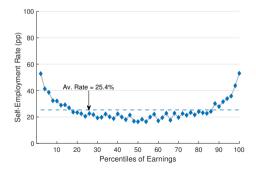
The Macroeconomic Consequences of Subsistence Self-Employment

Juan Herreño[†] Sergio Ocampo[‡]

[†]UC San Diego

[‡]University of Western Ontario

Self-employment in developing countries

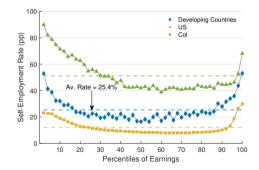

- ► High self-employment rates in developing countries (Poshke, 2019)
- ► High prevalence of *subsistence entrepreneurship* (Schoar, 2010)

Self-employment in developing countries

- ► High self-employment rates in developing countries (Poshke, 2019)
- ► High prevalence of *subsistence entrepreneurship* (Schoar, 2010)

Self-employment concentrated among the rich and the poor

(Data from 9 developing countries)



Self-employment in developing countries

- ► High self-employment rates in developing countries (Poshke, 2019)
- ► High prevalence of *subsistence entrepreneurship* (Schoar, 2010)

Self-employment concentrated among the rich and the poor

(Data from 9 developing countries)

Policies aimed at the self-employed

- Grants, loans, transfers (varied designs and generosity)
- Policies meant to spur firm creation/growth but target the self-employed in practice
- Evidence of small effects on individual outcomes (income, firm creation, consumption)

(Angelucci, Karlan, & Zinman, 2015; Banerjee, Duflo, Glennerster, & Kinnan, 2015; Maeger, 2019)

Policies aimed at the self-employed

- Grants, loans, transfers (varied designs and generosity)
- Policies meant to spur firm creation/growth but target the self-employed in practice
- Evidence of small effects on individual outcomes (income, firm creation, consumption)

(Angelucci, Karlan, & Zinman, 2015; Banerjee, Duflo, Glennerster, & Kinnan, 2015; Maeger, 2019)

Effects of these policies (micro & macro) depend on many factors:

- Financial frictions affect occupational sorting (Buera, Kaboski, & Shin, 2015; Midrigan & Xu, 2014)
 - Self-employed choose worse technologies/smaller scale
- Subsistence concerns (Poshke, 2013; Breza, Kaur & Shamdashani, 2021)
 - Reflect labor rationing

What we do

1. Study the effects of development policies when subsistence entrepreneurship is prevalent

- Heterogeneous agents macro-development model
- Financial and subsistence concerns (labor market frictions) driving occupational choices

What we do

1. Study the effects of development policies when subsistence entrepreneurship is prevalent

- Heterogeneous agents macro-development model
- Financial and subsistence concerns (labor market frictions) driving occupational choices
- 2. Use a set of cross-sectional moments to evaluate importance of subsistence concerns
 - Joint distribution of occupations and income
 - Labor market response to labor demand shocks

What we do

1. Study the effects of development policies when subsistence entrepreneurship is prevalent

- Heterogeneous agents macro-development model
- Financial and subsistence concerns (labor market frictions) driving occupational choices
- 2. Use a set of cross-sectional moments to evaluate importance of subsistence concerns
 - Joint distribution of occupations and income
 - Labor market response to labor demand shocks
- 3. Evaluate macro-effects of policies
 - 3.1 Micro loans and grants to the self-employed \longrightarrow loosen financial frictions
 - 3.2 Targeted transfers to the unemployed \longrightarrow insure labor risk

- 1. Model consistent with joint distribution of occupations and income + labor market slack
 - Labor frictions are key to match data by generating subsistence concerns

- 1. Model consistent with joint distribution of occupations and income + labor market slack
 - Labor frictions are key to match data by generating subsistence concerns
- 2. Model consistent with small micro effects of credit interventions
 - ► Hard to reject null effects with micro data (occ. choices, income, consumption)

- 1. Model consistent with joint distribution of occupations and income + labor market slack
 - Labor frictions are key to match data by generating subsistence concerns
- 2. Model consistent with small micro effects of credit interventions
 - ► Hard to reject null effects with micro data (occ. choices, income, consumption)
- 3. The (macro) elasticity of aggregate output to lending is proportional to the (micro) elasticity of individual self-employment income
 - ► The key is the muted response of wages to the reform (slack!)
 - ▶ TFP increases (loans improves selection into self-employment, only productive benefit)
 - Without subsistence concerns model overestimates responses

- 1. Model consistent with joint distribution of occupations and income + labor market slack
 - Labor frictions are key to match data by generating subsistence concerns
- 2. Model consistent with small micro effects of credit interventions
 - ► Hard to reject null effects with micro data (occ. choices, income, consumption)
- 3. The (macro) elasticity of aggregate output to lending is proportional to the (micro) elasticity of individual self-employment income
 - ► The key is the muted response of wages to the reform (slack!)
 - ▶ TFP increases (loans improves selection into self-employment, only productive benefit)
 - Without subsistence concerns model overestimates responses
- 4. Other Policies: Generosity of the safety net to the unemployed is TFP enhancing (improves selection into self-employment if well targeted)

Model

A general equilibrium occupational choice model

- Heterogeneous agents:
 - Agents can be Employed, Unemployed or Self-Employed
 - Agents differ in Assets (a), Idiosyncratic Productivity (z)

A general equilibrium occupational choice model

- Heterogeneous agents:
 - Agents can be Employed, Unemployed or Self-Employed
 - Agents differ in Assets (a), Idiosyncratic Productivity (z)
- Financial frictions:
 - Self-employed subject to collateral constraints
 - Employed and unemployed subject to borrowing constraints

A general equilibrium occupational choice model

- Heterogeneous agents:
 - Agents can be Employed, Unemployed or Self-Employed
 - Agents differ in Assets (a), Idiosyncratic Productivity (z)
- Financial frictions:
 - Self-employed subject to collateral constraints
 - Employed and unemployed subject to borrowing constraints
- Labor market frictions:
 - Unemployed and Self-Employed have to wait for an offer to become Employed
 - Any agent can become Unemployed or Self-Employed at any time

Similar structure adopted in Alves & Violante (2023) to study het. effects of monetary policy

Agents' problems

- Income of agents depends on occupation (wages, benefits, profits)
- Shocks also depend on occupations: Job offers to U and SE and job separations to E
 - All agents receive productivity shocks (z)

Agents' problems

- Income of agents depends on occupation (wages, benefits, profits)
- Shocks also depend on occupations: Job offers to U and SE and job separations to E
 - All agents receive productivity shocks (z)

Occupation	Flow Income (y)	Occupational Choice	Shocks	
Employed	$r \cdot a + w \cdot \epsilon(z)$	U or S	γ^{z}, γ^{E}	\leftarrow Job separation
Unemployed	$r \cdot a + b$	S	$\gamma^{z},oldsymbol{\gamma}^{oldsymbol{U}}$	\longleftarrow Job offer
Self-employed	$r\cdot a+\pi\left(a,z ight)$	U	γ^{z}, γ^{S}	\leftarrow Job offer
	$\stackrel{\uparrow}{\mathrm{y}}{}^{o}(a,z)$		↑ Prod.	

Profits and value functions

Self-employed profits:

$$\pi(a, z) = \max_{\substack{k \leq \lambda \cdot a, n}} f(z, k, n) - (r + \delta) \cdot k - w \cdot n$$

• Collateral constraints depend on assets: $k \leq \lambda \cdot a$

Profits and value functions

Self-employed profits:

$$\pi(a, z) = \max_{\substack{k \leq \lambda \cdot a, n}} f(z, k, n) - (r + \delta) \cdot k - w \cdot n$$

• Collateral constraints depend on assets: $k \leq \lambda \cdot a$

Value function for occupation $o \in \{E, U, S\}$:

$$\rho V^{o}(a,z) = \max_{\text{s.t. } a \geq \underline{a}} u(c) + V^{o}_{a} \cdot (\underbrace{y^{o}(a,z) - c}_{\underline{a}}) + \frac{E[dV^{o}]}{dt}$$

- Standard Hamilton-Jacobi-Bellman formulation
- Change in value depends on savings: $\dot{a} = y^o(a, z) c$
- Last term captures productivity and occupational shocks

Optimal choices

Savings Choice, $o \in \{E, U, S\}$:

$$c^{o}(a,z) = u^{'-1}(V^{o}_{a}(a,z))$$

Optimal choices

Savings Choice, $o \in \{E, U, S\}$:

$$c^{o}(a,z) = u^{'-1}(V_{a}^{o}(a,z))$$

Occupational Choice:

Agents can move freely to unemployment or self-employment so

$$egin{aligned} V^{E}\left(a,z
ight)&\geq\max\left\{V^{U}\left(a,z
ight),V^{S}\left(a,z
ight)
ight\}\ V^{U}\left(a,z
ight)&\geq V^{S}\left(a,z
ight)\ V^{S}\left(a,z
ight)&\geq V^{U}\left(a,z
ight) \end{aligned}$$

Optimal choices

Savings Choice, $o \in \{E, U, S\}$:

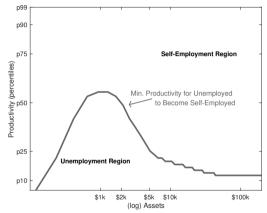
$$c^{o}(a,z) = u^{'-1}(V^{o}_{a}(a,z))$$

Occupational Choice:

Agents can move freely to unemployment or self-employment so

$$egin{aligned} V^{E}\left(a,z
ight)&\geq\max\left\{V^{U}\left(a,z
ight),V^{S}\left(a,z
ight)
ight\}\ V^{U}\left(a,z
ight)&\geq V^{S}\left(a,z
ight)\ V^{S}\left(a,z
ight)&\geq V^{U}\left(a,z
ight) \end{aligned}$$

▶ Occ. choice defines regions $\Omega^o \in S \equiv [\underline{a}, \infty) \times \mathbb{R}_+$ where occupation 'o' prevails


Example:
$$\Omega^{U} = \left\{ (a, z) \in \mathcal{S} \mid V^{U}(a, z) > V^{S}(a, z) \right\}$$

(Stationary) Equilibrium

- Solve agents' problems given prices
 - Value functions solved as HJB variational inequalities.
- Small open economy: $r = r^*$
- ▶ Wage (*w*) clears labor market:
 - Labor demand firms of the self-employed: $N^d = \int n^*(a, z) dG^S$
 - Labor supply from the employed: $N^s = \int \epsilon(z) dG^E$
- ► Stationary distribution of agents: G^E, G^U, G^S
 - Solve system of Kolmogorov-Forward-Equations
 - Reflects both exogenous shocks and endogenous occ. choice

detail

Main mechanism: Occupational choice

- (Min) Productivity threshold for self-employment
- \blacktriangleright Subsistence concerns: Low threshold for poor agents \longrightarrow Unproductive self-employed

Toy model (intuition)

Calibration and Model Performance

Parametrization

- Interest rate: $r^* = 3\%$
- Collateral constraint: $\lambda = 1.42$ to match debt-to-asset ratio of large Mexican firms
- Utility and production function: $u(c) = \frac{c^{1-\sigma}}{1-\sigma}$ and $f(z,k,n) = z(k^{\alpha}n^{1-\alpha})^{\nu}$

$$\sigma = 2$$
 $\alpha = 0.3$ $\nu = 0.85$

Parametrization

- Interest rate: $r^{\star} = 3\%$
- Collateral constraint: $\lambda = 1.42$ to match debt-to-asset ratio of large Mexican firms
- Utility and production function: $u(c) = \frac{c^{1-\sigma}}{1-\sigma}$ and $f(z,k,n) = z(k^{\alpha}n^{1-\alpha})^{\nu}$

$$\sigma = 2$$
 $\alpha = 0.3$ $\nu = 0.85$

Internally calibrated parameters:

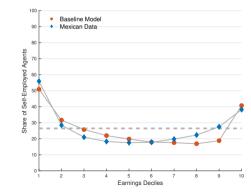
- Labor income is a function of productivity: $\epsilon(z) = z^{\eta}$
- Shocks follow Poisson processes with arrival rates: γ^z , γ^E , γ^U , γ^S
- z discretized with transition matrix $Pr^{z}(z'|z)$
 - Discretization from AR(1) process Rowenhurst (1995) method

Model performance: Targeted moments

Data from ENOE:

- Household Survey Quarterly rotating panel (up to 5 quarters)
- Information on labor status, search activities, transitions, and earnings
- Key: Observe transitions and earnings dynamics

Model performance: Targeted moments


Data from ENOE:

- sample details more moments
- Household Survey Quarterly rotating panel (up to 5 quarters)
- Information on labor status, search activities, transitions, and earnings
- Key: Observe transitions and earnings dynamics

Occupational Rates	Data	Model	Income Moments	Data	Model
Unemployment	4.4	4.1	$\operatorname{std}(y_t^S)$	0.86	0.86
Self-employment	26.7	26.2	$std(y_t^E)$	0.54	0.58
Employment	69.1	69.7	$\operatorname{corr}(y_t^S, y_{t+1}^S)$	0.59	0.59
			$\operatorname{corr}(y_t^E, y_{t+1}^E)$	0.60	0.58

Model performance: Untargeted moments

- 1. Model matches joint distribution of occupations and income
 - \blacktriangleright Key: Subsistence concerns of the unemployed \longrightarrow Occupational Choice
 - Model with only financial frictions fails in doing so (more on this later)

Model performance: Untargeted moments

- $1. \ \mbox{Model}$ matches joint distribution of occupations and income
 - Key: Subsistence concerns of the unemployed \longrightarrow Occupational Choice
 - Model with only financial frictions fails in doing so (more on this later)
- 2. Model matches reaction after labor demand shocks
 - > Development Literature on response of local labor market to labor demand shocks

Imbert and Papp (2015), Breza, Kaur & Shamdasani (2021) and Muralidharan, Niehaus & Sukhtankar (2017)

- Low elasticity of wages to labor demand $\left(\frac{\Delta \log w}{\Delta \log N} < 1\right)$: self-employment "hides" slack
- Model elasticity $\frac{\Delta \log w}{\Delta \log N} = 0.16$ (vs 1.6 with only financial frictions)
 - Key: Occupational transitions $SE \rightarrow U$ rather than $SE \rightarrow E$
 - Model also matches partial crowd-out of private labor demand from job-guarantee programs

details

Credit Expansions Under

Subsistence Self-Employment

The effects of credit expansions

We increase access to credit by modifying borrowing constraint

 $k \leq \lambda \cdot a + \phi$

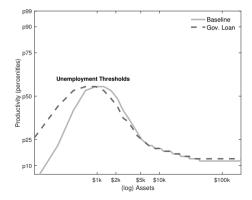
 $\phi \approx$ \$540 $\frac{\text{USD}}{\text{Q}}$ as in RCT loans from Compartamos Banco (Angelucci, Karlan, Zinman, 2015)

The effects of credit expansions

We increase access to credit by modifying borrowing constraint

 $k \leq \lambda \cdot a + \phi$

 $\phi \approx$ \$540 $\frac{\text{USD}}{\Omega}$ as in RCT loans from Compartamos Banco (Angelucci, Karlan, Zinman, 2015)


- 1. Contrast micro effects of loans on earnings with RCT evidence + Role of GE
- 2. Obtain macro effect on output and productivity by aggregating
- 3. Contrast effects with/without subsistence self-employment

1.1 Earnings effects of credit expansions

- \blacktriangleright Credit \uparrow 20% and SE-earnings \uparrow 0.95% in equilibrium \longrightarrow (micro) elasticity of 0.048
 - Earnings up $41\frac{\text{USD}}{\text{Q}}$, comparable with RCT result of $55\frac{\text{USD}}{\text{Q}}$ increase in business earnings

1.1 Earnings effects of credit expansions

- ▶ Credit \uparrow 20% and SE-earnings \uparrow 0.95% in equilibrium \longrightarrow (micro) elasticity of 0.048
 - Earnings up $41\frac{\text{USD}}{\text{Q}}$, comparable with RCT result of $55\frac{\text{USD}}{\text{Q}}$ increase in business earnings
- ► Level change "small" throughout the distribution but impacts occupational choice

1.2 General equilibrium effects of credit expansions

- ► Key: Muted response of wages, up only 0.06% (consistent with wage elasticity)
- Labor earnings increase 0.04 (composition effect from SE)

1.2 General equilibrium effects of credit expansions

- ► Key: Muted response of wages, up only 0.06% (consistent with wage elasticity)
- Labor earnings increase 0.04 (composition effect from SE)
- Re-composition of labor force out of self-employment

Moment		Moment	
$\% \Delta$ Wage	0.06	Δ Employment	0.08
% Δ Income(E)	0.04	Δ Unemployment	0.16
% Δ Income (S)	0.95	Δ Self-employment	-0.24

2. Aggregate effects of credit expansions

	Output	TFP	Assets	Consumption
% Δ	0.20	0.15	-0.40	0.02

(Macro) elasticity of output is proportional (micro) elasticity of income

$$\varepsilon_Y^{\text{macro}} = 0.011 = S \times \varepsilon_y^{\text{micro}}$$

2. Aggregate effects of credit expansions

	Output	tput TFP Assets		Consumption	
%Δ	0.20	0.15	-0.40	0.02	

(Macro) elasticity of output is proportional (micro) elasticity of income

$$arepsilon_{Y}^{\mathsf{macro}} = 0.011 = S imes arepsilon_{y}^{\mathsf{micro}}$$

TFP increases due to selection out of self-employment

2. Aggregate effects of credit expansions

	Output	TFP Assets		Consumption	
%Δ	0.20	0.15	-0.40	0.02	

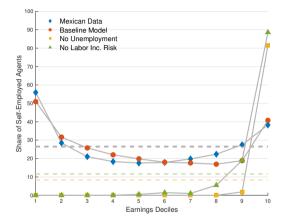
(Macro) elasticity of output is proportional (micro) elasticity of income

$$arepsilon_{Y}^{\mathsf{macro}} = 0.011 = S imes arepsilon_{y}^{\mathsf{micro}}$$

- TFP increases due to selection out of self-employment
- Insurance from loans changes consumption/savings choices
 - Crowd-out private assets
 - Increase consumption... of the unemployed! $\%\Delta(C^U) = 1.25$

3. The role of subsistence self-employment

Two economies without subsistence self-employment:


- 1. No unemployment risk: $\gamma^E = 0$ and $\gamma^U, \gamma^S \to \infty$
 - Without unemployment risk occupational choice reflects productivity
- 2. No labor-income risk: $\gamma^z = 0$
 - Without labor-income risk savings reflect presence of collateral constraint

3. The role of subsistence self-employment

Two economies without subsistence self-employment:

- 1. No unemployment risk: $\gamma^E = 0$ and $\gamma^U, \gamma^S \to \infty$
 - Without unemployment risk occupational choice reflects productivity
- 2. No labor-income risk: $\gamma^z = 0$
 - Without labor-income risk savings reflect presence of collateral constraint
- Recalibrate to match the same targets (when possible)
- Comparable to standard macro-development framework (e.g., Buera, Kaboski, Shin, 2020)

Without unemployment risk self-employment concentrated at the top

▶ No subsistence-concerns \rightarrow self-employment selection based on a/z

Toy model (intuition)

Aggregate effects of credit without subsistence self-employment

	Baseline	No Unemp. Risk	No Labor Inc. Risk
Elasticities			
Output to credit supply	0.011	0.091	0.065
Wage to labor demand	0.16	0.36	2.32
Change in Variables (pp)			
Output	0.20	0.37	0.47
TFP	0.15	0.42	0.10
Wage	0.06	0.54	0.53
Self-employment	-0.24	0.07	0.05
Income (SE)	0.95	-0.38	-0.10
Assets	-0.40	-2.45	-2.14
Lending	20.00	4.03	7.27

Policy Design and

Subsistence Self-Employment

The self-employed are sensitive to policy design

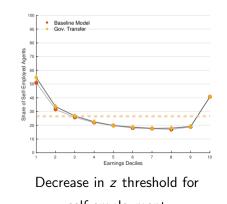
Three examples

- 1. Micro grants: Subsidized version of loans above (common in practice; Meager, 2019)
- Transfers to the unemployed: Common in many countries, can improve search (Acemoglu & Shimer, 1999, 2000; Chetty, 2008)
- 3. Transfers to the non-employed: Reflects limited implementation capacity

(intuition extends to universal transfers)

Micro grants - Negative selection

- ▶ Relaxation of collateral constraint $k \le \lambda a + \phi$ + Recipients pay 0 to rent capital
- ϕ : Ave. Ioan size of micro-credit interventions in Mexico Angelucci, Karlan, Zinman (2015)


Micro grants - Negative selection

- ▶ Relaxation of collateral constraint $k \le \lambda a + \phi$ + Recipients pay 0 to rent capital
- ϕ : Ave. Ioan size of micro-credit interventions in Mexico Angelucci, Karlan, Zinman (2015)

Policy effects:

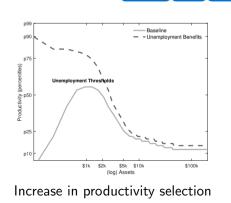
Moment

Δ Employment	-0.24
Δ Unemployment	-0.72
Δ Self-employment	0.96
$\% \Delta$ Wage	0.32
% Δ Income(E)	0.50
% Δ Income (S)	-2.40
$\% \Delta$ TFP	-0.45

occ. choice SE inc

Transfers to the unemployed - Subsistence concerns

The policy grants \$20 USD (10% of min wage) to the unemployed


$$y^U = r \cdot a + b + \frac{b_{UB}}{b_{UB}}$$

Transfers to the unemployed - Subsistence concerns

The policy grants \$20 USD (10% of min wage) to the unemployed

$$y^U = r \cdot a + b + \frac{b_{UB}}{b}$$

Policy effects: Moment Δ Employment 0.06 Δ Unemployment 0.85 Δ Self-employment -0.90 $\% \Delta$ Wage -0.16 $\% \Delta$ Income(E) -0.40 $\% \Delta$ Income (S) 3.70 $\% \Delta TFP$ 0.42

occ. choice SE inc. SE prod.

Transfers to the non-employed - Back to negative selection

Hard to effectively target transfers to the unemployed

Likely that transfers go to low-earning self-employed too

The policy grants \$20 USD to the unemployed + self-employed (income below minimum wage)

$$y^U = r \cdot a + b + b_{UB}$$
 $y^S = r \cdot a + \pi + b_{UB}$

Transfers to the non-employed - Back to negative selection

Hard to effectively target transfers to the unemployed

Likely that transfers go to low-earning self-employed too

The policy grants \$20 USD to the unemployed + self-employed (income below minimum wage)

$$y^U = r \cdot a + b + b_{UB}$$
 $y^S = r \cdot a + \pi + b_{UB}$

	Output	TFP	Assets	Consumption
%Δ	-0.04	-0.32	-1.90	-0.61

Transfers to the non-employed - Back to negative selection

Hard to effectively target transfers to the unemployed

Likely that transfers go to low-earning self-employed too

The policy grants \$20 USD to the unemployed + self-employed (income below minimum wage)

$$y^U = r \cdot a + b + b_{UB}$$
 $y^S = r \cdot a + \pi + b_{UB}$

	Output	TFP	Assets	Consumption
% Δ	-0.04	-0.32	-1.90	-0.61

- Transfers affect asset accumulation
- Occ. Choice: More self-employment
- Small micro effects on income distribution

SE inc

Conclusions

- High SE among the poor in developing economies
- Subsistence self-employment shapes economies response to shocks and policy
- Policies that alleviate subsistence concerns improve productivity
- Policies that target the self-employed can backfire

Thank You

Please send your questions to juanherreno@ucsd.edu

or

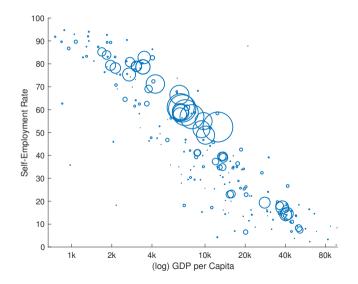
socampod@uwo.ca

Appendix

Data Appendix

Mexican sample details

- Our Sample: 1995Q1 2015Q4.
 - Males, Head of households, Prime age workers (23 to 65)
 - Ten largest municipalities
 - Unbalanced panel for 250 thousand individuals (1m obs.)
- Labor Status (Self-Reported)
 - Employed: Has a job, has a supervisor
 - Unemployed: Does not have a job, is looking for one
 - Self-Employed: Has a job, reports to be his own employer

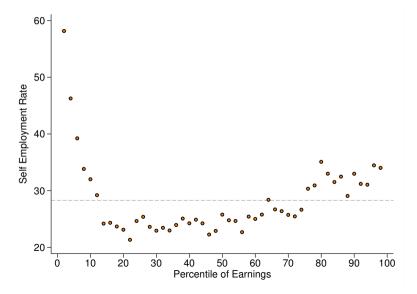

Workforce composition in Mexico: Time series

2 / 27

back

Self-employment across countries

Self-employment and earnings distribution: Details


• Run a regression of the form:

$$\log(w_{i,t}) = \alpha + \gamma_t + \beta X_{i,t} + \eta_{i,t}$$

- ▶ Rank $\eta_{i,t}^{2}$ and classify them in bins of 3% of the sample
- Compute the statistics for each bin
- Results are robust to direct earnings comparison

Self-employment and earnings distribution: Raw data

Model Appendix

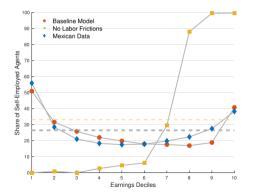
Agent's problem: Value functions

Employed agents:

$$\rho V^{E}(a,z) = \max_{c} u(c) + V^{E}_{a}(a,z) \dot{a} + \gamma^{E} \left(V^{U}(a,z) - V^{E}(a,z) \right) + \gamma^{z} \int \left(V^{E}(a,z') - V^{E}(a,z) \right) d\Pr^{z}(z'|z) \text{s.t.} \qquad \dot{a} = w\epsilon(z) + ra - c, \qquad a \ge \underline{a}.$$

Unemployed and Self-employed agents, $o \in \{U, S\}$:

$$\rho V^{o}(a,z) = \max_{c} u(c) + V^{o}_{a}(a,z) \dot{a} + \gamma^{o} \max \left\{ V^{E}(a,z,\epsilon) - V^{o}(a,z), 0 \right\}$$
$$+ \gamma^{z} \int \left(V^{o}(a,z') - V^{o}(a,z) \right) d\Pr^{z}(z'|z)$$
s.t.
$$\dot{a} = b \mathbb{1}_{o=U} + \pi(a,z) \mathbb{1}_{o=S} + ra - c, \quad a \ge \underline{a}.$$


Agent's distribution: Kolmogorov Forward Equations

• Characterize stationary distributions $\{G^o\}_{o \in \{E,U,S\}}$ by their densities $\{g^o\}_{o \in \{E,U,S\}}$

$$\begin{split} 0 &= -\frac{\partial}{\partial a} \left[\dot{a} g^{E} \left(a, z \right) \right] - \left(\gamma^{E} + \gamma^{z} \right) g^{E} \left(a, z \right) & \longleftarrow \text{Holds for } (a, z) \in \Omega^{E} \\ &+ \gamma^{z} \int \Pr^{z} \left(z | z' \right) g^{E} \left(a, z' \right) dz' + \gamma^{U} g^{U} \left(a, z \right) + \gamma^{S} g^{S} \left(a, z \right) \mathbb{1}_{\left\{ (a, z) \in \Omega^{E} \right\}} \\ 0 &= -\frac{\partial}{\partial a} \left[\dot{a} g^{U} \left(a, z \right) \right] - \left(\gamma^{U} + \gamma^{z} \right) g^{U} \left(a, z \right) & \longleftarrow \text{Holds for } (a, z) \in \Omega^{U} \\ &+ \gamma^{z} \int \Pr^{z} \left(z | z' \right) g^{U} \left(a, z' \right) dz' + \gamma^{E} g^{E} \left(a, z \right), \\ 0 &= -\frac{\partial}{\partial a} \left[\dot{a} g^{S} \left(a, z \right) \right] - \left(\gamma^{S} \mathbb{1}_{\left\{ (a, z) \in \Omega^{E} \right\}} + \gamma^{z} \right) g^{S} \left(a, z \right) & \longleftarrow \text{Holds for } (a, z) \notin \Omega^{U} \\ &+ \gamma^{z} \int \Pr^{z} \left(z | z' \right) g^{S} \left(a, z' \right) dz' + \gamma^{E} g^{E} \left(a, z \right) \mathbb{1}_{\left\{ (a, z) \notin \Omega^{U} \right\}}, \end{split}$$

Occupational Transition Rates									
	Data	Model			Data	Model		Data	Model
U ightarrow U	27.4	29.3		S ightarrow U	1.9	4.6	E ightarrow U	3.1	2.5
U ightarrow S	14.6	23.6		$S \to S$	76.8	62.2	E ightarrow S	8.1	12.8
U ightarrow E	58.0	47.1		$S \to E$	21.3	33.1	$E \rightarrow E$	88.8	84.7
Income Moments									
			Data	Model			Data	Model	
	corr(y	(E, y_{t+1}^S)	0.43	0.39	cori	(y_t^S, y_{t+1}^E)	0.43	0.34	

Model Performance: The role of labor vs financial frictions

- Model without labor frictions misses
 Self-employment *out-of-necessity*
- There is also no unemployment risk for employed agents
- Self-employment is only taken by agents who can generate higher profits than wages

back

Toy Model Appendix

Selection into self-employment

back 1 back 2

Static Model Continuum of unemployed (U) agents

- Choose to stay unemployed (U) or become self-employed (SE)
- Heterogeneity: Assets (a) and productivity (z)
- CRRA utility: $u(c) = \frac{c^{1-\sigma}}{1-\sigma}$

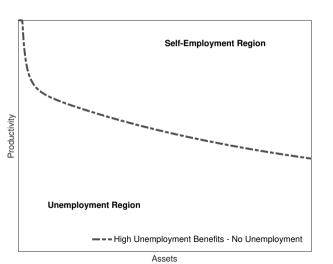
Selection into self-employment

Static Model Continuum of unemployed (U) agents

- ▶ Choose to stay unemployed (U) or become self-employed (SE)
- Heterogeneity: Assets (a) and productivity (z)
- CRRA utility: $u(c) = \frac{c^{1-\sigma}}{1-\sigma}$

Unemployment

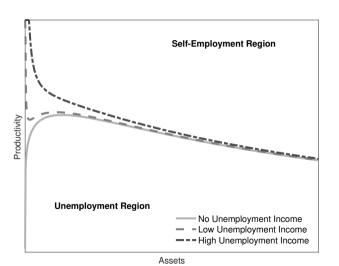
- U get a job with probability p
- If employed, consume: a + w
- If not, consume: a + b


Self-Employment

- SE produce using own assets
- Consume: $a + za^{\alpha}$

Mechanisms behind policies depend on selection into self-employment

Self-employment as an outside option to employment

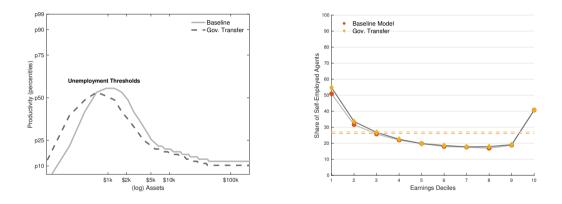

High unemployment benefits (b) or no unemployment (p = 1)

hack

hack

- "Positive" selection to SE
- Productive/Wealthy agents
- No low-earning SE

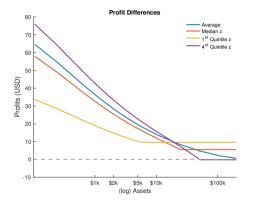
Self-employment as an outside option to unemployment

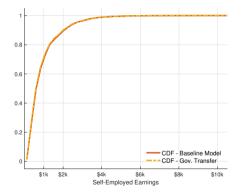

Selection breaks for resource constrained agents:

- Poor + Unemployed
- \rightarrow Unproductive SE
- $\rightarrow\,$ Low-earning SE
- Large share of SE if lots of poor/constrained agents

Policy Appendix

Micro Transfers - Occupational Choices

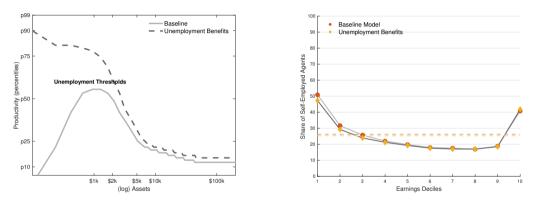



Some changes in thresholds

Small effects across distribution of income

back

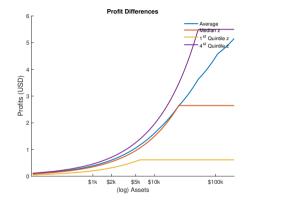
Micro Transfers - Self-Employment Income

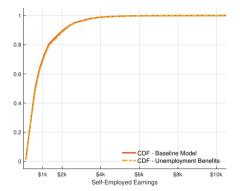


Small profit gains to poor & productive

Negligible effects in the distribution

Unemployment benefits - Occupational Choices

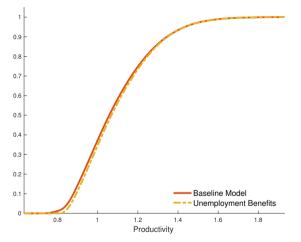



Increase in productivity selection

Lower mass of low-earning SE

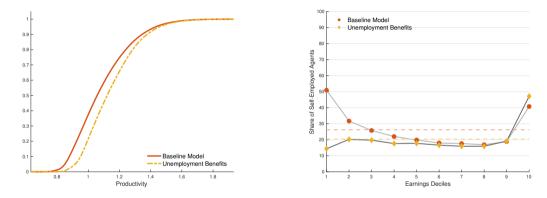
back

Unemployment benefits - Self-Employment Income



Productive SE take advantage of $w \downarrow$

Noticeable effects on earnings


Unemployment benefits - Productivity Distribution

Change in selection improves productivity

back

Unemployment Benefits: Self-employment \downarrow among the poor

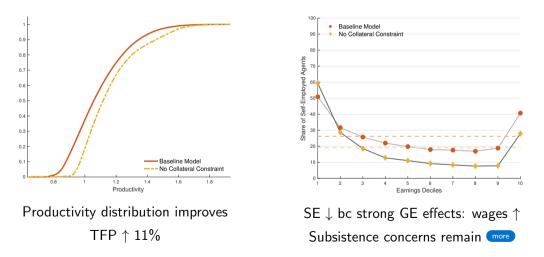
Productivity distribution improves (FOSD)

In GE self-employment ↓ among poor
(↓ wages benefit high-productivity)

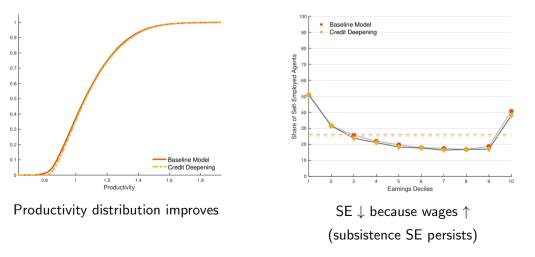
Unemployment benefits: productivity $\uparrow,$ unemployment \uparrow

Moment	GE	Moment	GE
% Δ Wage	-2.0	Δ Employment	0.46
$\% \Delta$ Output	-2.3	Δ Self-employment	-5.8
$\% \Delta TFP$	2.9	Δ Unemployment	5.1

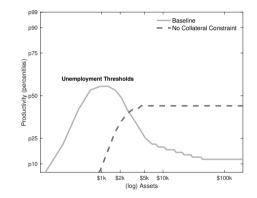
Credit Deepening: Relaxing Collateral Constraints


- Financial frictions prevent self-employed to produce at optimal scale
- Capture financial reform as credit deepening

 $k \leq (\lambda + \lambda_{CD}) \cdot a$


Two exercises:

- 1. Relaxed collateral constraint: $\lambda_{CD} > 0$ (In paper)
- 2. No collateral constraint: $\lambda_{CD} \rightarrow \infty$

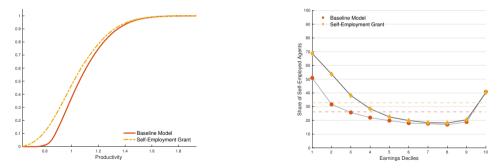

Elimination of Collateral Constraints: $\lambda_{CD} \rightarrow \infty$

Credit Deepening: $\lambda_{CD} > 0$

Elimination of Collateral Constraints

Does not solve occupational choices at the bottom

Transfers to the self-employed


Transfers of 17% of labor incomes to the lowest 10% $_{\rm Banerjee,\ Niehaus,\ and\ Suri\ (2019)}$

$$y^{S} = r \cdot a + \pi(a, z) + b_{MG} \mathbb{1}_{MG}$$

Transfers to the self-employed

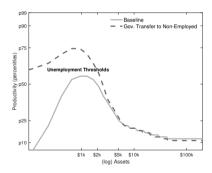
Transfers of 17% of labor incomes to the lowest 10% Banerjee, Niehaus, and Suri (2019)

 $y^{S} = r \cdot a + \pi(a, z) + b_{MG} \mathbb{1}_{MG}$

Productivity distribution worsens (FOSD)

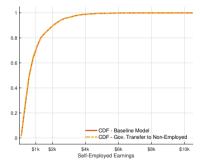
Self-employment \uparrow among the poor (productive SE do not benefit)

Transfers to the self-employed

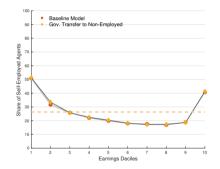

Moment	GE	Moment	GE
% Δ Wage	1.0	Δ Employment	-2.5
$\% \Delta$ Output	-2.4	Δ Self-employment	6.6
$\% \Delta TFP$	-2.5	Δ Unemployment	-4.1

- Transfers heavily influence occupational choice
- Unemployed agents prefer self-employment regardless of productivity
- Aggregate producitivity decreases as a result

Transfers to the non-employed: Occupational choice


Policy effects:

Moment				
Δ Employment	-0.22			
Δ Unemployment	-0.14			
Δ Self-employment	0.36			
$\% \Delta$ Wage	-0.04			
% Δ Income(E)	-0.22			
% Δ Income (S)	-1.40			



Increase in productivity selection

Transfers to the non-employed: Self-employed income

Increase in productivity selection

Increase in productivity selection