R_{i} \equiv (1 - \tau_{a}) + (1 - \tau_{k}) \left(r + \pi^{\star} \left(z_{i} \right) \right) \quad \text{for } i \in \{\ell, h\}$$

► The savings decision (CRS + Log Utility):

 $a' = \beta \delta R_i a \longrightarrow$ linearity allows aggregation

Guvenen, Kambourov, Kuruscu, Ocampo

Entrepreneur's Dynamic Problem

$$V(a, z) = \max_{c, a'} \log (c) + \beta \delta V(a', z)$$

s.t. $c + a' = \underbrace{(1 - \tau_a) a + (1 - \tau_k) (r + \pi^* (z)) a}_{\text{After-tax wealth}}$

Define (after-tax) gross return as:

$$R_i \equiv (1 - \tau_a) + (1 - \tau_k) \left(r + \pi^* \left(z_i
ight)
ight)$$
 for $i \in \{\ell, h\}$

 $a' = \beta \delta R_i a \longrightarrow$ linearity allows aggregation

Note: log utility \rightarrow no behavioral response to taxes. \rightarrow All effects come from use-it-or-lose-it. Conservative lower bound.

Guvenen, Kambourov, Kuruscu, Ocampo

Three types of equilibria can arise depending on parameter values.

Three types of equilibria can arise depending on parameter values.

We focus on the "interesting one": if $(\lambda - 1) \mu A_h < (1 - \mu) A_\ell \longleftrightarrow \lambda < \overline{\lambda}$

Three types of equilibria can arise depending on parameter values.

We focus on the "interesting one": if $(\lambda - 1) \mu A_h < (1 - \mu) A_\ell \longleftrightarrow \lambda < \overline{\lambda}$

- Low-productivity entrepreneurs bid down interest rate, $r = MPK(z_{\ell})$
- **Unique steady state** with:

return heterogeneity, capital misallocation, wealth tax \neq capital inc tax

• Empirically relevant: $R_h > R_l$ and $\frac{\text{Debt}}{\text{GDP}} \gg 1.5$ when $\lambda = \overline{\lambda}$

Three types of equilibria can arise depending on parameter values.

We focus on the "interesting one": if $(\lambda - 1) \mu A_h < (1 - \mu) A_\ell \longleftrightarrow \lambda < \overline{\lambda}$

- Low-productivity entrepreneurs bid down interest rate, $r = MPK(z_{\ell})$
- ► Unique steady state with: return heterogeneity, capital misallocation, wealth tax ≠ capital inc tax
- Empirically relevant: $R_h > R_l$ and $\frac{\text{Debt}}{\text{GDP}} \gg 1.5$ when $\lambda = \overline{\lambda}$

Condition implies an upper bound on wealth taxes:

$$(\lambda - 1) \mu A_h < (1 - \mu) A_\ell \longleftrightarrow \tau_a < \overline{\tau}_a = 1 - \frac{1}{\beta \delta} \left(1 - \frac{1 - \delta}{\delta} \frac{1 - \lambda \mu}{(\lambda - 1) \left(1 - \frac{z_\ell}{z_h}\right)} \right)$$

Guvenen, Kambourov, Kuruscu, Ocampo

Conditions for Steady State with Heterogeneous Returns

Condition for Steady State with Heterogeneous Returns

Returns Eq'm and Steady State

Guvenen, Kambourov, Kuruscu, Ocampo

Equilibrium Values: Aggregation

Key variables:

- $s_h = \frac{\mu A_h}{\mu A_h + (1-\mu) A_\ell}$: wealth share of high-productivity entrepreneurs.
- ► $z_{\lambda} \equiv z_h + (\lambda 1) (z_h z_{\ell})$: effective productivity of high-productivity entrepreneurs.

Equilibrium Values: Aggregation

Key variables:

• $s_h = \frac{\mu A_h}{\mu A_h + (1-\mu) A_\ell}$: wealth share of high-productivity entrepreneurs.

► $z_{\lambda} \equiv z_h + (\lambda - 1)(z_h - z_\ell)$: effective productivity of high-productivity entrepreneurs.

Lemma: Aggregate output can be written as:

$$Y = (ZK)^{\alpha} L^{1-\alpha}$$
 (Z^{α} is measured TFP)

where

$$K \equiv \mu A_h + (1 - \mu) A_\ell$$

 $Z \equiv s_h z_\lambda + (1 - s_h) z_\ell$
 $K = Aggregate capital$
 $Z = Wealth-weighted productivity$

Equilibrium Values: Aggregation

Key variables:

• $s_h = \frac{\mu A_h}{\mu A_h + (1-\mu) A_\ell}$: wealth share of high-productivity entrepreneurs.

► $z_{\lambda} \equiv z_h + (\lambda - 1)(z_h - z_\ell)$: effective productivity of high-productivity entrepreneurs.

Lemma: Aggregate output can be written as:

$$Y = (ZK)^{\alpha} L^{1-\alpha}$$
 (Z^{α} is measured TFP)

where

${\it K}\equiv \mu{\it A_h}+(1-\mu){\it A_\ell}$	K = Aggregate capital
${\it Z} \equiv {\it s}_{\it h} {\it z}_{\lambda} + (1 - {\it s}_{\it h}) {\it z}_{\ell}$	Z = Wealth-weighted productivity

Note: Use it or lose it effect increases efficiency if $s_h \uparrow (\longrightarrow Z \uparrow)$

Guvenen, Kambourov, Kuruscu, Ocampo

Steady State K: Same as Neoclassical Growth Model... but with endogenous Z (Moll, 2014)

$$(1 - \tau_a) + (1 - \tau_k) \overbrace{\alpha Z^{\alpha} (\kappa/L)^{\alpha - 1}}^{\text{MPK}} = \frac{1}{\beta \delta}$$

Steady State K: Same as Neoclassical Growth Model... but with endogenous Z (Moll, 2014)

$$(1-\tau_{k}) \alpha \overline{\mathcal{Z}^{\alpha} \left(\mathbf{k}/L \right)^{\alpha-1}} = \frac{1}{\beta \delta} - (1-\tau_{a})$$

Steady State K: Same as Neoclassical Growth Model... but with endogenous Z (Moll, 2014)

$$(1-\tau_k) \alpha Z^{\alpha} (\kappa/L)^{\alpha-1} = \frac{1}{\beta \delta} - (1-\tau_a)$$

Tax Neutrality: τ_k does not affect steady state after-tax MPK; But τ_a does.

Steady State K: Same as Neoclassical Growth Model... but with endogenous Z (Moll, 2014)

$$(1 - \tau_k) \alpha \overline{Z^{\alpha} (\kappa/L)^{\alpha - 1}} = \frac{1}{\beta \delta} - (1 - \tau_a)$$

Tax Neutrality: τ_k does not affect steady state after-tax MPK; But τ_a does.

Steady State *Z*: Returns and evolution of assets imply this quadratic equation:

$$(1 - \delta^2 \beta (1 - \tau_a)) Z^2 - [(1 - \delta) (\mu z_\lambda + (1 - \mu) z_\ell) + \delta (1 - \delta \beta (1 - \tau_a)) (z_\lambda + z_\ell)] Z + \delta (1 - \delta \beta (1 - \tau_a)) z_\ell z_\lambda = 0$$

 \blacktriangleright Z only depends on τ_a

Guvenen, Kambourov, Kuruscu, Ocampo

Steady State K: Same as Neoclassical Growth Model... but with endogenous Z (Moll, 2014)

$$(1 - \tau_k) \alpha \overline{Z^{\alpha} (\kappa/L)^{\alpha - 1}} = \frac{1}{\beta \delta} - (1 - \tau_a)$$

Tax Neutrality: τ_k does not affect steady state after-tax MPK; But τ_a does.

Steady State *Z*: Returns and evolution of assets imply this quadratic equation:

$$(1 - \delta^2 \beta (1 - \tau_a)) Z^2 - [(1 - \delta) (\mu z_\lambda + (1 - \mu) z_\ell) + \delta (1 - \delta \beta (1 - \tau_a)) (z_\lambda + z_\ell)] Z + \delta (1 - \delta \beta (1 - \tau_a)) z_\ell z_\lambda = 0$$

\blacktriangleright Z only depends on τ_a

▶ Wealth tax affects returns, wealth shares, productivity. Capital income tax does not.

Guvenen, Kambourov, Kuruscu, Ocampo

Steady State K: Same as Neoclassical Growth Model... but with endogenous Z (Moll, 2014)

$$(1 - \tau_k) \alpha \overline{Z^{\alpha} (\kappa/L)^{\alpha - 1}} = \frac{1}{\beta \delta} - (1 - \tau_a)$$

Tax Neutrality: τ_k does not affect steady state after-tax MPK; But τ_a does.

Steady State *Z*: Returns and evolution of assets imply this quadratic equation:

$$(1 - \delta^2 \beta (1 - \tau_a)) Z^2 - [(1 - \delta) (\mu z_\lambda + (1 - \mu) z_\ell) + \delta (1 - \delta \beta (1 - \tau_a)) (z_\lambda + z_\ell)] Z + \delta (1 - \delta \beta (1 - \tau_a)) z_\ell z_\lambda = 0$$

 \blacktriangleright Z only depends on τ_a

Wealth tax affects returns, wealth shares, productivity. Capital income tax does not.

Both taxes affect capital, output, wages...

Guvenen, Kambourov, Kuruscu, Ocampo

Outline

- 1. Benchmark model with exogenous entrepreneurial productivity process
- 2. Efficiency gains from wealth taxation
- 3. Welfare effects of wealth taxation
- 4. Optimal taxation
- 5. Model with endogenous entrepreneurial productivity
- 6. Extensions
- 7. Quantitative Analysis

Guvenen, Kambourov, Kuruscu, Ocampo

Proof

For all $\mu \in (0,1)$ and $\tau_a < \overline{\tau}_a$, an increase in τ_a increases Z

For all $\mu \in (0,1)$ and $\tau_a < \overline{\tau}_a$, an increase in τ_a increases Z

Corollary: For all $\mu \in (0, 1)$ and $\tau_a < \overline{\tau}_a$, with an increase in τ_a :

• Wealth concentration rises: $s_h \uparrow (Z \uparrow = s_h z_\lambda + (1 - s_h) z_\ell)$

For all $\mu \in (0, 1)$ and $\tau_a < \overline{\tau}_a$, an increase in τ_a increases Z

Corollary: For all $\mu \in (0, 1)$ and $\tau_a < \overline{\tau}_a$, with an increase in τ_a :

- Wealth concentration rises: $s_h \uparrow (Z \uparrow = s_h z_\lambda + (1 s_h) z_\ell)$
- Dispersion of after-tax returns rises :

$$\frac{dR_{\ell}}{d\tau_a} < \mathbf{0} \qquad \& \qquad \frac{dR_h}{d\tau_a} > \mathbf{0}$$

Guvenen, Kambourov, Kuruscu, Ocampo

Proof

Distribution

For all $\mu \in (0, 1)$ and $\tau_a < \overline{\tau}_a$, an increase in τ_a increases Z

Corollary: For all $\mu \in (0, 1)$ and $\tau_a < \overline{\tau}_a$, with an increase in τ_a :

- Wealth concentration rises: $s_h \uparrow (Z \uparrow = s_h z_\lambda + (1 s_h) z_\ell)$
- Dispersion of after-tax returns rises :

Average return decreases:

$$\frac{dR_{\ell}}{d\tau_a} < \mathbf{0} \qquad \& \qquad \frac{dR_h}{d\tau_a} > \mathbf{0}$$

Guvenen, Kambourov, Kuruscu, Ocampo

Book-Value Wealth Taxation, Capital Income Taxation, and Innovation

 $\mu \frac{d\log R_h}{d\tau_a} + (1-\mu) \frac{d\log R_\ell}{d\tau_a} < \mathbf{0}$

Proof

Government Budget and Aggregate Variables

$$G+T = \tau_k \alpha Y + \tau_a K.$$

▶ In what follows, τ_k adjusts in the background when $\tau_a \uparrow$ so that $G + T = \theta \alpha Y$

Government Budget and Aggregate Variables

$$G+T = \tau_k \alpha Y + \tau_a K.$$

▶ In what follows, τ_k adjusts in the background when $\tau_a \uparrow$ so that $G + T = \theta \alpha Y$

Lemma:

For all $\mu \in (0,1)$ and $\tau_a < \overline{\tau}_a$, an increase in τ_a has the following effects on aggregates:

▶ Increases capital (K), output (Y), wage (w), & high-type wealth (A_h)

Guvenen, Kambourov, Kuruscu, Ocampo

Government Budget and Aggregate Variables

$$G+T = \tau_k \alpha Y + \tau_a K.$$

▶ In what follows, τ_k adjusts in the background when $\tau_a \uparrow$ so that $G + T = \theta \alpha Y$

Lemma:

For all $\mu \in (0,1)$ and $\tau_a < \overline{\tau}_a$, an increase in τ_a has the following effects on aggregates:

- ▶ Increases capital (K), output (Y), wage (w), & high-type wealth (A_h)
- Key: Higher $\alpha \longrightarrow$ Larger pass-through of productivity to K, Y, w

$$\xi_Z^K = \xi_Z^Y = \xi_Z^w = \frac{\alpha}{1 - \alpha} \qquad \xi_Z^x = \frac{d \log x}{d \log Z}$$

Guvenen, Kambourov, Kuruscu, Ocampo

Outline

- 1. Benchmark model with exogenous entrepreneurial productivity process
- 2. Efficiency gains from wealth taxation
- 3. Welfare effects of wealth taxation
- 4. Optimal taxation
- 5. Model with endogenous entrepreneurial productivity
- 6. Extensions
- 7. Quantitative Analysis

Guvenen, Kambourov, Kuruscu, Ocampo

For all $\tau_a < \overline{\tau}_a$, a higher τ_a changes welfare as follows:

• Workers: Higher welfare: $\frac{dV_{workers}}{d\tau_a} > 0$

► High-z entrepreneurs: Higher welfare $\left(\frac{dV_h(\bar{a})}{d\tau_2} > 0\right)$ because $\xi_Z^K + \frac{1}{1-\beta\delta}\xi_Z^{R_h} > 0$

• Low-z entrepreneurs: Lower welfare $\left(\frac{dV_{\ell}(\bar{a})}{d\tau_{a}} < 0\right)$ iff $\xi_{Z}^{K} + \frac{1}{1-\beta\delta}\xi_{Z}^{R_{\ell}} < 0$

• Entrepreneurs: Lower average welfare iff $\xi_Z^K + \frac{1}{1-\beta\delta} \left(\mu \xi_Z^{R_h} + (1-\mu) \xi_Z^{R_\ell} \right) < 0$

Guvenen, Kambourov, Kuruscu, Ocampo

For all $\tau_a < \overline{\tau}_a$, a higher τ_a changes welfare as follows:

• Workers: Higher welfare: $\frac{dV_{workers}}{d\tau_a} > 0$

► High-z entrepreneurs: Higher welfare $\left(\frac{dV_h(\bar{a})}{d\tau_2} > 0\right)$ because $\xi_Z^K + \frac{1}{1-\beta\delta}\xi_Z^{R_h} > 0$

• Low-z entrepreneurs: Lower welfare $\left(\frac{dV_{\ell}(\bar{a})}{d\tau_a} < 0\right)$ iff $\xi_Z^K + \frac{1}{1-\beta\delta}\xi_Z^{R_{\ell}} < 0$

• Entrepreneurs: Lower average welfare iff $\xi_Z^K + \frac{1}{1-\beta\delta} \left(\mu \xi_Z^{R_h} + (1-\mu) \xi_Z^{R_\ell} \right) < 0$

Note: These thresholds on α for welfare gains are very high in practice, so average entrepreneur welfare typically falls when τ_a increases.

Guvenen, Kambourov, Kuruscu, Ocampo

Outline

- 1. Benchmark model with exogenous entrepreneurial productivity process
- 2. Efficiency gains from wealth taxation
- 3. Welfare effects of wealth taxation

4. Optimal taxation

- 5. Model with endogenous entrepreneurial productivity
- 6. Extensions

7. Quantitative Analysis

Guvenen, Kambourov, Kuruscu, Ocampo

Objective: Choose taxes (τ_a, τ_k) to maximize newborn welfare $(n_w = L/(1+L)$ pop. share of workers)

$$\mathcal{W} \equiv n_w V_w + (1 - n_w) \left(\mu V_h \left(\overline{a} \right) + (1 - \mu) V_\ell \left(\overline{a} \right) \right)$$

Objective: Choose taxes (τ_a, τ_k) to maximize newborn welfare $(n_w = l/(1+L)$ pop. share of workers)

$$\mathcal{W} = \frac{1}{1 - \beta \delta} \left\{ n_w \log \left(w + T \right) + (1 - n_w) \left(\log \overline{a} + \frac{\mu \log R_h + (1 - \mu) \log R_\ell}{1 - \beta \delta} \right) \right\} + \text{Constant}$$

• An interior solution satisfies $dW/d\tau_a = 0$.

Objective: Choose taxes (τ_a, τ_k) to maximize newborn welfare $(n_w = l/(1+L)$ pop. share of workers)

$$\mathcal{W} = \frac{1}{1 - \beta \delta} \left\{ n_w \log \left(w + T \right) + (1 - n_w) \left(\log \overline{a} + \frac{\mu \log R_h + (1 - \mu) \log R_\ell}{1 - \beta \delta} \right) \right\} + \text{Constant}$$

• An interior solution satisfies $dW/d\tau_a = 0$.

Key trade-off:

- 1. Higher worker income (w + T) and wealth (\overline{a}) (depends on α)
- 2. Lower log average return (higher return dispersion + negative GE effect)

Guvenen, Kambourov, Kuruscu, Ocampo

Book-Value Wealth Taxation, Capital Income Taxation, and Innovation

 α threshold

Proposition: There exists a unique optimal tax combination (τ_a^*, τ_k^*) that maximizes \mathcal{W} . An interior optimum $(\tau_a^* < \overline{\tau}_a)$ is solution to:

$$0 = \left(\underbrace{n_{w}\xi_{Z}^{w+T} + (1 - n_{w})\xi_{Z}^{K}}_{\text{Level Effect (+)}} + \underbrace{\frac{1 - n_{w}}{1 - \beta\delta}\left(\mu\xi_{Z}^{R_{h}} + (1 - \mu)\xi_{Z}^{R_{\ell}}\right)}_{\text{Return Productivity Effect (-)}}\right)\frac{d\log Z}{d\tau_{a}}$$

where $\xi_Z^x \equiv \frac{d \log x}{d \log Z}$ is the elasticity of x with respect to Z. Furthermore,

$$\begin{array}{ll} \tau_a^{\star} < 0 & \text{and} & \tau_k^{\star} > 0 & \text{if } \alpha < \underline{\alpha} \\ \tau_a^{\star} > 0 & \text{and} & \tau_k^{\star} > 0 & \text{if } \underline{\alpha} \le \alpha \le \overline{\alpha} \\ \tau_a^{\star} > 0 & \text{and} & \tau_k^{\star} < 0 & \text{if } \alpha > \overline{\alpha} \end{array}$$

Guvenen, Kambourov, Kuruscu, Ocampo

Book-Value Wealth Taxation, Capital Income Taxation, and Innovation

 α threshold

Optimal Tax and $\underline{\alpha}$ and $\overline{\alpha}$ Thresholds

Guvenen, Kambourov, Kuruscu, Ocampo

$\alpha~{\rm Thresholds}$

Outline

- 1. Benchmark model with exogenous entrepreneurial productivity process
- 2. Efficiency gains from wealth taxation
- 3. Welfare effects of wealth taxation
- 4. Optimal taxation
- 5. Model with endogenous entrepreneurial productivity
- 6. Extensions
- 7. Quantitative Analysis

Guvenen, Kambourov, Kuruscu, Ocampo

Model with Endogenous Productivity through Innovation

Guvenen, Kambourov, Kuruscu, Ocampo

Model with Innovation Effort

- Interpret productivity z_i as the outcome of a risky innovation process
- ▶ Innovation requires costly effort, e, and can end with a high- or low-productivity idea

Innovator's problem:

$$\max_{e} \ \mu\left(e\right) V_{h}\left(\overline{a}\right) + \left(1 - \mu\left(e\right)\right) V_{\ell}\left(\overline{a}\right) - \frac{1}{\left(1 - \beta\delta\right)^{2}} \Lambda\left(e\right); \quad \Lambda\left(e\right) \ \text{convex} + C^{2}; \ \mu\left(e\right) = e$$

Model with Innovation Effort

- Interpret productivity z_i as the outcome of a risky innovation process
- ▶ Innovation requires costly effort, e, and can end with a high- or low-productivity idea

Innovator's problem:

$$\max_{e} \ \mu\left(e\right) V_{h}\left(\overline{a}\right) + \left(1 - \mu\left(e\right)\right) V_{\ell}\left(\overline{a}\right) - \frac{1}{\left(1 - \beta\delta\right)^{2}} \Lambda\left(e\right); \quad \Lambda\left(e\right) \ \text{convex} + C^{2}; \ \mu\left(e\right) = e$$

We show:

► Unique equilibrium with innovation.

 $\uparrow \tau_a \longrightarrow \uparrow$ Productivity (Z) $\longrightarrow \uparrow$ Innovation effort (e) $\longrightarrow \uparrow$ High prod (μ) $\longrightarrow \uparrow \uparrow Z$

Guvenen, Kambourov, Kuruscu, Ocampo

Model with Innovation Effort

- Interpret productivity z_i as the outcome of a risky innovation process
- ▶ Innovation requires costly effort, e, and can end with a high- or low-productivity idea

Innovator's problem:

$$\max_{e} \ \mu\left(e\right) V_{h}\left(\overline{a}\right) + \left(1 - \mu\left(e\right)\right) V_{\ell}\left(\overline{a}\right) - \frac{1}{\left(1 - \beta\delta\right)^{2}} \Lambda\left(e\right); \quad \Lambda\left(e\right) \ \text{convex} + C^{2}; \ \mu\left(e\right) = e$$

We show:

Unique equilibrium with innovation.

 $\uparrow \tau_a \longrightarrow \uparrow$ Productivity (Z) $\longrightarrow \uparrow$ Innovation effort (e) $\longrightarrow \uparrow$ High prod (μ) $\longrightarrow \uparrow \uparrow Z$

Endogenizing innovation implies higher optimal wealth taxes.

Guvenen, Kambourov, Kuruscu, Ocampo

Steady State: For $\tau_a \leq \overline{\tau}_a$, the share μ^* of high-productivity entrepreneurs is the solution to

$$\mu^{\star} = e(Z(\mu^{\star})), \text{ where }$$

i. $Z(\mu)$ gives the steady state productivity given μ .

ii. e(Z) gives the optimal innovation effort given steady state productivity Z.

Steady State: For $\tau_a \leq \overline{\tau}_a$, the share μ^* of high-productivity entrepreneurs is the solution to

 $\mu^{\star} = e(Z(\mu^{\star})), \text{ where }$

i. $Z(\mu)$ gives the steady state productivity given μ .

ii. e(Z) gives the optimal innovation effort given steady state productivity Z.

Prop. (existence and uniqueness): There exists a unique innovation equilibrium.

Steady State: For $\tau_a \leq \overline{\tau}_a$, the share μ^* of high-productivity entrepreneurs is the solution to

 $\mu^{\star} = e(Z(\mu^{\star})), \text{ where }$

i. $Z(\mu)$ gives the steady state productivity given μ .

ii. e(Z) gives the optimal innovation effort given steady state productivity Z.

Prop. (existence and uniqueness): There exists a unique innovation equilibrium.

Prop. (innovation gains from wealth taxation): Equilibrium μ^* is increasing in τ_a .

Steady State: For $\tau_a \leq \overline{\tau}_a$, the share μ^* of high-productivity entrepreneurs is the solution to

 $\mu^{\star} = e(Z(\mu^{\star})), \text{ where }$

i. $Z(\mu)$ gives the steady state productivity given μ .

ii. e(Z) gives the optimal innovation effort given steady state productivity Z.

Prop. (existence and uniqueness): There exists a unique innovation equilibrium.

Prop. (innovation gains from wealth taxation): Equilibrium μ^* is increasing in τ_a .

Corollary (productivity gains from wealth taxation):

The equilibrium Z^* is increasing in τ_a (+ Both μ^* and Z^* are independent of τ_k).

Guvenen, Kambourov, Kuruscu, Ocampo

Optimal Taxes with Innovation

Objective: Choose $(\tau_a^{\star}, \tau_k^{\star})$ to maximize newborn welfare net of innovation costs

$$\mathcal{W} \equiv n_w V_w(w) + (1 - n_w) \left(\mu V_h(\bar{a}) + (1 - \mu) V_\ell(\bar{a}) - \frac{\Lambda(\mu)}{(1 - \beta \delta)^2} \right)$$

Optimal Taxes with Innovation

Objective: Choose $(\tau_a^{\star}, \tau_k^{\star})$ to maximize newborn welfare net of innovation costs

$$\mathcal{W} \equiv n_w V_w(w) + (1 - n_w) \left(\mu V_h(\overline{a}) + (1 - \mu) V_\ell(\overline{a}) - \frac{\Lambda(\mu)}{(1 - \beta \delta)^2} \right)$$

Proposition: The optimal tax combination $(\tau_a^{\star}, \tau_k^{\star})$ that maximizes \mathcal{W} is the solution to:

$$\left(\underbrace{n_{w}\xi_{w}^{Z}+(1-n_{w})\xi_{K}^{Z}}_{\text{Level Effect (+)}}+\underbrace{\frac{1-n_{w}}{1-\beta\delta}\left(\mu\xi_{R_{h}}^{Z}+(1-\mu)\xi_{R_{\ell}}^{Z}\right)}_{\text{Return Productivity Effect (-)}}\right)\frac{d\log Z}{d\tau_{a}}$$

Optimal Taxes with Innovation

Objective: Choose $(\tau_a^{\star}, \tau_k^{\star})$ to maximize newborn welfare net of innovation costs

$$\mathcal{W} \equiv n_w V_w + (1 - n_w) \left(\mu V_h(\overline{a}) + (1 - \mu) V_\ell(\overline{a}) - \frac{\Lambda(\mu)}{(1 - \beta \delta)^2}
ight)$$

Proposition: The optimal tax combination $(\tau_a^{\star}, \tau_k^{\star})$ that maximizes \mathcal{W} is the solution to:

$$\left(\underbrace{n_{w}\xi_{Z}^{w+T}+(1-n_{w})\xi_{Z}^{K}}_{\text{Level Effect (+)}}+\underbrace{\frac{1-n_{w}}{1-\beta\delta}\left(\mu\xi_{Z}^{R_{h}}+(1-\mu)\xi_{Z}^{R_{\ell}}\right)}_{\text{Return Productivity Effect (-)}}\right)\frac{d\log Z}{d\tau_{a}}$$

$$+\underbrace{\frac{1-n_{w}}{1-\beta\delta}\left(\mu\xi_{\mu}^{R_{h}}+(1-\mu)\xi_{\mu}^{R_{\ell}}\right)\frac{d\mu}{d\tau_{a}}}_{\text{New! Return Innovation Effect (+)}}=0$$

Guvenen, Kambourov, Kuruscu, Ocampo

Extensions

Guvenen, Kambourov, Kuruscu, Ocampo

Extension: Entrepreneurial Effort

Entrepreneurial effort in production:

$$y = (zk)^{\alpha} e^{\gamma} n^{1-\alpha-\gamma} \longrightarrow e$$
: effort

Production functions is CRS \longrightarrow Aggregation

Entrepreneurial preferences:

$$u(c, e) = \log (c - \psi e) \qquad \psi > 0$$

Extension: Entrepreneurial Effort

Entrepreneurial effort in production:

$$y = (zk)^{\alpha} e^{\gamma} n^{1-\alpha-\gamma} \longrightarrow e$$
: effort

Production functions is CRS \longrightarrow Aggregation

Entrepreneurial preferences:

$$u(c, e) = \log(c - \psi e)$$
 $\psi > 0$

Entrepreneurial problem becomes:

$$\hat{\pi}(z,k) = \max_{n,e} y - wn - rk - \frac{\psi}{\underbrace{1 - \tau_k}} e$$

Effective Cost of Effort

• Key: Effective cost of effort depends on capital income tax τ_k !

Guvenen, Kambourov, Kuruscu, Ocampo

Results:

- 1. Efficiency gains from wealth taxation go through
- 2. Effect on aggregates is stronger if capital income taxes go down
- 3. Optimal taxes: higher wealth tax and lower capital income tax

- Stochastic Productivity: Follows Markov process with persistence ρ
 - All results hold as long as $\rho > 0$
- Corporate sector that faces no borrowing constraint
 - If $z_{\ell} < z_{C} < z_{h}$, then low-productivity agents invest in the corporate sector.
- **Rents**: Return \neq Marginal productivity.
 - Introduce zero-sum return wedges so that $R_h <> R_\ell$.
 - Efficiency gains from $\tau_a \uparrow$ if $R_h > R_\ell$.

Details

Conclusions

Increasing τ_a (& reducing τ_k):

- ▶ Use it or Lose it Effect: Reallocates capital from less to more productive agents.
 - Higher TFP, output, and wages;
 - Higher dispersion in returns and wealth and lower average returns
- ► Equilibrium innovation increases (when innovation is endogenous)

Conclusions

Increasing τ_a (& reducing τ_k):

- ▶ Use it or Lose it Effect: Reallocates capital from less to more productive agents.
 - Higher TFP, output, and wages;
 - Higher dispersion in returns and wealth and lower average returns
- Equilibrium innovation increases (when innovation is endogenous)

Optimal taxes:

- Combination of taxes depends on pass-through of TFP to wages and wealth
- Optimal wealth tax is higher with endogenous innovation.

Guvenen, Kambourov, Kuruscu, Ocampo

Extra

Outline

- 1. Benchmark model with exogenous entrepreneurial productivity process
- 2. Efficiency gains from wealth taxation
- 3. Welfare effects of wealth taxation
- 4. Optimal taxation
- 5. Model with endogenous entrepreneurial productivity
- 6. Extensions

7. Quantitative Analysis

Guvenen, Kambourov, Kuruscu, Ocampo

Entrepreneur's Problem

Guvenen, Kambourov, Kuruscu, Ocampo

Financial Markets & Entrepreneurs' Production Problem

Entrepreneurs' Production Decision:

$$\Pi^{\star}(z,a) = \max_{\mathbf{k} < \lambda \mathbf{a}, n} (zk)^{\alpha} n^{1-\alpha} - rk - wn.$$

Financial Markets & Entrepreneurs' Production Problem

Entrepreneurs' Production Decision:

Solution:
$$\Pi^{\star}(z, a) = \underbrace{\pi^{\star}(z)}_{\text{Excess return above } r} \times a$$

$$\pi^{\star}(z) = \begin{cases} (MPK(z) - r) \lambda & \text{if } MPK(z) > r \\ 0 & \text{otherwise.} \end{cases} \qquad k^{\star}(z) \begin{cases} = \lambda a & \text{if } MPK(z) > r \\ \in [0, \lambda a] & \text{if } MPK(z) = r \\ = 0 & \text{if } MPK(z) < r \end{cases}$$

1

• $(\lambda - 1)$ a: amount of external funds used by type-z if MPK(z) > r.

Guvenen, Kambourov, Kuruscu, Ocampo

FIGURES

Condition for Steady State with Heterogeneous Returns

Returns 📜 Eq'm and Steady State

Note: The figure reports the upper bound on wealth taxes for combinations of the discount factor (β) and productivity dispersion (z_{ℓ}/z_h). We set the remaining parameters as follows: $\delta = \frac{49}{50}$, $\beta \delta = 0.96$, $\mu = 0.10$, $z_h = 1$, $\tau_k = 25\%$, and $\alpha = 0.4$. λ is such that the debt-to-output ratio in our baseline calibration is 1.5.

Guvenen, Kambourov, Kuruscu, Ocampo

Return Dispersion in Steady State of the Benchmark Economy

Note: The figure reports the value return dispersion in steady state for combinations of the discount factor (β) and productivity dispersion (z_{ℓ}/z_h). We set the remaining parameters as follows: $\delta = 49/50$, $\beta \delta = 0.96$, $\mu = 0.10$, $z_h = 1$, $\tau_k = 25\%$, and $\alpha = 0.4$.

Guvenen, Kambourov, Kuruscu, Ocampo

What happens to Z if $\tau_a \uparrow$?

Back to eff. gain

Stationary wealth distribution and wealth taxes

Welfare Gains

Conditions for Entrepreneurial Welfare Gain

Note: The figures report the threshold value of α above which entrepreneurial welfare increases after an increase in wealth taxes for combinations of the discount factor (β) and productivity dispersion (z_{ℓ/z_h}). We set the remaining parameters as follows: $\delta = ^{49}/_{50}$, $\beta \delta = 0.96$, $\mu = 0.10$, $z_h = 1$, $\tau_k = 25\%$, and $\alpha = 0.4$.

Guvenen, Kambourov, Kuruscu, Ocampo

Optimal Taxes

α -thresholds for Optimal Wealth Taxes

Note: The figures report the threshold value of α for the optimal wealth taxes to be positive (left) and capital income taxes to be positive (right) for combinations of the discount factor (β) and productivity dispersion (z_{ℓ}/z_h). We set the remaining parameters as follows: $\delta = 49/50$, $\beta \delta = 0.96$, $\mu = 0.10$, $z_h = 1$, $\tau_k = 25\%$, and $\alpha = 0.4$.

Guvenen, Kambourov, Kuruscu, Ocampo

Back to opt. tax

How the Optimal Wealth Tax Varies with β and productivity dispersion

Note: The figure reports the value of the optimal wealth tax for combinations of the discount factor (β) and productivity dispersion (z_{ℓ}/z_h). We set the remaining parameters as follows: $\delta = 49/50$, $\beta \delta = 0.96$, $\mu = 0.10$, $z_h = 1$, $\tau_k = 25\%$, and $\alpha = 0.4$.

back

Guvenen, Kambourov, Kuruscu, Ocampo

Extensions

Extension: Corporate sector

- Technology: $Y_c = (z_c K_c)^{\alpha} L_c^{1-\alpha}$
 - No financial constraints!
- Corporate sector imposes lower bound on *r*.

$$r \ge \alpha z_c \left(\frac{1-\alpha}{w}\right)^{\frac{1-\alpha}{\alpha}}.$$

Interesting case: $z_{\ell} < z_c < z_h$

- Corporate sector and high-productivity entrepreneurs produce
- ► Low-productivity entrepreneurs lend all of their funds.
- ▶ No real changes in the aggregates of the economy! z_c takes the place of z_ℓ

$$Y = (ZK)^{\alpha} L^{1-\alpha}$$

but now
$$Z = s_h z_\lambda + s_l \mathbf{z_c}$$
, where $z_\lambda = z_h + (\lambda - 1) (z_h - \mathbf{z_c})$.

Guvenen, Kambourov, Kuruscu, Ocampo
► Introduce wedge for returns above/below productivity:

$$R_{i} = (1 - \tau_{a}) + (1 - \tau_{k}) \underbrace{(1 + \omega_{i})}_{\text{Return Wedge}} \alpha \left(\frac{ZK}{L}\right)^{\alpha - 1} z_{i}$$

- Zero-sum condition on wedges: $\omega_I z_\ell A_\ell + \omega_h z_\lambda A_h = 0$
- Characterization of eq. in terms of "effective productivity" $\tilde{z}_i = (1 + \omega_i) z_i$

► Introduce wedge for returns above/below productivity:

$$R_{i} = (1 - \tau_{a}) + (1 - \tau_{k}) \underbrace{(1 + \omega_{i})}_{\text{Return Wedge}} \alpha \left(\frac{ZK}{L}\right)^{\alpha - 1} z_{i}$$

- Zero-sum condition on wedges: $\omega_I z_\ell A_\ell + \omega_h z_\lambda A_h = 0$
- Characterization of eq. in terms of "effective productivity" $\tilde{z}_i = (1 + \omega_i) z_i$

Proposition:

For all $\tau_a < \overline{\tau}_a$, a marginal increase in wealth taxes (τ_a) increases Z, $\frac{dZ}{d\tau_a} > 0$, iff

- 1. $\rho > 0$ and $R_h > R_\ell \longrightarrow$ Same mechanism as before
- 2. $\rho < 0$ and $R_h < R \longrightarrow$ Reallocates wealth to the true high types next period

Guvenen, Kambourov, Kuruscu, Ocampo

Extension: Entrepreneurial Effort

Entrepreneurial production:

$$y = (zk)^{\alpha} e^{\gamma} n^{1-\alpha-\gamma} \longrightarrow e$$
: effort

 \blacksquare Production functions is CRS \longrightarrow Aggregation

► Entrepreneurial preferences:

$$u(c, e) = \log(c - \psi e)$$
 $\psi > 0$

- \blacksquare GHH preferences with no income effects \longrightarrow Aggregation
- ψ plays an important role: Cost of effort in consumption units

Guvenen, Kambourov, Kuruscu, Ocampo

Extension: Entrepreneurial Effort

Problem is isomorphic to having preferences

 $u(\hat{c}) = \log \hat{c}$ where $\hat{c} = c - \psi e$

and modifying entrepreneurial problem to:

$$\hat{\pi}(z,k) = \max_{n,e} y - wn - rk - \underbrace{\frac{\psi}{1-\tau_k}}_{\text{Effecive cost of effort}} e$$

Solution is just as before (linear policy functions a', n, and e)

Key: Effective cost of effort depends on capital income tax τ_k !

- Effort affects entrepreneurial income
- Income subject to capital income taxes but not to book value wealth taxes

Guvenen, Kambourov, Kuruscu, Ocampo

Extension: Entrepreneurial Effort

► Aggregate effort:

$$E = \left(\frac{(1-\tau_k)\gamma}{\psi}\right)^{\frac{1}{1-\gamma}} (ZK)^{\frac{\alpha}{1-\gamma}} L^{\frac{1-\alpha-\gamma}{1-\gamma}}$$

• Comparative statics: $K \uparrow$, $Z \uparrow$, and $\tau_k \downarrow$

▶ New wedge from capital income taxes on aggregate output and wages!

• Effort affects marginal product of capital \longrightarrow Affects K_{ss}

A neutrality result:

- No changes to steady state productivity!
- Steady state capital adjusts in background to satisfy:

$$(1-\tau_k)$$
 MPK $-\tau_a = \frac{1}{\beta} - 1$

Guvenen, Kambourov, Kuruscu, Ocampo

Results:

- 1. Efficiency gains from wealth taxation remain
- 2. Effect on aggregates is stronger if capital income taxes go down
 - Effort increases with wealth taxes:

$$E = \left(\frac{(1-\tau_k)\gamma}{\psi}\right)^{\frac{1}{1-\gamma}} (ZK)^{\frac{\alpha}{1-\gamma}} L^{\frac{1-\alpha-\gamma}{1-\gamma}}$$

3. Optimal taxes: higher wealth tax and lower capital income tax

Guvenen, Kambourov, Kuruscu, Ocampo

Quantitative Framework with New Results

Model: Households

- ► **OLG** demographic structure.
- **Uncertain lifetimes:** individuals face mortality risk every period.
- **Bequest motive**, inheritance goes to (newborn) offspring.

Model: Households

- ► **OLG** demographic structure.
- **Uncertain lifetimes:** individuals face mortality risk every period.
- **Bequest motive**, inheritance goes to (newborn) offspring.

Individuals:

- ► Have preferences over consumption, leisure and bequests
- Make three decisions:

consumption-savings || **labor supply** || portfolio choice

Two exogenous characteristics:

y_{ih} (labor market productivity) || z_{ih} (entrepreneurial productivity)

Model: Households

- ► **OLG** demographic structure.
- Uncertain lifetimes: individuals face mortality risk every period.
- **Bequest motive**, inheritance goes to (newborn) offspring.

Individuals:

- Have preferences over consumption, leisure and bequests
- Make three decisions:

consumption-savings || **labor supply** || portfolio choice

Two exogenous characteristics:

y_{ih} (labor market productivity) || z_{ih} (entrepreneurial productivity)

Entrepreneurs: monopolistic competition \rightarrow **decreasing returns to scale**

Guvenen, Kambourov, Kuruscu, Ocampo

Idiosyncratic wage risk :

Modeled in a rich way, but does not turn out to be critical. Details

- Idiosyncratic wage risk :
 - Modeled in a rich way, but does not turn out to be critical. Details
- Entrepreneurial productivity, z_{ih}, varies
 - 1. permanently across individuals
 - imperfectly correlated across generations
 - 2. stochastically over the life cycle

Government budget balances:

- ► **Outlays:** Expenditure (*G*) + Social Security pensions
- **Revenues:** tax on consumption (τ_c) , labor income (τ_ℓ) , bequests (τ_b) plus:
- 1. tax on capital income (τ_k) , or
- 2. tax on wealth (τ_a) .

Guvenen, Kambourov, Kuruscu, Ocampo

Choose parameters of

- $\blacktriangleright \text{ Bequest motive} \rightarrow$
 - level and concentration of bequests

Choose parameters of

- $\blacktriangleright \text{ Bequest motive} \rightarrow$
 - level and concentration of bequests
- Entrepreneurial productivity \rightarrow
 - top wealth concentration (overall and in the hands of entrepreneurs)
 - shares of entrepreneurs and self-made billionaires

Choose parameters of

- $\blacktriangleright \text{ Bequest motive} \rightarrow$
 - level and concentration of bequests
- Entrepreneurial productivity \rightarrow
 - top wealth concentration (overall and in the hands of entrepreneurs)
 - shares of entrepreneurs and self-made billionaires
- Entrepreneurs' collateral constraint \rightarrow
 - \blacksquare Business debt plus external funds/GDP

Pareto Tail of Wealth Distribution: Model vs. Data

	A	Annual Returns			Persistent Component of Returns					
	Std dev	P90-P10	Kurtosis		Std dev	P90-P10	Kurtosis	P90	P99	P99.9
Data (Norway)	8.6	14.2	47.8		6.0	7.7	78.4	4.3	11.6*	23.4*
Data (Norway, bus. own.)	_	-	-		4.8	10.9	14.2	10.1	-	-
Data (US, private firms)	17.7	33.8	8.3		-	-	-	-	-	-
Benchmark Model	8.4	17.1	7.6		4.1	9.2	6.1	5.8	13.9	19.7
L-INEQ Calibration	6.7	13.1	9.2		3.8	9.2	4.3	5.6	11.2	15.8

Note: Returns on wealth in percentage points. All cross-sectional returns are value weighted. *The statistics for Norway are for individual returns on wealth (net worth) taken from Fagereng, Guiso, Malacrino, and Pistaferri (2020). The US statistics are from Smith, Zidar, and Zwick (2021) and are for S-corps' returns on investment; they also report statistics for partnerships, which are very similar (std dev of 17.8% and P90-P10 of 27.9). For each individual, the persistent component of returns is calculated following Fagereng et al as the unweighted average of annual, before-tax, returns between ages 25 and 75, after taking out the average return by age.

Guvenen, Kambourov, Kuruscu, Ocampo

	$ au_k$	$ au_\ell$	$ au_{a}$	$\Delta Welfare$
Benchmark	25%	22.4%	_	_
RN Tax reform	-	22.4%	1.19%	7.2
Opt. $ au_a$				
Opt. τ_k				

	K	Q	TFP	L	Y	W	W
% change							(net)
Tax reform	16.4	22.6	2.1	1.2	9.2	8.0	8.0
Optimal τ_a							
Optimal τ_k							

Average (consumption equivalent) welfare gain by age-productivity groups:

	Productivity group (Percentile)							
Age	0-40	40-80	80-90	90-99	99-99.9	99.9+		
20	6.7	6.3	6.8	8.5	11.5	13.4		
21 - 34								
35-49								
50-64								
65 +								

Average (consumption equivalent) welfare gain by age-productivity groups:

		Productivity group (Percentile)						
Age	0-40	40-80	80-90	90-99	99-99.9	99.9+		
20	6.7	6.3	6.8	8.5	11.5	13.4		
21 - 34	6.3	5.5	5.5	6.5	8.5	9.7		
35 - 49	4.9	3.8	3.3	3.3	3.1	2.8		
50-64	2.2	1.5	1.1	0.9	0.4	-0.2		
65 +	-0.2	-0.3	-0.4	-0.4	-0.7	-1.0		

Average (consumption equivalent) welfare gain by age-productivity groups:

	Productivity group (Percentile)						
Age	0-40	40-80	80-90	90-99	99-99.9	99.9+	
20	6.7	6.3	6.8	8.5	11.5	13.4	
21 - 34	6.3	5.5	5.5	6.5	8.5	9.7	
35-49	4.9	3.8	3.3	3.3	3.1	2.8	
50-64	2.2	1.5	1.1	0.9	0.4	-0.2	
65 +	-0.2	-0.3	-0.4	-0.4	-0.7	-1.0	

BB tax reform turns welfare losses of retirees to gains, ranging from 2.3% to 6.5%.

Guvenen, Kambourov, Kuruscu, Ocampo

	$ au_k$	$ au_\ell$	$ au_{a}$	$\Delta Welfare$
Benchmark	25%	22.4%	_	_
RN Tax reform	-	22.4%	1.19%	7.2
Opt. $ au_a$				
Opt. $ au_k$				

	$ au_k$	$ au_\ell$	$ au_{a}$	Δ Welfare
Benchmark	25%	22.4%	_	-
RN Tax reform	-	22.4%	1.19%	7.2
Opt. $ au_a$	_	15.4%	3.03%	8.7
Opt. $ au_k$				

	$ au_k$	$ au_\ell$	$ au_{a}$	$\Delta Welfare$
Benchmark	25%	22.4%	_	_
RN Tax reform	-	22.4%	1.19%	7.2
Opt. τ_a	_	15.4%	3.03%	8.7
Opt. τ_k	-13.6%	31.2%	_	5.1

	K	Q	TFP	L	Y	W	W
% change							(net)
Tax reform	16.4	22.6	2.1	1.2	9.2	8.0	8.0
Optimal τ_a	2.6	10.5	3.1	3.3	6.1	2.8	12.0
Optimal τ_k							

	K	Q	TFP	L	Y	W	W
% change							(net)
Tax reform	16.4	22.6	2.1	1.2	9.2	8.0	8.0
Optimal τ_a	2.6	10.5	3.1	3.3	6.1	2.8	12.0
Optimal τ_k	38.6	46.1	2.2	-1.0	15.7	16.8	3.6

	Tax Reform	$Opt. au_k$	$Opt.\tau_{\textit{a}}$
CE_2 (NB)	7.2	5.1	8.7
Level $(\overline{c}, \overline{\ell})$	8.9		
Dist. (c, ℓ)	-1.5		

	Tax Reform	$Opt. au_k$	$Opt.\tau_{a}$
CE_2 (NB)	7.2	5.1	8.7
Level $(\overline{c}, \overline{\ell})$	8.9	14.7	
Dist. (c, ℓ)	-1.5	-8.3	

	Tax Reform	$Opt.\tau_k$	$Opt.\tau_{\textit{a}}$
CE_2 (NB)	7.2	5.1	8.7
Level $(\overline{c}, \overline{\ell})$	8.9	14.7	5.9
Dist. (c, ℓ)	-1.5	-8.3	2.6

Optimal taxes with transition

- Fix opt. tax level (τ_k or τ_a) and solve transition to new steady state
- Use labor income tax (τ_{ℓ}) to finance debt from deficits during transition

Fix opt. tax level (τ_k or τ_a) and solve transition to new steady state

• Use labor income tax (τ_{ℓ}) to finance debt from deficits during transition

	$ au_k$ Transition	$ au_a$ Transition
$ au_k$	-13.6^{*}	0.00
$ au_{a}$	0.00	3.03^{*}
$ au_\ell$	39.90	17.01
\overline{CE}_2 (newborn)	-8.4 (5.1)	6.0 (8.7)
\overline{CE}_2 (all)	-6.1 (4.5)	3.5 (4.3)