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Wealth is Extremely Concentrated at the Top: US

Right Tail: Log Counter-CDF vs Log Wealth
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Wealth is Extremely Concentrated at the Top: US

Shape: A straight line implies a Pareto distribution: P(w > x) ~ x=¢
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Wealth is Extremely Concentrated at the Top: US

Thickness: Slope gives the tail index «

+ US Data (SZZ,23)
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True in Most of the Developed Economies

Pareto Tail Index for Wealth
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Tail Index 1.39 1.46 1.47 ~1.50 158 162 169 174 1.87 1.88
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True in Most of the Developed Economies

Pareto Tail Index for Wealth

Germany Austria Portugal us Italy France Spain UK Belgium Finland

Tail Index 1.39 1.46 1.47 ~1.50 158 162 169 174 1.87 1.88

» Shape: All of these countries have Pareto tails

» Thickness: All countries with o < 2. Very thick tail!

m Matters in practice: Models with thick Pareto tail are harder to solve accurately.

» Why care about Pareto? No super rich without Pareto...Even if top 1% share matched

m Many policy debates are (were!) about taxing 100-millionaires, billionaires, etc.
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What Drives Wealth Inequality? Six Mechanisms

Life-cycle & Retirement saving & Bequests
Idiosyncratic income shocks

Idiosyncratic income shocks + “Awesome-State”
Perpetual-Youth

Rate of Return Heterogeneity

» Today: Models that feature 1 through 5. How (well) do they generate wealth inequality?

» Not Today: Stochastic-beta, Heterogeneous risk aversion, Non-homothetic pref., etc.
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Horse Race: Three Frameworks

Awesome-State Income Risk Model (1 + 3 + 4)
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Horse Race: Three Frameworks

Awesome-State Income Risk Model (1 + 3 + 4)

m Top incomes overstated: Very transitory with long tail, 500-1,000x median income

m Lifecycle: Perpetual-Youth + retirement

Lifecycle with Plausible Empirical Earnings Risk Model (1 + 2) : “PEER Model”

m Nonlinear, Non-Gaussian income process estimated from US data

m Life-cycle: Demographics taken from data.

Return Heterogeneity Model (1 + 2 + 5)

m Persistent return heterogeneity across households.

Two versions: (i) Entrepreneurship-based full-fledged macro model (ij) Markov return process
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Road Map:

Compare these 3 frameworks along 3 dimensions:
Income dynamics compared to the data

Wealth inequality — especially at the top:

Tail shape: Is it Pareto?
Tail thickness: Matches the data?
Life cycle dynamics of wealth accumulation: Incredibly fast wealth growth in the data

55+% of billionaires have 10,000-fold wealth growth over life cycle

Demographic structure and wealth distribution: Who holds the wealth?
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General Framework



I. Preferences and Demographics: 2 Versions

Version 1: CRRA Utility + Warm-Glow Bequests + Perpetual-Youth (cons. surv. ¢)

U= EOZBI(ﬂxu(ct) + (1—¢)x v(b))

=0 gyrvival prob. Warm-glow bequest

u(c) = ¢ v(b) = XW

T 1-0

1—0

— Used for Framework 1: Awesome-State Model
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Version 2: CRRA Utility + Warm-Glow Bequests + Finite Horizon T + Stoch. Death (¢, from data)

;
U= Eozlé’t(&xu(ct) + (1—¢) x v(br))

=0 Survival prob. Warm-glow bequest
l—0o 1—0o
c (b+bo)
“O=1- v =X
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I. Preferences and Demographics: 2 Versions

Version 2: CRRA Utility + Warm-Glow Bequests + Finite Horizon T + Stoch. Death (¢, from data)

;
U= EQZﬂt(\Qs;XU(Ct) + (1—¢) x v(br))

=0 Survival prob. Warm-glow bequest
l—0o 1—0o
c (b+bo)
“O=1- v =X

— Used for Frameworks 2 & 3: PEER Model & Return Heterogeneity Model

» Perpetual-youth will be critical ...as we will see
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Il. Household Consumption-Savings Problem

» Consumption-savings problem at the core of all 3 frameworks

Ve(a; V) = max {U(ct) + Bt E Ve (a5 Yegn) | YY) }
st. ¢ + d, = Ra, + Y,
a{s > —Bnmin,
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Il. Household Consumption-Savings Problem

» Consumption-savings problem at the core of all 3 frameworks
Vi (ai; ngRit) = Cmaf?‘x { U(Ci) + BorE [Vt+1(a£+1§ Y;+17Rit+1) ‘ )/i»Rit] ¥
st. d +d,, =Rixd +V,

G; > —Bnmin,

» In Aiyagari-style models (Frameworks 1-2), risk comes from stochastic Y} (labor income)

m No wealth Pareto

» In Power-Law models (Framework 3), risk comes from stochastic R¢

m Generate Pareto tail in wealth

m But: How thick? How long does it take to emerge? — Empirical questions
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Ill. Return Process: Two Options

Fully-fledged model: Entrepreneurial returns

m Individuals differ in entrepreneurial ability 7.

m Returns from entrepreneurial profits

= max Px (zﬁld)”—(R+5)ld

K< (Z) xa
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Ill. Return Process: Two Options

Fully-fledged model: Entrepreneurial returns

m Individuals differ in entrepreneurial ability 7.

m Returns from entrepreneurial profits

= max Px (zfld)”—(R+5)ld

K< (Z) xa

Simple benchmark: Markovian returns consistent with wealth inequality facts

R, = R x exp (z}) where Z follows a Markov Chain

m Later allow for permanent types
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Calibration of Models

Frameworks

Awesome-State

PEER Model

Return Heterogeneity

1.

2.

3.

Max T

Risk Aversion

Wealth-to-Income Ratio

¢ from data; ages 25-100

2
4

¢, from data; ages 25-100
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Calibration of Models

Frameworks

Awesome-State

PEER Model

Return Heterogeneity

1. MaxT 00
2. Risk Aversion
3. Wealth-to-Income Ratio

4. Average HH. Earnings

¢ from data; ages 25-100
2

4
$60,462

¢, from data; ages 25-100

» Earnings correspond to total wages and salaries per household in 2016

» Wealth level determined by average returns to wealth
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Road Map

Income Dynamics:

Income Processes

Models vs Data
Wealth Inequality: Models vs Data

Demographics and Wealth: Models vs Data
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Income Processes: 1. Awesome-State Model

Stationary Distribution of Income, Y

S1 So S3 S4

Y 1.00 3.15 9.78 1,061
T 61.1% 22.4% 16.5% 0.0389%
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S1 So S3
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Income Processes: 1. Awesome-State Model

Stationary Distribution of Income, Y

S1 S2 S3 Sy4
Y 1.00 3.15 9.78 1,061
T 61.1% 22.4% 16.5% 0.0389%

» Awesome Income: 200-1,000+ times median income + Very low probability state.

» Key: Very transitory — Fall back to median in ~5-10 years.

Today: | will focus on Castaneda, Diaz-Giménez, Rios—Rull (2003) version
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Income Process: 2. PEER Model

Very rich income process with 21 parameters

» Matches 2000+ moments of nonlinear and non-Gaussian income dynamics
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Income Process: 2. PEER Model

Very rich income process with 21 parameters

» Matches 2000+ moments of nonlinear and non-Gaussian income dynamics

PEER-Top: Alternative model with higher income inequality at the top
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Income Process: 3. Return Heterogeneity Model

» Deliberately very standard: Canonical persistent-plus-transitory income process:

logy; = o + g(t) +

= pi_y + .

» All random objects are Gaussian (x', v))
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What Aspects of Income Dynamics to Match?

Top incomes: How high are high incomes?
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What Aspects of Income Dynamics to Match?

Top incomes: How high are high incomes?

Income Risk:

m How dispersed are income changes?

m What type of risk people face : Skewness

Other features skipped for today:

Heterogeneous income growth over the life cycle; Income persistence of top earners;

Distribution of income changes over longer horizons; Asymmetric Impulse response functions.
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I. Income Inequality

Ratio of Top Percentile Threshold to Median Earnings

Percentile Threshold

99% 99.9% 99.99%

US Data

Awesome-State
PEER Model

Gaussian-AR
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I. Income Inequality
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Percentile Threshold
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I. Income Inequality
Ratio of Top Percentile Threshold to Median Earnings

Percentile Threshold

99% 99.9% 99.99%

US Data 8.5 30.4 135.8
Awesome-State 9.8 9.8 1061.0
PEER Model 14.8 33.6 65.0
Gaussian-AR 6.6 13.9 27.8
y99.9 99.99

» PEER-TOP: modified for higher income inequality — o =125 yyso =334

m Thick income Pareto tail but wealth results qualitatively unchanged
14/23



Il. Income Risk: Standard Deviation of Income Growth
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—6—US Data
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I1l. Income Risk: Skewness of Income Growth

Lower

Negative at the Top

Skewness

Skewness of Earnings Growth
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Road Map

Income Dynamics: Models vs Data

Income Processes

Models vs Data

Wealth Inequality:

Return Heterogeneity
Models vs Data

Demographics and Wealth: Models vs Data
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Return Heterogeneity

Cross-Section Life-Time
Average p90-p10 Std. Dev. p99 p99.9
PEER Model & Awesome State 3.0
Markovian Returns 12.2
Entrepreneurial Returns 8.3

Norway 3.8
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Return Heterogeneity

Cross-Section Life-Time
Average p90-p10 Std. Dev. p99 p99.9
PEER Model & Awesome State 3.0
Markovian Returns 12.2 23.6 6.7 156 198
Entrepreneurial Returns 8.3 17.3 3.8 11.2 158

Norway 3.8 14.2 6.0 116 234
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Return Heterogeneity and Entrepreneurship

Cross-Section Life-Time
Average p90-p10 Std. Dev. p99 p99.9
PEER Model & Awesome State 3.0
Markovian Returns 12.2 23.6 6.7 156 198
Entrepreneurial Returns 8.3 17.3 3.8 11.2 158
Norway 3.8 14.2 6.0 116 234

For Entrepreneurial Returns model:

» Entrepreneurship: 10.6% vs 11.5% in US
» Entrepreneurs hold 80% of wealth among top 1% wealth holders
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What Aspects of Wealth Inequality to Match?

Top end of the wealth distribution:

Tail shape (all the way up to billionaires)

Tail thickness (matching % of 100-millionaires, billionaires, etc)
Inequality statistics: Gini, Top 10% share, Top 1% share

Life-cycle wealth dynamics of super wealthy:

m 55% of US Forbes billionaires are self-made
— 10,000- to 20,000-fold increase in wealth over 30-40 years.

18/23



Pareto Tail: Models vs US Data
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Pareto Tail: Models vs US Data
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Wealth Inequality: Gini

Gini

Frameworks
us Awesome PEER Return Heterogeneity
Data State Model
Markov  Entrepreneurial
0.85 0.84 0.72 0.79 0.78
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Wealth Inequality: Top Shares

Top 10%

Frameworks
us Awesome PEER Return Heterogeneity
Data State Model
Markov  Entrepreneurial
68.6 715 54.2 67.3 64.6
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Wealth Inequality: Top Shares

Top 1%

Frameworks
us Awesome PEER Return Heterogeneity
Data State Model
Markov  Entrepreneurial
33.7 30.0 13.5 31.5 349
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Wealth Inequality: Top-Top Shares

Frameworks
us Awesome PEER Return Heterogeneity
Data State Model
Markov  Entrepreneurial
Top 0.1% 15.7 154 14.8 22.2
Top 0.01% 71 3.3* 7.0 13.0

* Awesome-state model: only 0.002% above empirical 0.01% wealth threshold.
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Wealth Inequality: Fraction Self-Made

Frameworks

us Awesome PEER Return Heterogeneity
Data State Model

Markov  Entrepreneurial

% Self-made 55 0.4 0.0 0.0 57.5
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Wealth Inequality: Fraction Self-Made

Frameworks

us Awesome PEER Return Heterogeneity

Data State Model
Markov  Entrepreneurial Markov +

0.85 0.78
68.6 65.9
33.7 30.6
15.7 15.6

7.1 9.4

% Self-made 55 0.4 0.0 0.0 57.5 21.3
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Road Map

Income Dynamics: Models vs Data

Income Processes

Models vs Data

Wealth Inequality:

Return Heterogeneity

Models vs Data

Demographics and Wealth: Models vs Data

Guvenen, Ocampo, Ozkan (2025) Mechanics of Wealth Inequality
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Age Distribution: Awesome-State Model
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Age Distribution: Awesome-State Model
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» US has 97,000 centenarians. Or 0.029% of population
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Age Distribution: Awesome-State Model vs Life Cycle Models
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» US has 97,000 centenarians. Or 0.029% of population
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Who Holds the Wealth?

Representation of the Very Old in Top 1%

Awesome State Markov Returns
Age Population Share  Wealth Share Population Share  Wealth Share
65+ 81.1 67.0 43.6 413
85+
100+

120+
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Who Holds the Wealth?

Representation of the Very Old in Top 1%

Awesome State Markov Returns
Age Population Share  Wealth Share Population Share  Wealth Share
65+ 81.1 67.0 43.6 413
85+ 73.6 50.8 3.7 3.7
100+ 61.2 39.1 NA NA

120+ 39.8 25.0 NA NA

21/23



Recap: Comparison of Models’ Performance

Model:
1. PEER model
2.  Awesome-State model

3.

Return heterogeneity

Pareto Tail Overall Inequality Lyfe Cycle Dynamics
Shape Thickness Gini + Top Shares Self-made
No No No No
No No Yes No
Yes Yes Yes Yes
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Conclusions

» “Awesome-State” Model:

m Perpetual youth creates highly questionable demographics.

» Centenarians hold 2/5 of top 1% wealth

m Income process contradicts a large number of facts that are now well established.

m Model does not generate a Pareto tail, and nobody has more than 150 million in wealth.
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Conclusions

» “Awesome-State” Model:

m Perpetual youth creates highly questionable demographics.

» Centenarians hold 2/5 of top 1% wealth
m Income process contradicts a large number of facts that are now well established.
m Model does not generate a Pareto tail, and nobody has more than 150 million in wealth.
» PEER Model:

m Realistic income + demographics go some way toward creating high wealth inequality

m Minimal effect of top 1% wealth holdings and beyond.

» “Rate of Return Heterogeneity” Model:

m Matches salient features of the wealth distribution with empirically reasonable returns.

m Substantially different & interesting policy implications (than Aiyagari framework).
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Limited effect of saving rates with finite lives

Simple wealth accumulation process:
h—1
Whe1 = R-Wh+5S-yn — wp = R'wg +ZR”’1*tsyt
t=0

» Setwy = $1IM, R = 1.03,and s = 1
» High and constant income: y, = y withy € {p90, p99, p99.9}
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Limited effect of saving rates with finite lives

Simple wealth accumulation process:
h—1
Whe1 = R-Wh+5S-yn — wp = R'wg +ZR”’1*tsyt
t=0

» Setwy = $1IM, R = 1.03,and s = 1
» High and constant income: y, = y withy € {p90, p99, p99.9}

Takes over 100 years to accumulate $1B (even for the earnings-rich!)

Years to Income
p90 p90 p99.9
$100M 106 78 48
$1B 183 153 118

$108B 260 230 195

1/17



Limited effect of saving rates with finite lives Il

Whi1 =R -Wh+5-yp Set R =1.03; s = 1; High+Constant Income
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Limited effect of saving rates with finite lives Il

Whe1 = R-Wh 45 yp

$100M

1

$50M |-

$10M

$5M

$1M

Age 50: $13.3

Set R =1.03; s = 1; High+Constant Income

Age 100: $93.3M

Age 100: $38.6M

——p99 Income: $309K

——p90 Income: $108K

25

Guvenen, Ocampo, Ozkan (2025)
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Limited effect of saving rates with finite lives Il

Whi1 =R -Wh+5-yp Set R =1.03; s = 1; High+Constant Income

$500M
Age 100: $262M
$100M - Age 100: $93.3M
$50M +

ge 50: $35.9M Age 100: $38.6M

$10M

$5M

——p99.9 Income: $927K

$IM ——p99 Income: $309K
——p90 Income: $108K
25 50 75 100
Age

Guvenen, Ocampo, Ozkan (2025) Mechanics of Wealth Inequalit
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Labor Income, Returns, and Wealth Levels

» We fix average labor income (~$60K) and the wealth to income ratio (4)
B w
~ Labor Income + Capital Income

m Labor income = Working-Share x Avg. Labor Inc.

» Level of wealth depends on returns to wealth

W 1
+= W = —— x Labor |
Labor Income + Rx W 14 xRp < -evorincome
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» We fix average labor income (~$60K) and the wealth to income ratio (4)
B w
~ Labor Income + Capital Income

m Labor income = Working-Share x Avg. Labor Inc.

» Level of wealth depends on returns to wealth

w 4
1= Labor Income + R x W — W= T 1xR > Labor Income
US Data Awesome State PEER Markov Returns
R = 3% R = 3% R=12%

Avg. Wealth  $320K $200K $170K $330K

3/17



Labor Income, Returns, and Wealth Levels

» We fix average labor income (~$60K) and the wealth to income ratio (4)
B w
~ Labor Income + Capital Income

m Labor income = Working-Share x Avg. Labor Inc.

» Level of wealth depends on returns to wealth

w 4
1= Labor Income + R x W — W= T-1x<R x Labor Income
US Data Awesome State PEER Markov Returns
R= 3% R=3% R=12%
Avg. Wealth  $320K $200K $170K $330K

» Wealth concentration results unchanged when matching average wealth
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Empirical Benchmark Income Process (Guvenen et al, 2021, ECMA)

Level of earnings:

Persistent component:
Innovations to AR(1):

Initial condition of z}: z

Transitory shock:

Nonemployment duration:

Prob of Nonemp. shock:

7= 1= elor st
pzi_y + 1},

N (pn1,05,1)  with prob. p,
N (piy,2,04,2)  with prob. 1 —p,

O'ZO

Ms 1,0¢, 1 with pl'Ob. Pe
N (e 2,0-2)  with prob. 1 — p.

with prob. 1 — p,(t,z})
m|n{1 Fexp ©)}  with prob. p,(t,z})

pL(t, z) = 1—1-75 where & = a + bt + cz, + dzjt.
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I.A. Income Inequality: Top Tail of Income Distribution

Top 10% |

Top 1%

Top 0.1%

Top 0.01%

Top 0.001%

—— US Data

— — Awesome State

—-=- Awesome State +

—-—=- Gaussian AR
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|
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Income Risk: Density of Income Growth

Histogram of A log Y

——US Data
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Income Risk: Density of Income Growth

Histogram of A logY
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Income Risk: Density of Income Growth

Histogram of A logY
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I1l.A Income Risk: Skewness of Income Growth

Skewness of Earnings Growth
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IV. Income Risk: Kurtosis of Income Growth

Excess Kurtosis of Earnings Growth

—6—US Data
PEER Model

Non-Gaussian
Inc. Growth

Lower Kurtosis
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IV. Income Risk:

Excess Kurtosis of Earnings Growth

Kurtosis of Income Growth
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IV.A Income Risk: Kurtosis of Income Growth

Excess Kurtosis of Earnings Growth

Guvenen, Ocal o, Ozkan (2025)
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Increasing R to Match Wealth Levels

» Calibrate PEER model with R = 11% + Wealth-to-income ratio of 4
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» Calibrate PEER model with R = 11% + Wealth-to-income ratio of 4

US Data PEER PEER-Top PEER-Top+R =11% Markov Returns
Avg. Wealth ~ $320K  $170K  $200K $314K $330K
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Increasing R to Match Wealth Levels

» Calibrate PEER model with R = 11% + Wealth-to-income ratio of 4

US Data PEER PEER-Top PEER-Top+R =11% Markov Returns

Avg. Wealth ~ $320K  $170K  $200K $314K $330K
o | [ US Data (S2Z,23)
Top 10% ‘\\ ' PEER Model
X PEER-Top
Top 1% - 1 —— PEER-Top - High R
| = Markov Returns
1
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1
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1
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1
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1
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Wealth Inequality: PEER Model + PEER Top

Gini
Top 10%
Top 1%

Top 0.1%
Top 0.01%

Gini + Top Shares

Top Wealth Thresholds

us PEER PEER us PEER PEER

Data Model Top Data Model Top

0.85 0.72 0.79

68.6 54.2 65.2 0.6 0.5 0.5

33.7 13.5 24.1 3.5 1.5 2.4

15.7 2.5 6.6 17.2 3.3 8.2
71 0.4 1.4 77.8 5.6 19.6
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Where is the Top? Top Percentile Thresholds

Cutoff Values in Millions of US Dollars

Threshold for top

US Data Frameworks
Millions Awesome PEER Return Heterogeneity
usb State Model

Markov  Entrepreneurial  Markov +

1%
0.1%

0.01%

3.5
17.2
77.8
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Where is the Top? Top Percentile Thresholds

Cutoff Values in Millions of US Dollars

Threshold for top

US Data Frameworks
Millions Awesome PEER Return Heterogeneity
usb State Model

Markov  Entrepreneurial  Markov +

1%
0.1%

0.01%

3.5 1.5
17.2 16.5
77.8 51.4
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Where is the Top? Top Percentile Thresholds

Cutoff Values in Millions of US Dollars

Threshold for top

US Data Frameworks
Millions Awesome PEER Return Heterogeneity
usb State Model

Markov  Entrepreneurial  Markov +

1%
0.1%

0.01%

3.5 1.5 35 2.7 3.4
17.2 16.5 159 16.5 134

77.8 51.4 77.6 112.2 63.2

12717



Millionaires in the Model: Population Above Data Cutoffs

US Data Frameworks
Cutoff Pop Share PEER Return Heterogeneity
Above Cutoff Model
Markov  Entrepreneurial Markov +
3.52 1.00 0.08 0.99 0.66 0.95
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Millionaires in the Model: Population Above Data Cutoffs

US Data Frameworks
Cutoff Pop Share Awesome PEER Return Heterogeneity
Above Cutoff State Model

Markov  Entrepreneurial Markov +

17.2 0.10 0.09 0 0.09 0.10 0.07
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Millionaires in the Model: Population Above Data Cutoffs

US Data Frameworks
Cutoff Pop Share Awesome PEER Return Heterogeneity
Above Cutoff State Model

Markov  Entrepreneurial Markov +

77.8 0.01 0.002 0 0.010 0.017 0.008
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Wealth, Capital Income, and Consumption

» How concentrated are capital income and consumption relative to wealth?
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Wealth, Capital Income, and Consumption

» How concentrated are capital income and consumption relative to wealth?

Lorenz: Consumption is less concentrated than wealth; Capital income is more

Markov Returns Entrepreneurial Returns
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Wealth, Capital Income, and Consumption at the top

Top Shares: Consumption is less concentrated than wealth; Capital income is more

Markov Returns
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Age Distribution: US Data [ < back ]

US has 97,000 centenarians. Or 0.029% of population

USA- July 1, 2021 s copmven

= Males

m Male surplus
© Females

m Female surplus

3000000 2000000 1000000 Population 1000000 2000000 3000000
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Average Lifecycle Wealth Profiles
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Average Lifecycle Wealth Profiles
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Average Lifecycle Wealth Profiles
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