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1 Overview of the course
This course covers solution methods for dynamic general equilibrium models (DSGE). Depending on
the characteristics of the model different methods apply to the solution. We understand by the solution
of a model a set of policy functions that characterize the optimal response of endogenous variables to
changes in exogenous variables and the endogenous states of the model.

The methods presented seek to approximate the solution of the model linearly. These type of meth-
ods are much less computationally intensive than global non-linear methods and have high accuracy
in most circumstances.

The course starts by presenting solutions to economies without distortions (Part I), the case of the
neoclassical growth model is studied along with three different solution methods. Part II deals with
economies with distortions in a general way, this is done by studying the prototype “wedge” model of
Chari, Kehoe & McGrattan (2008), the authors show that many, more complicated models, can be
shown to be equivalent to their prototype. The solution methods presented in Part I are modified to
handle the distortions (or wedges).

Then, following Chari, Kehoe & McGrattan (2008), the Business Cycle Accounting procedure is
introduced by means of the prototype model of Part II. This procedure allows to determine, given data
from national accounts, the relative importance of the different wedges (or distortions), measured by
their ability to explain business cycle fluctuations. To better explain the procedure a simple model
with news shock in the spirit of Jaimovich & Rebelo (2009) is presented and then its equivalence to the
prototype economy is established. The BCA procedure is then explained in two parts, first it is neces-
sary to recover series for all the wedges, this uses the data and the solution to the prototype economy,
then the model can be used to decompose the business cycle fluctuations of aggregate variables in the
effects of each wedge. Note that in order to conduct the BCA procedure it is first necessary to obtain
values for the model’s parameters.

Part IV shows how to estimate the model by maximum likelihood using the linear policy functions
(of the approximated solution). In order to estimate the model the Kalman filter must be introduced
and a way to express the solution of the model in state space established. Once this is done the
likelihood of the model is constructed and the model can be estimated.

Finally Part V extends one of the solution methods presented before to deal with economies where
agents face signal extraction problems.
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Part I

Economies without distortions
The following sections study the stochastic growth model and solve it using four different methods. Sec-
tion 2 presents the model, its first order conditions and steady state. Section 3 makes a short reference
to the dynamic programming problem that solves the model. Section 4 solves for a linear-quadratic
approximation of the problem, that is: the objective function is approximated with a quadratic func-
tion and the constraints with a linear function, the resulting problem can be solved using dynamic
programming (Section 4.1) or by means of Vaughn’s method (Section 4.2). The solution in either case
consists on policy functions for the endogenous variables of the model. Finally, Section 5 solves for the
policy functions directly using the first order conditions of the original model.

2 The stochastic growth model
Consider the following growth model:

max
{kt+1,ct,xt,ht}

E

[ ∞∑
t=0

βt (log ct + ψ log (1− ht))Nt

]

s.t. 0 = kαt

(
(1 + γz)

t
ztht

)1−α
− ct − xt

0 = ((1− δ) kt + xt)Nt −Nt+1kt+1

Where:
log zt = ρ log zt−1 + εt and (1 + γn)

t

Using the definition of the population level the problem can be stated as:

max
{k̂t+1ĉt,x̂t,ht}

E

[ ∞∑
t=0

(β (1 + γn))
t
(log ĉt + ψ log (1− ht) + t log (1 + γz))

]
(2.1)

s.t. 0 = k̂αt (ztht)
1−α − ĉt − x̂t

0 = (1− δ) k̂t + x̂t − (1 + γz) (1 + γn) k̂t+1

where the hatted variables are defined as:

k̂t =
Kt

(1 + γz)
t
(1 + γn)

t =
kt

(1 + γz)
t

Note also that the consumption and the investment decision can be eliminated using the two constraints
in which case the problem is:

max
{k̂t+1,ht}

E

[ ∞∑
t=0

β̂t
(

log
(
k̂αt (ztht)

1−α
+ (1− δ) k̂t − γk̂t+1

)
+ ψ log (1− ht) + t log (1 + γz)

)]
(2.2)

where β̂ = β (1 + γn) and γ = (1 + γz) (1 + γn).
The (non-stochastic) steady state of the model can be obtained from the first order conditions:

(1− α) k̂αt z
1−α
t h−αt

k̂αt (ztht)
1−α

+ (1− δ) k̂t − γk̂t+1

=
ψ

1− ht

γ

k̂αt (ztht)
1−α

+ (1− δ) k̂t − γk̂t+1

= β̂E

[
αk̂α−1

t+1 (zt+1ht+1)
1−α

+ (1− δ)
k̂αt+1 (zt+1ht+1)

1−α
+ (1− δ) k̂t+1 − γk̂t+2

]
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In the non-stochastic steady state zt = zt+1 = 1, k̂t = k̂t+1 = k̂t+2 = 0 and ht = ht+1 = h:

(1− α) k̂αh−α

k̂αh1−α + (1− δ − γ) k̂
=

ψ

1− h

γ = β̂
(
αk̂α−1h1−α + (1− δ)

)
From the second equation:

h

k̂
=

( γ

β̂
+ δ − 1

α

) 1
1−α

= Λ

Replacing in the first equation:

(1− α) Λ−α

(Λ1−α + (1− δ − γ)) k̂
=

ψ

1− h

(1− h)
Θ

ψ
= k̂

Where Θ = (1−θ)Λ−α
(Λ1−α+(1−δ−γ)) . Then using the definition of Λ:

h =
ΛΘ

ψ
(1− h) −→ ψ

ΛΘ
h = 1− h −→ h =

(
1 +

ψ

ΛΘ

)−1

This determines the steady state.

(1− h)
Θ

ψ
h =

(
1 +

ψ

ΛΘ

)−1

k̂ = (1− h)
Θ

ψ

If ψ = 0 then h = 1 is the steady state value for labor and

γ = β̂
(
θk̂α−1 + (1− δ)

)
−→ k̂ =

( γ

β̂
+ δ − 1

α

) 1
α−1

3 Value function iteration
The problem above solves also the functional equation:

Vt

(
k̂, z
)

= max
{k̂t+1,ht}

{(
log
(
k̂αt (ztht)

1−α
+ (1− δ) k̂t − γk̂t+1

)
+ψ log l (1− ht) + t log (1 + γz)

)
+ β̂E

[
Vt+1

(
k̂t+1, zt+1

)]}

Note that the time dependence of the value function is deterministic and additively separable from the
rest of the function, then one can solve instead for:

V
(
k̂, z
)

= max
{k̂t+1,ht}

{
log
(
k̂αt (ztht)

1−α
+ (1− δ) k̂t − γk̂t+1

)
+ ψ log (1− ht) + β̂E

[
V
(
k̂t+1, zt+1

)]}
The above problem can be solved by value function iteration.
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4 Linear-Quadratic approximation

Let xt =
[
zt, k̂t

]′
be a 2× 1 vector of states and ut =

[
k̂t+1, ht

]
be a 1× 1 vector of control variables.

The one-period return function of the problem in (2.2) is given by:

r (xt, ut) = r
(
zt, k̂t, k̂t+1, ht

)
= log

(
k̂αt (ztht)

1−α
+ (1− δ) k̂t − γk̂t+1

)
+ ψ log (1− ht)

A second order approximation around the steady state takes the following form (where x̃1,t =
xi,t − xi and ũi,t = ui,t − ui denote deviations from steady state):

r (xt, ut) ≈ r + rx1 x̃1,t + rx2 x̃2,t + ru1 ũ1,t + ru2 ũ2,t

+
1

2
rx1x1

x̃2
1,t +

1

2
rx2x2

x̃2
2,t +

1

2
ru1u1

ũ2
1,t +

1

2
ru2u2

ũ2
2,t

+
1

2
rx1x1

x̃2
1,t +

1

2
rx2x2

x̃2
2,t +

1

2
ru1u1

ũ2
1,t +

1

2
ru2u2

ũ2
2,t

+rx1x2 x̃1,tx̃2,t + rx1u1 x̃1,tũ1,t + rx1u2 x̃1,tũ2,t

+rx2u1 x̃2,tũ1,t + rx2u2 x̃2,tũ2,t

+ru1u2 ũ1,tũ2,t

This can be expressed compactly using matrix notation:

r (xt, ut) ≈ r + rx1 x̃1,t + rx2 x̃2,t + ru1 ũ1,t + ru2 ũ2,t

+
1

2

[
x̃1,t x̃2,t ũ1,t ũ2,t

]
[Hr]


x̃1,t

x̃2,t

ũ1,t

ũ2,t


And even more as:

r (xt, ut) ≈ 1

2

[
1 x̃1,t x̃2,t ũ1,t ũ2,t

]


2r
[
rx1

rx2
ru1

ru2

]
rx1

rx2

ru1

ru2

 Hr




1
x̃1,t

x̃2,t

ũ1,t

ũ2,t



≈ 1

2

[
1 x̃1,t x̃2,t ũ1,t ũ2,t

] [ 2r J
′

r

Jr Hr

]
1
x̃1,t

x̃2,t

ũ1,t

ũ2,t


≈

[
x̃
′

t ũ
′

t

] [ Q3×3 W3×2

W
′

2×3 R2×2

] [
x̃t
ũt

]
Where x̃t = [1, x̃1,t, x̃2,t]

′
and ũt = [ũ1,t, ũ2,t]

′
.

Law of motion for the states is given by:

x̃t+1 = Ax̃t +Bũt + Cεt+1 1
x̃1,t+1

x̃2,t+1

 =

 1 0 0
0 ρ 0
0 0 0

 1
x̃1,t

x̃2,t

+

 0 0
0 0
1 0

[ ũ1,t

ũ2,t

]
+

 0
σ
0

 εt+1

The problem is then:

max
{ũt,x̃t+1}

E
∑

β̂t
(
x̃
′

tQx̃t + ũ
′

tRũt + 2x̃
′

tWũt

)
s.t. x̃t+1 = Ax̃t +Bũt + Cεt+1 (4.1)
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Next one can re-define variables and matrices to get rid of β̂t and the cross product:

x̄t = β̂
t/2x̃t

ut = β̂
t/2
(
ũt +R−1W

′
x̃t

)
ε̄t+1 = β̂

t/2εt+1

A =

√
β̂
(
A−BR−1W

′
)

B =
√
βB

Q = Q−WR−1W
′

C =
√
βC

The problem is now:

max
{ut,xt+1}

E
∑(

x
′

tQxt + u
′

tRut

)
s.t. xt+1 = Axt +But + Cεt+1 (4.2)

4.1 Solution using Ricatti equation
The problem described in equation (4.2) solves as well for the functional equation:

V (x) = max
u,x+1

x
′
Qx+ u

′
Ru+ EV (x+1) s.t. x+1 = Ax+Bu+ Cε+1 (4.3)

This dynamic programming problem can be solved by guess and verify. Guess that the solution has
the form:

Vt (x) = x
′
Px+ β̂tc

Then the problem is:

Vt (x) = max
u,x+1

x
′
Qx+ u

′
Ru+ E

[
x
′

+1Px+1

]
+ β̂t+1c s.t. x+1 = Ax+Bu+ Cε+1

And replacing the restriction is:

V (x) = max
u,x+1

x
′
Qx+ u

′
Ru+ E

[(
Ax+Bu+ Cε+1

)′
P
(
Ax+Bu+ Cε+1

)]
+ β̂t+1c

= max
u,x+1

x
′
Qx+ u

′
Ru+ xA

′

PAx+ 2xA
′

PBu+ u
′
B
′

PBu+ E
[
ε2+1

]
C
′

PC + β̂t+1c

= max
u,x+1

x
′
(
Q+A

′

PA
)
x+ u

′
(
R+B

′

PB
)
u+ 2xA

′

PBu+ E
[
ε2+1

]
C
′

PC + β̂t+1c

The FOC is:

2
(
R+B

′

PB
)
u+ 2B

′

PAx = 0

u = −
(
R+B

′

PB
)−1 (

B
′

PA
)
x

u = −Fx

Note that F is a function of P .
The objective is to find P to obtain F which determines the policy function, relating current states

x̄ to the decisions taken by the agent ū. Once P and F are known the change of variable is reversed
to express the solution in terms of x̃ and ũ .
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Replacing the policy function on V one gets:

x
′
Px+ β̂tc = x

′
(
Q+A

′

PA
)
x+ x

′
F
′
(
R+B

′

PB
)
Fx− 2xA

′

PBFx+ E
[
ε2+1

]
C
′

PC + β̂t+1c

Note that this equation can be further expressed in terms of x̃ and ε:

x̃
′
Px̃+ c = x̃

′
[(
Q+A

′

PA
)

+ F
′
(
R+B

′

PB
)
F − 2A

′

PBF
]
x̃+ E

[
ε2+1

]
C
′

PC + β̂c (4.4)

Equating coefficients one gets:

P =
(
Q+A

′

PA
)

+ F
′
(
R+B

′

PB
)
F − 2A

′

PBF

P =
(
Q+A

′

PA
)
−A

′

PBF (4.5)

Where the second step follows from replacing F
′
in the middle term. This equation is called the Ricatti

equation and can be solved by iterating over P , a fixed point gives the value function. Once a value
for P has been found the policy function is obtained. The law of motion for the variables is then:

ut = −Fxt (4.6)
xt+1 =

(
A−BF

)
xt + Cεt+1 (4.7)

Note that this is not the final objective of the method since what is needed is a solution for the
dynamics of ũt and x̃t. Recall that xt = β̂t/2x̃t and ut = β̂t/2

(
ũt +R−1W

′
x̃t

)
, replacing on (4.6):

ũt = −
[
F +R−1W

′
]
x̃t (4.8)

Equation (4.8) gives the solution for the policy function.
For completeness one can be also interested in the constant c. Equating coefficients from equation

(4.4):

c = E
[
ε2+1

]
C
′

PC + β̂c −→ c =
β̂

1− β̂
σ2C

′
PC

In general if there is more than one shock the system is:

c = β̂E
[
ε
′

+1C
′
PCε+1

]
+ β̂c

c = β̂E
[
tr
(
ε
′

+1C
′
PCε+1

)]
+ β̂c

c = β̂E
[
tr
(
ε
′

+1ε+1C
′
PC
)]

+ β̂c

c = β̂tr
(

ΣC
′
PC
)

+ β̂c

c =
β̂

1− β̂
tr
(

ΣC
′
PC
)

This completely characterizes the problem. The solution to the original problem (equation (4.1)) is
given by:

V (x̃) = x̃
′
Px̃+ c

8



4.2 Solution using Vaughan’s method
An alternative to the problem presented in section 4.1 is to solve for P using the set of first order
conditions of the sequential problem (4.2). This method offers an alternative to solving the Ricatti
equation (Eq. 4.5) which requires iteration. Instead P is obtain from the eigen-decomposition of a
matrix as shown below.

Recall the problem (4.2) and disregard the stochastic part:

max
{ut,x̄t+1}

∑(
x
′

tQxt + u
′

tRut

)
s.t. xt+1 = Axt +But

Letting 2λt+1 be the multiplier on the restriction for xt+1 one gets:

2Rut = −2B
′

λt+1

2Qxt+1 = 2λt+1 − 2A
′

λt+2

xt+1 = Axt +But

The system can be reduced by eliminating u using the first equation and lagging one period the second.
The result is:

Qxt +A
′

λt+1 = λt (4.9)

xt+1 +BR−1B
′

λt+1 = Axt (4.10)

Where ut = −R−1B
′

λt+1. The objective is to relate λt+1 to x̄t in order to obtain the policy function
for ū, then the change of variable is reversed, as before, to obtain a relation between decisions ũ and
states x̃.

If A is invertible one can express the system (4.9)-(4.10) as:

Qxt +A
′

λt+1 = λt

A
−1
xt+1 +A

−1
BR−1B

′

λt+1 = xt

And then:

QA
−1
xt+1 +

(
QA
−1
BR−1B

′

+A
′)
λt+1 = λt

A
−1
xt+1 +A

−1
BR−1B

′

λt+1 = xt

This forms Vaughan’s hamiltonian:[
x̄t
λt

]
=

[
A
−1

A
−1
BR−1B

′

QA
−1

QA
−1
BR−1B

′

+A
′

] [
x̄t+1

λt+1

]
[
x̄t
λt

]
= H

[
x̄t+1

λt+1

]
One can then use the eigen-decomposition of matrix H to get:

H = V ΛV −1

where the columns of V contain the eigenvectors ofH and Λ is a diagonal matrix with the corresponding
eigenvalues. V can be used to get P .
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It is proven that the eigenvalues of H come in reciprocal pairs. Without loss of generality one can
write the following:

H =

[
V11 V12

V21 V22

] [
Λ 0
0 Λ−1

] [
V11 V12

V21 V22

]−1

where all eigenvalues in Λ are outside of the unit circle. Then:

P = V21V
−1
11 (4.11)

Once P is obtained one can use equation 4.8 above to characterize the policy function.
Above it was assumed that A was invertible, if this doesn’t hold the system can be written (directly)

as:

xt+1 +BR−1B
′

λt+1 = Axt

A
′

λt+1 = λt −Qxt

And in matrix form: [
A 0
−Q I

] [
x̄t
λt

]
=

[
I BR−1B

′

0 A
′

] [
x̄t+1

λt+1

]
H1

[
x̄t
λt

]
= H2

[
x̄t+1

λt+1

]
The generalized eigenvalues of the system give the matrix:

H = V ΛV −1

One can then use V as before to obtain P and the policy function.
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5 First order conditions method
The previous two methods solve for the policy function as a byproduct of the (more general) dynamic
programming problem. An alternative is to solve directly for the policy function using the first order
conditions of the sequential problem. This is possible since, provided standard convexity conditions,
the solution of the problem is characterized by sequences that satisfy the FOC at all time.

This method requires to obtain the system of first order conditions, linearize it around the steady
state and then solve for a linear policy function. It also allows for more flexibility in terms of the vari-
ables that can be included. Implicit in the previous methods was the need to eliminate for ’irrelevant’
variables, that is variables for which restrictions can be used to replace them out of the problem, like
consumption or investment.

5.1 First order conditions
Recall problem (2.1):

max
{k̂t+1ĉt,x̂t,ht}

E

[ ∞∑
t=0

β̂t (log ĉt + ψ log (1− ht) + t log (1 + γz))

]
s.t. 0 = k̂αt (ztht)

1−α − ĉt − x̂t
0 = (1− δ) k̂t + x̂t − γk̂t+1

Letting β̂tλt be the multiplier in the first restriction and β̂tµt the multiplier in the second one the set
of first order conditions is:

0 =
1

ĉt
− λt

0 = − ψ

1− ht
+ λt (1− α) k̂αt z

1−α
t h−αt

0 = −γµt + βE
[
λt+1αk̂

α−1
t+1 (zt+1ht+1)

1−α
+ µt+1 (1− δ)

]
0 = −λt + µt

0 = k̂θt (ztht)
1−θ − ĉt − x̂t

0 = (1− δ) k̂t + x̂t − γk̂t+1

Although not necessary one can eliminate the multipliers from the system. This leaves:

0 = − ψ

1− ht
+

1

ĉt
(1− α) k̂αt z

1−α
t h−αt

0 = −γ 1

ĉt
+ βE

[
1

ĉt+1

(
αk̂α−1

t+1 (zt+1ht+1)
1−α

+ 1− δ
)]

0 = k̂θt (ztht)
1−θ − ĉt − x̂t

0 = (1− δ) k̂t + x̂t − γk̂t+1

Without counting the exogenous variable zt this is a system of four equations in four variables:[
k̂, h, ĉ, x̂

]
. One can group these variables into endogenous states and controls (o decisions). The

endogenous state of the problem is x =
[
k̂
]
and the decisions are d = [h, ĉ, x̂]

′
. All exogenous variables

are state as well and are group in S = [zt]. This notation will be used later.
In general one can express the system of first order conditions as a function that maps realizations
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of the variables in t and t+ 1 to Rx × Rd. Call the FOC function f , then we in this model:

f (xt, dt, st, xt+1, dt+1, st+1) =


− ψ

1−ht + 1
ĉt

(1− α) k̂αt z
1−α
t h−αt

−γ 1
ĉt

+ βE
[

1
ĉt+1

(
αk̂α−1

t+1 (zt+1ht+1)
1−α

+ 1− δ
)]

k̂θt (ztht)
1−θ − ĉt − x̂t

(1− δ) k̂t + x̂t − γk̂t+1


A solution for this problem is a pair of functions hx (x, S) and hd (x, S) so that if xt+1 = hx (xt, St)
and dt = hd (xt, St) then f (·) = 0 at all times for any pair (x, S).

5.2 Solution
The policy functions are obtained by approximating f with a linear function. The policy functions are
then linear. In general the system can be represented as:

f (xt, dt, st, xt+1, dt+1, st+1) ≈ A1

[
x̂t
d̂t

]
+A2E

[
x̂t+1

d̂t+1

]
+ Z1Ŝt + Z2E

[
Ŝt+1

]
(5.1)

Where hatted variables represent deviations from the steady state. The objective is to find laws of
motion of the form:

x̂t+1 = Ax̂t +BŜt

d̂t = Cx̂t +DŜt

given that:
Ŝt+1 = PŜt + εt+1

By certainty equivalence matrices A and C can be obtained from solving the non-stochastic model
where:

A1

[
x̂t
d̂t

]
+A2

[
x̂t+1

d̂t+1

]
= 0

(so that the first order conditions are equal to zero).

1. If A2 is invertible let A = −A−1
2 A1 and then the system is:[
x̂t+1

d̂t+1

]
= −A−1

2 A1

[
x̂t
d̂t

]
= A

[
x̂t
d̂t

]
Consider the Eigen-decomposition of A = V ΩV −1 where the first nx eigenvalues of A are inside
the unit circle (these correspond to the variables in x) the product can be expressed as:

A =

[
vx vxd
vdx vd

] [
Ωx 0
0 Ωd

] [
vx vxd
vdx vd

]−1

Matrices A and C are then:
A = vxΩxv

−1
x C = vdxv

−1
x

2. If A2 is not invertible then generate A = V ΩV −1 where Ω are the generalized eigenvalues of A1

and A2. A and C are defined as before.
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Knowing A and C its possible to find B and D by replacing on the FOC. Note that E
[
Ŝt+1

]
= PŜt

A1

[
x̂t
d̂t

]
+A2Et

[
x̂t+1

d̂t+1

]
+ Z1Ŝt + Z2Et

[
Ŝt+1

]
= 0

A1

[
x̂t

Cx̂t +DŜt

]
+A2Et

[
x̂t+1

Cx̂t+1 +DŜt+1

]
+ (Z1 + Z2P ) Ŝt = 0

A1

[
x̂t

Cx̂t +DŜt

]
+A2

[
Ax̂t +BŜt

CAx̂t + (CB +DP ) Ŝt

]
+ (Z1 + Z2P ) Ŝt = 0

Letting A1 = [A1xA1d] and A2 = [A2xA2d] one has:

A1xxt +A1d

(
Cx̂t +DŜt

)
+A2x

(
Ax̂t +BŜt

)
+A2d

(
CAx̂t + (CB +DP ) Ŝt

)
+ (Z1 + Z2P ) Ŝt = 0

(A1x +A1dC +A2xA+A2dCA) x̂t + (A1dD +A2xB +A2dCB +A2dDP + Z1 + Z2P ) Ŝt = 0

(A1x +A1dC +A2xA+A2dCA) x̂t + (A1dD +A2dDP + (A2x +A2dC)B + Z1 + Z2P ) Ŝt = 0

At this point it can be checked that:

A1x +A1dC +A2xA+A2dCA = 0

And then B and D are obtained such that:

A1dD +A2dDP + (A2x +A2dC)B + Z1 + Z2P = 0(nx+nd)×ns

Vectorizing:

vec (A1dD) + vec (A2dDP ) + vec ((A2x +A2dC)B) + vec (Z1 + Z2P ) = 0(
Ins ⊗A1d + P

′
⊗A2d

)
vec (D) + (Ins ⊗ (A2x +A2dC)) vec (B) + vec (Z1 + Z2P ) = 0

The system of equations can be stacked to give:[
(Ins ⊗ (A2x +A2dC))

(
Ins ⊗A1d + P

′ ⊗A2d

) ] [ vec (B)
vec (D)

]
= −vec (Z1 + Z2P )

[
vec (B)
vec (D)

]
= −

[
(Ins ⊗ (A2x +A2dC))

(
Ins ⊗A1d + P

′ ⊗A2d

) ]−1

vec (Z1 + Z2P )

With this the matrices A, B, C and D are known and the policy functions are fully characterized.
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Part II

Economies with distortions
The following sections study the a prototype economy with distortions as the one introduced in Chari,
Kehoe & McGrattan (2008). Because of the distortions the methods presented in the part (I) must be
modified. In particular its no longer possible to replace the agents in the economy by a central planner
as in the stochastic growth model of section 2. Agents in the prototype model must take prices and
aggregate quantities as given when taking decisions.

Section 6 presents the model, its first order conditions and steady state. Section 7 makes a short
reference to the dynamic programming problem that solves the model. Section 8 solves for a linear-
quadratic approximation of the problem, unlike the LQ problem already solved only the policy functions
are obtained. Finally, Section 9 modifies the method presented in section 5 to solve for the distorted
model.

6 Prototype model
Consider the following growth model where variables are already detrended:

max
{kt+1,ct,xt,ht}

E

[ ∞∑
t=0

((1 + γn)β)
t
(log ct + ψ log (1− ht))

]
s.t. 0 = rtkt + (1− τnt)wtht + Tt − ct − (1 + τxt)xt

0 = (1− δ) kt + xt − (1 + γn) (1 + γz) kt+1

Where St = P0 + PSt−1 + Σεt and ε is distributed iid N (0, I). The firm’s technology is Yt =

Kα
t (ztHt)

1−α. The resource constraint of the economy is Yt = Ct + Xt + Gt. Upper case variables
represent per-capita aggregates. St = {ln zt, τxt, τnt, lnGt} and Tt = τxtXt + τntwtHt −Gt.

6.1 FOC
The FOC of an individual household are:

1

ct
= λt

ψ

1− ht
= λt (1− τnt)wt

(1 + τxt) (1 + γn) (1 + γz)λt = β (1 + γn)λt+1 (rt+1 + (1 + τxt+1) (1− δ))

From the FOC of the firm one gets:

rt = α

(
ztHt

Kt

)1−α

wt = (1− α) zt

(
ztHt

Kt

)−α
Since all households are identical it follows that, in equilibrium:

Kt = kt Ht = ht Xt = xt

Then the resource constraint of the economy is:

kαt (ztht)
1−α

+ (1− δ) kt = ct +Gt + (1 + γn) (1 + γz) kt+1
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The exogenous processes follow:
St = P0 + PSt−1 + Σεt

The FOC are then:

0 =
(1− τnt) (1− α) zt

(
ztht
kt

)−α
ct

− ψ

1− ht
(6.1)

0 =
β

ct+1

(
α

(
zt+1ht+1

kt+1

)1−α

+ (1 + τxt+1) (1− δ)

)
− (1 + τxt) (1 + γz)

ct
(6.2)

0 = kαt (ztht)
1−α

+ (1− δ) kt − ct −Gt − (1 + γn) (1 + γz) kt+1 (6.3)

6.2 (Non-Stochastic) Steady state
The (non-stochastic) steady state of the model can be obtained from the conditions above. First the
exogenous processes satisfy:

Sss = (I − P )
−1
P0

From the resource constraint consumption satisfies:

css = kαss (zsshss)
1−α

+ (1− δ − (1 + γn) (1 + γz)) kss −Gss
From the FOC of the household:

(1 + τxss) (1 + γz) = β (rss + (1 + τxss) (1− δ))

(1 + τxss)

(
(1 + γz)

β
− (1− δ)

)
= α

(
zsshss
kss

)1−α

((
1 + τxss

α

)(
(1 + γz)

β
− (1− δ)

)) 1
1−α

=
zsshss
kss

Λ1 =
zsshss
kss

This implies:

wss = (1− α) zss

(
zssHss

Kss

)−α
= (1− α) zssΛ

−α
1

One can set the value of Gss so that is some given percentage of the output in steady state, that
way: Gss = φgYss = φgk

α
ss (zsshss)

1−α.
From the resource constraint consumption satisfies:

css = kαss (zsshss)
1−α

+ (1− δ − (1 + γn) (1 + γz)) kss −Gss
= (1− φg) kαss (zsshss)

1−α
+ (1− δ − (1 + γn) (1 + γz)) kss

=
(
(1− φg) Λ1−α

1 + (1− δ − (1 + γn) (1 + γz))
)
kss

= Λ2kss

Replacing one gets:
ψcss

1− hss
= (1− τnss)wss

ψΛ2kss = (1− τnss)wss (1− hss)
ψΛ2kss + (1− τnss)wsshss = (1− τnss)wss(

ψΛ2 +
(1− τ̃nss)wssΛ1

zss

)
kss = (1− τnss)wss

kss =

[
ψΛ2 +

(1− τnss)wssΛ1

zss

]−1

(1− τnss)wss
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6.3 Additional variables
From the solution to the problem above one can also get dividends, firm’s accounting profits and stock
valuations.

Dividends are defined as firm’s profits that are not used for investment:

dt = Kα
t (ztHt)

1−α − wtHt − (1 + τxt)Xt

Note that it is assumed that firms pay wages to households who then pay taxes on them to the
government, while firms are the ones investing in new capital and pay investment taxes.

Accounting profits are given by dividends plus capital replacement:

Prt = dt + kt+1 − kt

Finally stock valuations are obtained from Tobin’s Q. In the model

Qt = (1 + τxt)

and
Qt =

vt
Kt

Then
vt = (1 + τxt)Kt
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7 Recursive competitive equilibrium
The full non-linear solution of the problem takes the form of a recursive competitive equilibria.

An RCE is a set formed by a value function V , policy functions gk and gh and transition functions
Gk and Gh such that:

1. The value function V solves for the following functional equation:

V (k, S,K) = max
k′ ,h

{
log c+ ψ log (1− h) + (1 + γn)βE

[
V
(
k
′
, S
′
,K

′
)
|S
]}

s.t. c = rk + (1− τn)wh+ Υ− (1 + τx)x

x = (1 + γn) (1 + γz) k
′
− (1− δ) k

r = α

(
zH

K

)1−α

w = (1− α) z

(
zH

K

)−α
Υ = τx

(
(1 + γn) (1 + γz)K

′
− (1− δ)K

)
+ τnwH − g

S
′

= P0 + P1S + Σε

H = Gh (S,K)

K
′

= Gk (S,K)

2. The policy functions gk and gh are such that:

V (k, S,K) = log c? + ψ log (1− gh (k, S,K)) + (1 + γn)βE
[
V
(
gk (k, S,K) , S

′
,K

′
)
|S
]

Where c? evaluates all definitions at h = gh (k, S,K) and k
′

= gk (k, S,K).

3. The aggregate states move according to:

4.

Gk (S,K) = gk (K,S,K)

Gh (S,K) = gh (K,S,K)

To solve the RCE with a recursive procedure note that the problem that V solves is indexed by Gk
and Gh, then one can pick a G0

k and a G0
h (arbitrarily) and solve for V 0, g0

k, g
0
h given the guess for

aggregate policy functions. One can update the guess by the rule in (3) so that:

Gn+1
k (S,K) = gnk (K,S,K) Gn+1

h (S,K) = gnh (K,S,K)

And continue until convergence is achieved between the policy functions.
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8 Linear-Quadratic approximation - Distortions

Let x1,t = ln kt, x2,t = st = [ln zt, τxt, τnt, ln gt]
′
, x3,t = [lnKt, lnKt+1, Ht]

′
and xt =

[
x1,t, x

′

2,t, x
′

3,t

]′
be the states of the problem. x1t if formed by endogenous individual states (in this case only capital),
x2,t is formed by exogenous states contained in vector st, and x3,t contains the aggregate states. Let
ut = [ln kt+1, ht]

′
be the vector of household decisions.

The one-period return function of the problem is given by:

r (xt, ut) = log
(
rte

ln kt + (1− τnt)wtht + Υt − (1 + τxt)xt
)

+ ψ log (1− ht)

Where:

rt = α

(
ztHt

elnKt

)1−α

wt = (1− α) zt

(
ztHt

elnKt

)−α
xt = (1 + γn) (1 + γz) e

ln kt+1 − (1− δ) eln kt

Υt = τxt
(
(1 + γn) (1 + γz) e

lnKt+1 − (1− δ) elnKt
)

+ τntwtHt − eln gt

Note that rt, wt, xt,Υt are only definitions and don’t come into the problem as variables, they are
completely characterized by the states and controls.

A second order approximation around the steady state takes the following form (where x̂i,t =
xi,t − xi,ss and ût = ut − uss):

r (xt, ut) ≈ 1

2

[
1 x̃1,t x̂2,t x̂3,t ût

] [ 2r J
′

r

Jr Hr

]
1
x̂1,t

x̂2,t

x̂3,t

ût

 =
[
x̂
′

t û
′

t

] [ Q9×9 W9×2

W
′

2×9 R2×2

] [
x̂t
ût

]

r (xt, ut) ≈ x̂
′

tQx̂t + û
′

tRût + x̂
′

tWût

Where x̂t = [1, x̂1,t, x̂2,t, x̂3,t]
′
.

Law of motion for the states is given by:

x̂t+1 = Ax̂t +Bût + Cεt+1
1

x̂1,t+1

x̂2,t+1

x̂3,t+1

 =


1 0 0 0
0 A11 A12 A13

0 04×1 A22 A23

0 03×1 A32 A33




1
x̂1,t

x̂2,t

x̂3,t

+


0 0
1 0

04×1 04×1

03×1 03×1

[ ũ1,t

ũ2,t

]
+


01×4

01×4

Σ4×4

03×4

 εt+1

Note that in this case A11 = 01×1, A12 = 01×4 and A13 = 01×3 since next period’s capital is given
directly by the decision made today. It also holds that A22 = P1, since variables are expressed in
deviations from the SS there is no constant term P0, also A23 = 04×3. Matrices A32 and A33 are
unknown but they are not needed in what follows.

The problem is then:

max
{ût,x̂1,t+1}

E
∑

β̂t
(
x̂
′

tQx̂t + û
′

tRût + x̂
′

tWût

)
s.t. x̂t+1 = Ax̂t +Bût + Cεt+1

Next one can re-define variables and matrices to get rid of β̂t and the cross product:
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x̄t = β̂
t/2x̂t

ut = β̂
t/2
(
ût +R−1W

′
x̂t

)
A =

√
β̂
(
A−BR−1W

′
)

B =

√
β̂B

Q = Q−WR−1W
′

The problem is then:

max
{ut,x1,t+1}

E
∑(

x
′

tQxt + u
′

tRut

)
s.t. xt+1 = Axt +But + Cεt+1

For convenience let yt =
[
1, x1,t, x

′

2,t

]′
and zt = x3,t and name the following matrices Ay, Az and

By so that the law of motion is:

xt+1 = Axt +But + Cεt+1[
yt+1

zt+1

]
=

[
Ay Az[

0 A32

]
A33

] [
yt
zt

]
+

[
By

03×2

]
ut + Cεt+1

There are two methods for solving this problem, one can use the dynamic programming representa-
tion of it and guess the form of the value function and then obtain the coefficients by solving a Ricatti
equation recursively, as in section 4.1, or one can using the first order conditions and the Vaughan
approach, as in section 4.2. Solving for the Ricatti equation requires to know A32 and A33, then only
the Vaughan approach is pursued.

8.1 Vaughan’s method to LQ method - Distortions
Recall the problem and disregard the stochastic part:

max
{ut,x̄t+1}

∑(
x
′

tQxt + u
′

tRut

)
s.t. xt+1 = Axt +But

Suppose that the whole sequence for aggregate variables zt is known. Noting matrix Q as:

Q =

[
Qy Qz

Q
′

z Qzz

]
the problem takes the form:

max
{ut,ȳt+1}

∑(
y
′

tQyyt + 2y
′

tQzzt + z
′

tQzzzt + u
′

tRut

)
s.t. yt+1 = Ayyt +Azzt +Byut

Letting 2λt+1 be the multiplier on the restriction for yt+1 one gets:

2Rut = −2B
′

yλt+1 (8.1)

2Qyyt+1 + 2Qzzt+1 = 2λt+1 − 2A
′

yλt+2 (8.2)

yt+1 = Ayyt +Azzt +Byut (8.3)

From the first equation
ut = −R−1B

′

yλt+1 (8.4)
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This equation will be used to obtain the policy function of the problem. First its necessary to eliminate
z form the system, then one can express λ as a function of the endogenous states (y), with this the
policy function will be known.

Using (8.4) and lagging equation (9) one gets (solving for yt from the third equation and λt from
the second):

Ayyt = yt+1 −Azzt +ByR
−1B

′

yλt+1

λt = Qyyt +Qzzt +A
′

yλt+1

At the same same time it is known from market clearing conditions that in equilibrium:

Kt = kt Kt+1 = kt+1 Ht = ht

This allows to express a law of motion for ẑ as:

ẑt = Θŷt + Ψût l̂nKt

̂lnKt+1

Ĥt

 =

 [ 0 1 01×4

]
01×6

01×6

 ŷt +

 0 0
1 0
0 1

 ût
This condition has to be mapped to the modified variables. Recalling that ut = β̂t/2ût+R−1W

′
xt and

naming
R−1W

′
=
[

Φy Φz
]

one gets:

ẑt = Θŷt + Ψût

zt = Θyt + Ψβ
t/2ût

zt = Θyt + Ψ (ut − Φyyt − Φzzt)

zt = (I2 + ΨΦz)
−1

(Θ−ΨΦy) yt + (I2 + ΨΦz)
−1

Ψut

zt = Θyt + Ψut

Replacing for u:

zt = (I2 + ΨΦz)
−1

(Θ−ΨΦy) yt − (I2 + ΨΦz)
−1

ΨR−1B
′

yλt+1

zt = Θyt −Ψλt+1

One can then replace for z in the system of first order conditions:

Ayyt = yt+1 −Az
(
Θyt −Ψλt+1

)
+ByR

−1B
′

yλt+1

λt = Qyyt +Qz
(
Θyt −Ψλt+1

)
+A

′

yλt+1

Joining terms: (
Ay +AzΘ

)
yt = yt+1 +

(
AzΨ +ByR

−1B
′

y

)
λt+1

λt =
(
Qy +QzΘ

)
yt +

(
A
′

y −QzΨ
)
λt+1

Let

Ã = Ay +AzΘ

B̃ = AzΨ +ByR
−1B

′

y

Q̃ = Qy +QzΘ
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so that the system is:

Ãyt = yt+1 + B̃λt+1 (8.5)

λt = Q̃yt +
(
A
′

y −QzΨ
)
λt+1 (8.6)

As before there are two cases for getting the dynamical system.

1. If Ã is invertible the equations are:

yt = Ã−1yt+1 + Ã−1B̃λt+1

λt = Q̃yt +
(
A
′

y −QzΨ
)
λt+1

To get the dynamical system one replaces yt from the first equation

yt = Ã−1yt+1 + Ã−1B̃λt+1

λt = Q̃Ã−1yt+1 +
(
Q̃Ã−1B̃ +A

′

y −QzΨ
)
λt+1

In matrix form:[
ȳt
λt

]
= H

[
ȳt+1

λt+1

]
H =

[
Ã−1 Ã−1B̃

Q̃Ã−1
(
Q̃Ã−1B̃ +A

′

y −QzΨ
) ]

2. If Ã is not invertible then:
H1

[
ȳt
λt

]
= H2

[
ȳt+1

λt+1

]

H1 =

[
Ã 0

−Q̃ I

]
H2 =

[
I B̃

0 A
′

y −QzΨ

]

One can then use the eigen-decomposition of matrix H (or the generalized decomposition of matrices
H1 and H2) to get:

H = V ΛV −1

The eigenvalues of H don’t longer come in reciprocal pairs, but there must be as many eigenvalues
inside the unit circle as there are states. One can write the following:

H =

[
V11 V12

V21 V22

] [
Λ1 0
0 Λ2

] [
V11 V12

V21 V22

]−1

(8.7)

where all eigenvalues in Λ1 are outside of the unit circle.
Guess that λt = Syt, it is shown in section 8.2 that:

S = V21V
−1
11

As before this gives a relation between the controls and the states. Using equation (8.4):

ut = −R−1B
′

ySyt+1

Then, from equation (8.5) one gets:

Ãyt = yt+1 + B̃λt+1

Ãyt = yt+1 + B̃Syt+1(
I + B̃S

)−1

Ãyt = yt+1
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Joining results one obtains the policy function:

ut = −R−1B
′

yS
(
I + B̃S

)−1

Ãȳt (8.8)

Let F = R−1B
′

yS
(
I + B̃S

)−1

Ã.
Then for the variables in level we have:

ut = −Fyt
ût +R−1W

′
x̂t = −F ŷt

ût + (Φy ŷt + Φz ẑt) = −F ŷt
ût + (Φy ŷt + Φ (Θŷt + Ψût)) = −F ŷt

ût + ((Φy + ΦzΘ) ŷt + ΦzΨût) = −F ŷt
(I + ΦzΨ) ût + (Φy + ΦzΘ) ŷt = −F ŷt(

I −R−1W
′
ΦzΨ

)
ût = −

(
F + Φy + ΦzΘ

)
ŷt

ût = − (I + ΦzΨ)
−1 (

F + Φy + ΦzΘ
)
ŷt

Which gives the transition for the original variable ût = −F ŷt where:

F = (I + ΦzΨ)
−1 (

F + Φy + ΦzΘ
)

(8.9)

The first row of F gives the policy function for capital, the second one the policy function for labor.
The exogenous states evolve according to their VAR process.

8.2 Solution to Hamiltonian (by Emily Moschini)
The above problem has the form: [

ȳt
λt

]
= H

[
ȳt+1

λt+1

]
Rearrange the system so that it is moving forward in time.[

ȳt+1

λt+1

]
= H−1

[
ȳt
λt

]
From the eigen-decomposition of the matrix H one has:

H−1 =

[
V11 V12

V21 V22

] [
Λ1 0
0 Λ2

] [
W11 W12

W21 W22

]
where the notation has been changed from equation (8.7), Λ1 represents the eigenvalues inside the unit
circle, Λ2 those outside, and: [

W11 W12

W21 W22

]
=

[
V11 V12

V21 V22

]−1

Remember that we guess the form of the relationship between the states yt and co-states λt to be
λt = Sȳt. Substitute in this guess to the system above and solve for S, subject to the constraint that
it puts 0 weight on the eigenvalues outside the unit circle, Λ2. The method below is from “A note
on computing competitive equilibria in linear models”, by Ellen McGratten, 1992.

[
ȳt+1

Sȳt+1

]
=

[
V11 V12

V21 V22

] [
Λ1 0
0 Λ2

] [
W11 W12

W21 W22

] [
yt
Syt

]
[

ȳt+1

Sȳt+1

]
=

[
V11Λ1W11 + V12Λ2W21 V11Λ1W12 + V12Λ2W22

V21Λ1W11 + V22Λ2W21 V21Λ1W12 + V22Λ2W22

] [
yt
Syt

]
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This gives two equations:

ȳt+1 = (V11Λ1 (W11 +W12S) + V12Λ2 (W21 +W22S)) ȳt

ȳt+1 = S−1 (V21Λ1 (W11 +W12S) + V22Λ2 (W21 +W22S)) yt

Since you want to put zero weight on Λ2, you can set S = −W−1
22 W21. If the weight on the second

term of the two equations is zero, then they become:

ȳt+1 = (V11Λ1 (W11 +W12S)) ȳt

ȳt+1 = S−1 (V21Λ1 (W11 +W12S)) yt

Which means that S−1V21 = V11 since the two RHS have to be equal. This implies:

V21V
−1
11 = S

Let’s check that this is an equivalent condition on S. Take the system of equations:

ȳt+1 =
(
V11Λ1

(
W11 +W12V21V

−1
11

)
+ V12Λ2

(
W21 +W22V21V

−1
11

))
ȳt

ȳt+1 = V11V
−1
21

(
V21Λ1

(
W11 +W12V21V

−1
11

)
+ V22Λ2

(
W21 +W22V21V

−1
11

))
yt

ȳt+1 =
(
V11Λ1

(
W11 +W12V21V

−1
11

)
+ V12Λ2

(
W21 +W22V21V

−1
11

))
ȳt

ȳt+1 =
(
V11Λ1

(
W11 +W12V21V

−1
11

)
+ V11V

−1
21 V22Λ2

(
W21 +W22V21V

−1
11

))
yt

V12Λ2

(
W21 +W22V21V

−1
11

)
− V11V

−1
21 V22Λ2

(
W21 +W22V21V

−1
11

)
= 0[

V12 − V11V
−1
21 V22

]
Λ2

(
W21 +W22V21V

−1
11

)
= 0

W21 +W22V21V
−1
11 = 0

S = V21V
−1
11 = −W−1

22 W21

The second-to-last line follows from the next point. Note that the matrix V is invertible, one of its
terms is:

−V −1
22 V21V

−1
11 + V −1

12 =
(
V12 − V11V

−1
21 V22

)−1

which means that a necessary condition for V to be invertible is that V12 − V11V
−1
21 V22 6= 0.

8.3 Vaughan’s method for LQ approximation (following Ellen McGrattan’s
notation)

Recall the problem and disregard the stochastic part:

max
{ut,x̄t+1}

∑(
x
′

tQxt + u
′

tRut

)
s.t. xt+1 = Axt +But

Suppose that the whole sequence for aggregate variables zt is known. Noting matrix Q as:

Q =

[
Qy Qz

Q
′

z Qzz

]
the problem takes the form:

max
{ut,ȳt+1}

∑(
y
′

tQyyt + 2y
′

tQzzt + z
′

tQzzzt + u
′

tRut

)
s.t. yt+1 = Ayyt +Azzt +Byut
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Letting 2λt+1 be the multiplier on the restriction for yt+1 one gets:

2Rut = −2B
′

yλt+1

2Qyyt+1 + 2Qzzt+1 = 2λt+1 − 2A
′

yλt+2

yt+1 = Ayyt +Azzt +Byut

From the first equation ut = −R−1B
′

yλt+1 and lagging the second equation one period one gets (solving
for yt from the third equation and λt from the second):

Ayyt = yt+1 −Azzt +ByR
−1B

′

yλt+1

λt = Qyyt +Qzzt +A
′

yλt+1

At the same same time it is known from market clearing conditions that:

ẑt = Θŷt + Ψût l̂nKt

̂lnKt+1

Ĥt

 =

 [ 0 1 01×4

]
01×6

01×6

 ŷt +

 0 0
1 0
0 1

 ût
Letting:

Θ =
(
I + ΨR−1W

′

z

)−1 (
Θ−ΨR−1W

′

y

)
Ψ =

(
I + ΨR−1W

′

z

)−1

Ψ

Where
W =

[
Wy

Wz

]
Then:

zt = Θyt + Ψut

One can then replace for ut to get:

zt = Θyt −ΨR−1B
′

yλt+1

And then plug z in the system above to get:(
Ay +AzΘ

)
yt = yt+1 +

(
AzΨ +By

)
R−1B

′

yλt+1

λt =
(
Qy +QzΘ

)
yt +

(
A
′

y −QzΨR−1B
′

y

)
λt+1

Replacing yt in the second equation one gets the system:

yt = Â−1yt+1 + Â−1B̂R−1B
′

yλt+1

λt = Q̂Â−1yt+1 +
((
Q̂Â−1B̂ −QzΨ

)
R−1B

′

y +A
′

y

)
λt+1

Where :
Â = Ay +AzΘ Q̂ = Qy +QzΘ B̂ = AzΨ +By

And then in matrix form:[
ȳt
λt

]
= H

[
ȳt+1

λt+1

]
H =

 Â−1 Â−1B̂R−1B
′

y

Q̂Â−1
((
Q̂Â−1B̂ −QzΨ

)
R−1B

′

y +A
′

y

) 
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One can then use the Eigen-decomposition of matrix H (or the generalized decomposition of ma-
trices H1 and H2) to get:

H = V ΛV −1

The eigenvalues of H don’t longer come in reciprocal pairs, but there must be as many eigenvalues
inside the unit circle as there are states. One can write the following:

H =

[
V11 V12

V21 V22

] [
Λ1 0
0 Λ2

] [
V11 V12

V21 V22

]−1

where all eigenvalues in Λ1 are outside of the unit circle. It can be showed that S = V21V
−1
11 where S

is such that
ut = −

(
R+B

′

ySB̂
)−1

B
′

ySÂȳt

Let F =
(
R+B

′

ySB̂
)−1

B
′

ySÂ.
Then for the variables in level we have:

ut = −Fyt
ût +R−1W

′
x̂t = −F ŷt

ût +R−1
[
W
′

y ŷt +W
′

z ẑt

]
= −F ŷt

ût +R−1
[
W
′

y ŷt +W
′

z (Θŷt + Ψût)
]

= −F ŷt

ût +R−1
[(
W
′

y +W
′

zΘ
)
ŷt +W

′

zΨût

]
= −F ŷt(

I +R−1W
′

zΨ
)
ût = −

(
F +R−1

(
W
′

y +W
′

zΘ
))

ŷt

ût = −
(
I +R−1W

′

zΨ
)−1 (

F +R−1
(
W
′

y +W
′

zΘ
))

ŷt

Which gives the transition for the original variable ût = −F ŷt where:

F =
(
I +R−1W

′

zΨ
)−1 (

F +R−1
(
W
′

y +W
′

zΘ
))

The first row of F gives the policy function for capital, the second one the policy function for labor.
The exogenous states evolve according to their VAR process.
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9 First order conditions - Distortions
An alternative to the problem above is to solve for the system of first order conditions. Consider
the original problem’s first order conditions. This method is simpler and uses the exact same tools
presented in section (5), the only difference lies in the problem the FOC are obtained from. Because
of the distortions the household has to take decisions given the prices and aggregate quantities, then,
after the FOC are obtained one can use the market clearing conditions to eliminate the aggregate
variables.

For the household the conditions are:

0 =
1

ct
− λt

0 = − ψ

1− ht
+ λt (1− τnt)wt

0 = − (1 + τxt) γλt + β (1 + γn)E [λt+1 (rt+1 + (1 + τxt+1) (1− δ))]

From the FOC of the firm one gets:

rt = α

(
ztHt

Kt

)1−α

wt = (1− α) zt

(
ztHt

Kt

)−α
Since all households are identical it follows that, in equilibrium:

Kt = kt Ht = ht

Then the resource constraint of the economy is:

0 = kαt (ztht)
1−α

+ (1− δ) kt − ct −Gt − γkt+1

The exogenous processes follow:
St = P0 + P1St−1 + Σεt

In equilibrium one can cease to use the aggregate variables, and the rental rate and wage can be
replaced into the household FOC, also λt can be eliminated, the the set of conditions is:

0 = − ψ

1− ht
+

1

ct
(1− τnt) (1− α) z1−α

t

(
ht
kt

)−α
0 = − (1 + τxt)

ct+1

ct
+

β

1 + γz
E

(
α

(
zt+1ht+1

kt+1

)1−α

+ (1 + τxt+1) (1− δ)

)
0 = kαt (ztht)

1−α
+ (1− δ) kt − ct −Gt − γkt+1

St+1 = P0 + P1St + Σεt+1

In the above system the variable c can be eliminated using the third condition, but its not necessary
to do so.

This is a system of 7 equations (S has dimension 4) and seven variables {c, h, k, S}. Define the
states xt = ln kt, decisions dt = {ln ct, ht} and exogenous states St. Then the system has 3 first order
difference equations for 3 endogenous variables and it can be represented with a function f : R16 → R4

where the domain is all variables {{xt, dt, St} , {xt+1, dt+1, St+1}}.
One can then linearize around the steady state of the model. This gives:

f (xt, dt, st, xt+1, dt+1, st+1) ≈ A1

[
x̂t
d̂t

]
+A2E

[
x̂t+1

d̂t+1

]
+ Z1Ŝt + Z2E

[
Ŝt+1

]
This is the same function obtained in equation (5.1). The policy functions can be then obtained

exactly as in section 5. The only difference was in the construction of the non-linear function f .
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10 Simulations

10.1 Using LQ
Using the solution of the LQ problem one gets a law of motion for capital and labor , so that:[

̂ln kt+1

ĥt

]
= −F

 1

l̂n kt
ŝt


Using the law of motion for ŝt one has:

ŝt+1 = P1ŝt + Σεt+1

It is then possible to simulate data for the model given that εt ∼ N (04, I4×4) following the algorithm
below:

1. Set ̂ln k0 = 0.

2. Draw a 4× 1 vector of variables ε from the standard normal distribution. Call it ε0.

3. Draw a 4× T matrix of variables ε form the standard normal distribution. Call the tth column
εt.

4. Generate ŝ0 = Σε0.

5. For t = 0, . . . , T generate: ̂ln kt+1

ĥt
ŝt+1

 =

[
−F[

04×2 P1

] ] 1

l̂n kt
ŝt

+

[
02×4

Σ

]
εt+1

This provides time series for the seven variables included in the problem. Then define:

kt = e
̂ln kt+ln kss ht = ĥt + hss

zt = el̂n zt+ln zss τnt = τ̂nt + τn,ss τxt = τ̂xt + τx,ss gt = e
̂ln gt+ln gss

Once one has the time series for the (detrended) levels of the variable one can get any of the other
variables of the model using the definitions presented below:

xt = (1 + γn) (1 + γz) kt+1 − (1− δ) kt

rt = α

(
ztht
kt

)1−α

wt = (1− α) zt

(
ztht
kt

)−α
Υt = τxt ((1 + γn) (1 + γz) kt+1 − (1− δ) kt) + τntwtht − gt
ct = rtkt + (1− τnt)wtht + Υt − (1 + τxt)xt

dt = kαt (ztht)
1−α − wtht − (1 + τxt)ht

Prt = dt + kt+1 − kt
vt = (1 + τxt) kt
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10.2 Using FOC
Using the solution of the FOC one gets a law of motion for capital and labor (and consumption), so
that:

̂ln kt+1 =
[
A B

] [ l̂n kt
ŝt

]
and : [

ĥt
l̂n ct

]
=
[
C D

] [ l̂n kt
ŝt

]
Using the law of motion for ŝt one has:

ŝt+1 = P1ŝt + Σεt+1

It is then possible to simulate data for the model given that εt ∼ N (04, I4×4) following the algorithm
below:

1. Set ̂ln k0 = 0.

2. Draw a 4× 1 vector of variables ε from the standard normal distribution. Call it ε0.

3. Draw a 4× T matrix of variables ε form the standard normal distribution. Call the tth column
εt.

4. Generate ŝ0 = Σε0.

5. For t = 0, . . . , T generate:
̂ln kt+1

ĥt
l̂n ct
ŝt+1

 =

 A1×1 B1×4

C2×1 D2×4

04×1 P1

[ l̂n kt
ŝt

]
+

[
03×4

Σ

]
εt+1

This provides time series for the seven variables included in the problem. Then define:

kt = e
̂ln kt+ln kss ht = ĥt + hss ct = el̂n ct+ln css

zt = el̂n zt+ln zss τnt = τ̂nt + τn,ss τxt = τ̂xt + τx,ss gt = el̂n gt+ln gss

Once one has the time series for the (detrended) levels of the variable one can get any of the other
variables of the model using the definitions presented below:

xt = (1 + γn) (1 + γz) kt+1 − (1− δ) kt

rt = α

(
ztht
kt

)1−α

wt = (1− α) zt

(
ztht
kt

)−α
Υt = τxt ((1 + γn) (1 + γz) kt+1 − (1− δ) kt) + τntwtht − gt
dt = kαt (ztht)

1−α − wtht − (1 + τxt)ht

Prt = dt + kt+1 − kt
vt = (1 + τxt) kt
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Part III

The BCA procedure
The following sections examine how to establish equivalence results between detailed models and ht
prototype model of Section 6. These type of results are necessary to use the BCA procedure. As an
example a detailed version of the prototype model is used and equivalence is shown. The detailed
version presents news shocks and investment productivity shocks in the spirit of Jaimovich & Rebelo
(2009).

Once the equivalence result has been obtained one can use the prototype model (Section 6) to study
the data and recover series for the wedges. Contrasting the type of wedges present in the data with
the ones implied by the model through the equivalence results is a way to validate the detailed model.
This validation does not only rely on the wedged recovered but also on the series implied by each
wedge (the wedge series can seem non-important and have a seizable effect over the other variables of
the model).

Section 11 presents the detailed prototype model, section 12 the equivalence results with the pro-
totype model of section 6. Then section 13 shows how to recover the wedges from using data on
aggregate series and the prototype model. Finally section 14 shows how to simulate the series implied
by any given combination of wedges. With this the complete BCA procedure can be implemented.

11 Prototype economy with news shocks and investment pro-
ductivity

Consider the following growth model where variables are already detrended:

max
{kt+1,ct,xt,ht}

E

[ ∞∑
t=0

((1 + γn)β)
t
(log ct + ψ log (1− ht))

]
s.t. 0 = rtkt + (1− τ̃nt)wtht + T̃t − ct − (1 + τ̃xt)

xt
zxt

0 = (1− δ) kt + xt − (1 + γn) (1 + γz) kt+1

Where S̃t = P̃0 + P̃ S̃t−1 + Q̃ε̃t and ε is distributed iid N (0, I). The firm’s technology is Yt =

Kα
t (z̃tHt)

1−α. The resource constraint of the economy is Yt = Ct + Xt + G̃t. Upper case variables
represent per-capita aggregates. St = {ln z̃t, τxt, τnt, lnGt, ln zxt } and T̃t = τ̃xtXt + τ̃ntwtHt − G̃t.

There are two types of shocks that affect the production and investment efficiency process, con-
temporary and lagged shocks. In particular:

ln z̃t = (1− ρz) ln z̃ss + ρz ln z̃t−1 + εt + νt−1

ln zxt = (1− ρx) ln zxss + ρx ln zxt−1 + εxt + νxt−1

11.1 FOC
The FOC of an individual household are:

ψ

1− ht
=

1

ct
(1− τ̃nt)wt

(1 + τxt) (1 + γn) (1 + γz)
λt
zxt

= β (1 + γn)λt+1

(
rt+1 +

(1 + τ̃xt+1) (1− δ)
zxt+1

)
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From the FOC of the firm one gets:

rt = α

(
z̃tHt

Kt

)1−α

wt = (1− α) z̃t

(
z̃tHt

Kt

)−α
Since all households are identical it follows that, in equilibrium:

Kt = kt Ht = ht Xt = xt

Then the resource constraint of the economy is:

kαt (z̃tht)
1−α

+
1

zxt
(1− δ) kt = ct + G̃t +

1

zxt
(1 + γn) (1 + γz) kt+1

The exogenous processes follow:
St = P̃0 + P̃1St−1 + Q̃εt

The FOC are then:

0 =
(1− τ̃nt) (1− α) z̃t

(
z̃tht
kt

)−α
ct

− ψ

1− ht
(11.1)

0 =
β

ct+1

(
α

(
z̃tht
kt

)1−α

+
(1 + τ̃xt+1) (1− δ)

zxt+1

)
− (1 + τ̃xt) (1 + γz)

zxt ct
(11.2)

0 = kαt (z̃tht)
1−α

+
(1− δ) kt − (1 + γn) (1 + γz) kt+1

zxt
− ct − G̃t (11.3)

11.2 (Non-Stochastic) Steady state
The (non-stochastic) steady state of the model can be obtained from the conditions above. First the
exogenous processes satisfy:

S̃ss =
(
I − P̃

)−1

P̃0

From the FOC of the household:

(1 + τ̃xss) (1 + γz)

zxss
= β

(
rss +

(1 + τ̃xss) (1− δ)
zxss

)
(1 + τ̃xss)

zxss

(
(1 + γz)

β
− (1− δ)

)
= α

(
z̃sshss
kss

)1−α

((
1 + τ̃xss
αzxss

)(
(1 + γz)

β
− (1− δ)

zxt

)) 1
1−α

=
z̃sshss
kss

Λ1 =
z̃sshss
kss

This implies:

wss = (1− α) z̃ss

(
z̃sshss
kss

)−α
= (1− α) z̃ssΛ

−α
1

One can set the value of G̃ss so that is some given percentage of the output in steady state, that
way: G̃ss = φgYss = φgk

α
ss (z̃sshss)

1−α.
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From the resource constraint consumption satisfies:

css = kαss (z̃sshss)
1−α

+ (1− δ − (1 + γn) (1 + γz))
kss
zxss
− G̃ss

= (1− φg) kαss (z̃sshss)
1−α

+ (1− δ − (1 + γn) (1 + γz))
kss
zxss

=

(
(1− φg) Λ1−α

1 +

(
1− δ − (1 + γn) (1 + γz)

zxss

))
kss

= Λ2kss

Replacing one gets:

ψcss
1− hss

= (1− τ̃nss)wss

ψΛ2kss = (1− τ̃nss)wss (1− hss)
ψΛ2kss + (1− τ̃nss)wsshss = (1− τ̃nss)wss(

ψΛ2 +
(1− τ̃nss)wssΛ1

z̃ss

)
kss = (1− τ̃nss)wss

kss =

[
ψΛ2 +

(1− τ̃nss)wssΛ1

z̃ss

]−1

(1− τ̃nss)wss
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12 Equivalence Result
In order to get the equivalence result consider first three special cases of the prototype economy of last
section. In all of them the labor, investment and government spending wedge will be turned off, so
that τ̃nt = τ̃nss, τ̃xt = τ̃xss, G̃t = G̃ss. The cases to be presented are:

1. There are only efficiency shocks but they are perfectly forecastable one period in advance, that
is:

ln z̃t = (1− ρz) ln z̃ss + ρz ln z̃t−1 + νt−1 zxt = zxss

2. There are only investment efficiency shocks that with no lagged shocks:

ln zxt = (1− ρx) ln zxss + ρx ln zxt−1 + εxt z̃t = z̃ss

3. There are product and investment efficiency shocks with current and lagged shocks:

ln z̃t = (1− ρz) ln z̃ss + ρz ln z̃t−1 + εt + νt−1

ln zxt = (1− ρx) ln zxss + ρx ln zxt−1 + εxt + νxt−1

12.1 News shocks in efficiency
Let zt = z̃t and τnt = τ̃nt. From equation (6.1) of the prototype economy one gets:

(1− τnt) (1− α) zt

(
ztht
kt

)−α
ct

=
ψ

1− ht
−→

(1− τ̃nt) (1− α) z̃t

(
z̃tht
kt

)−α
ct

=
ψ

1− ht
Which is equation (11.1) of the news economy.

Let

Gt = G̃ss −
(1− δ) kt − (1 + γn) (1 + γz) kt+1

zxt
+ ((1− δ) kt − (1 + γn) (1 + γz) kt+1)

Then from equation (6.3) of the prototype economy one gets:

kαt (ztht)
1−α

+ (1− δ) kt = ct +Gt + (1 + γn) (1 + γz) kt+1

kαt (z̃tht)
1−α

+
(1− δ) kt

zxt
= ct + G̃t +

(1 + γn) (1 + γz) kt+1

zxt

Which is equation (11.3) of the news economy.
Finally the investment wedge is defined implicitly by:

(1 + τxt) (1 + γz)

c̃t
=

β

c̃t+1

α(zt+1h̃t+1

k̃t+1

)1−α

+ (1 + τxt+1) (1− δ)

 (12.1)

Where
{
c̃t, h̃t, k̃t

}
are the equilibrium allocations of the news economy and {zt} is the series the

efficiency wedge in the prototype economy.
The reason the investment wedge is not given by τxt = 1+τ̃xt

zxt
− 1 as one could have imagined from

the household’s budget constraint is that the agents in the news economy are taking expectations over
future values of z̃ and since the one step forecast error is zero always they take different actions when
facing z̃ and z, there is forecast error involved in the one-step ahead forecast of z. τxt must guarantee
the equivalence of both models.

This shows that a news shocks presents itself as an efficiency and investment wedge leaving unaltered
the labor wedge. The change in the government wedge only depends on the value of the investment
efficiency wedge, note that if zxss = 1 then Gt = G̃t.
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12.2 Investment efficiency wedge
As above its clear that if zt = z̃t and τnt = τ̃nt then equations (6.1) and (11.1) are identical. In
the same way the relation between Gt and G̃t (and zxt ) remains unchanged so as to guarantee that
equations (6.3) and (11.3) are identical. Finally if τxt = 1+τ̃xt

zxt
− 1 one gets from equation (6.2):

(1 + τxt) (1 + γz)

c̃t
=

β

c̃t+1

α(zt+1h̃t+1

k̃t+1

)1−α

+ (1 + τxt+1) (1− δ)


Which turns into:

(1 + τ̃xt)

zxt

(1 + γz)

ct
=

β

ct+1

(
α

(
z̃t+1ht+1

kt+1

)1−α

+
(1 + τ̃xt+1)

zxt+1

(1− δ)

)

Which is equation (11.2). Then both economies are equivalent.
An investment efficiency shock presents itself as both an investment wedge and a government

spending wedge.

12.3 News in efficiency and investment efficiency wedges
From above when both wedges move and are subject to news shocks one can define all the wedges in
the same way they were defined when there are only news shocks to the efficiency wedge. In this case:

zt = z̃t τnt = τ̃nt

Gt = G̃ss −
(1− δ) kt − (1 + γn) (1 + γz) kt+1

zxt
+ ((1− δ) kt − (1 + γn) (1 + γz) kt+1)

And τxt is defined implicitly so that equation (12.1) holds. Note that there is no change in the labor
wedge.

33



13 Wedges
Once one has estimated all the unknown parameters of the model it is possible to recover the wedges
from observed data. The estimation is discussed below in Part IV. From national accounts one has
access to output (yt), consumption (ct), investment (xt) and labor (ht) series for periods t = 1, 2, . . . , T ..

First one has to recover the capital series using the investment. Let k1 = kss (1 + γn) (1 + γz), then
one can define the capital series recursively as:

kt+1 = xt + (1− δ) kt

Note that these series are in aggregate terms and have not been detrended to eliminate population or
technology growth.

Then the government wedge can be obtained as:

gt = yt − ct − xt

and the efficiency wedge as:

zt =

 yt

kαt

(
(1 + γz)

t
ht

)1−α


1

1−α

and the labor wedge as:

τnt = 1− ψct

(1− ht) (1− α) kαt

(
(1 + γz)

t
zt

)1−α
h−αt

The investment wedge is treated differently and is recovered from the log-linear approximation of
the model (this allows to compute the expectation in the intertemporal first order condition.

The intertemporal condition is:

0 = Et

[
β

ct+1

(
α

(
zt+1ht+1

kt+1

)1−α

+ (1 + τxt+1) (1− δ)

)]
− (1 + τxt) (1 + γz)

ct

0 = Et

[
βe− ln ct+1

(
αe(1−α)(ln zt+1−ln kt+1)h1−α

t+1 + (1 + τxt+1) (1− δ)
)]
− (1 + τxt) (1 + γz) e

− ln ct

0 = Et [A]−B

For convenience consider the linear expansion of the first term only:

A = βe− ln ct+1

(
αe(1−α)(ln zt+1−ln kt+1)h1−α

t+1 + (1 + τxt+1) (1− δ)
)

A ≈ β

c

[
−

(
α

(
zh

k

)1−α

+ (1 + τx) (1− δ)

)
ĉt+1 + (1− α)α

(
zh

k

)1−α (
ẑt+1 − k̂t+1 + h−1ĥt+1

)
+ (1− δ) τ̂xt+1

]

A ≈ β

c

[
− (1 + τxss) (1 + γz)

β
ĉt+1 + (1− α)α

(
zh

k

)1−α (
ẑt+1 − k̂t+1 + h−1ĥt+1

)
+ (1− δ) τ̂xt+1

]

The second term yields:

B = (1 + τxt) (1 + γz) e
− ln ct

B ≈ (1 + γz)

c
τ̂xt −

(1 + τxss) (1 + γz)

c
ĉt
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Joining:

0 ≈ Et

[
β

(1 + γz)

(
(1− α)α

(
zh

k

)1−α (
ẑt+1 − k̂t+1 + h−1ĥt+1

)
+ (1− δ) τ̂xt+1

)]
− τ̂xt + (1 + τxss) (ĉt − Et [ĉt+1])(13.1)

Finally one can use the solution of the model to obtain the current investment wedge since:

Et

[
k̂t+1

]
= k̂t+1

Et [ẑt+1] = P1ŝt

Et [τ̂xt+1] = P3ŝt

Et

[
ĥt+1

]
= C1k̂t+1 +D1P ŝt

Et [ĉt+1] = C2k̂t+1 +D2P ŝt

Finally note that:g

Piŝt = Pi1ẑt + Pi2τ̂nt + Pi3τ̂xt + Pi4ĝt

And then:

DjP ŝt =

4∑
i=1

Dji (Pi1ẑt + Pi2τ̂nt + Pi3τ̂xt + Pi4ĝt)

Replacing the previous results on (13.1) one can then solve for τ̂xt:

τ̂xt ≈
β

(1 + γz)

(
(1− α)α

(
zh

k

)1−α (
P1ŝt − k̂t+1 + h−1

(
C1k̂t+1 +D1P ŝt

))
+ (1− δ)P3ŝt

)
+ (1 + τxss)

(
ĉt − C2k̂t+1 −D2P ŝt

)
τ̂xt ≈

β

(1 + γz)

((
(1− α)α

(
zh

k

)1−α (
P1 + h−1D1P

)
+ (1− δ)P3

)
ŝt + (1− α)α

(
zh

k

)1−α (
h−1C1 − 1

)
k̂t+1

)
+ (1 + τxss)

(
ĉt − C2k̂t+1 −D2P ŝt

)
τ̂xt ≈

(
β

(1 + γz)

(
(1− α)α

(
zh

k

)1−α (
P1 + h−1D1P

)
+ (1− δ)P3

)
− (1 + τxss)D2P

)
ŝt

+

(
β (1− α)α

(1 + γz)

(
zh

k

)1−α (
h−1C1 − 1

)
− (1 + τxss)C2

)
k̂t+1 + (1 + τxss) ĉt

τ̂xt ≈ Γŝt +

(
β (1− α)α

(1 + γz)

(
zh

k

)1−α (
h−1C1 − 1

)
− (1 + τxss)C2

)
k̂t+1 + (1 + τxss) ĉt

τ̂xt ≈
1

1− Γ3

[
Γ1ẑt + Γ2τ̂nt + Γ4ĝt +

(
β (1− α)α

(1 + γz)

(
zh

k

)1−α (
h−1C1 − 1

)
− (1 + τxss)C2

)
k̂t+1 + (1 + τxss) ĉt

]

Where:

Γ =

(
β

(1 + γz)

(
(1− α)α

(
zh

k

)1−α (
P1 + h−1D1P

)
+ (1− δ)P3

)
− (1 + τxss)D2P

)

Note that in order to apply this formula is necessary to detrend, log and express in deviations form
steady state all the series.
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14 BCA
Once one has series for all the wedges one can form a vector of states ŝt = [ẑt, τ̂nt, τ̂xt, ĝt]

′
. The BCA

procedure aims to determine the direct effect of each wedge, while separating it from the forecast
effect. To do this consider the following variant of the prototype model in which the variables st and
[zt, τnt, τxt, gt] are separated. Variables in st will be regarded as exogenous states for the model and
their evolution will be given by: ŝt+1 = P ŝt + Qεt+1. The wedges [zt, τnt, τxt, gt] will be treated as
part of the controls vector d and will be determined by:


ẑt
τ̂nt
τ̂xt
ĝt

 = Λŝt =


λ1 0 · · · 0

0 λ2

...
... λ3 0
0 · · · 0 λ4

 ŝt
Where Λ is a diagonal that determines which of the states in s have a direct effect over the model and
which are only used for forecasting other states. In particular the prototype model has Λ = I4 since
all wedges are active. If the BCA procedure is performed to establish the direct effect of the efficiency
wedge alone then λ1 = 1 and λ2 = λ3 = λ4 = 0. This implies that although all states in s take their
recovered values only ẑt is affected by them.

The set of equation to linearize is then:

0 =
(1− τnt) (1− α) zt

(
ztht
kt

)−α
ct

− ψ

1− ht
(14.1)

0 =
β

ct+1

(
α

(
zt+1ht+1

kt+1

)1−α

+ (1 + τxt+1) (1− δ)

)
− (1 + τxt) (1 + γz)

ct
(14.2)

0 = kαt (ztht)
1−α

+ (1− δ) kt − ct −Gt − (1 + γn) (1 + γz) kt+1 (14.3)
0 = zt − λ1s

1
t (14.4)

0 = τnt − λ2s
2
t (14.5)

0 = τxt − λ3s
3
t (14.6)

0 = gt − λ4s
4
t (14.7)

Where the only exogenous states are
[
s1
t , . . . , s

4
t

]
.

The decomposition is then obtain in the following way:

1. Obtain the full set of parameters of the prototype economy. (This involves maximum likelihood).

2. Recover the capital series.

(a) Set an initial value k1 = kss (1 + γn) (1 + γz)

(b) Iterate forward: kt+1 = xt + (1− δ) kt

3. Recover series for all wedges:

(a) gt = yt − ct − xt

(b) zt =

(
yt

kαt ((1+γz)tht)
1−α

) 1
1−α

(c) τnt = 1− ψct

(1−ht)(1−α)kαt ((1+γz)tzt)
1−α

h−αt
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(d) τ̂xt ≈ 1
1−Γ3

[
Γ1ẑt + Γ2τ̂nt + Γ4ĝt +

(
β(1−α)α
(1+γz)

(
zh
k

)1−α (
h−1C1 − 1

)
− (1 + τxss)C2

)
k̂t+1 + (1 + τxss) ĉt

]
Where:

Γ =
β

(1 + γz)

(
(1− α)α

(
zh

k

)1−α (
P1 + h−1D1P

)
+ (1− δ)P3

)
− (1 + τxss)D2P

4. Re-label the wedges as: 
ŝ1
t

ŝ2
t

ŝ3
t

ŝ4
t

 =


ẑt
τ̂nt
τ̂xt
ĝt


5. For the effect of the ith wedge do:

(a) Set λi = 1 and λj = 0 for j 6= 0.

(b) Solve the linear approximation to the set of equations (14.1) to (14.7) to obtain a solution
of the form:

k̂it+1 = Aik̂t +Biŝt

d̂it = Cik̂t +Diŝt

Where d = [h, c, z, τn, τx, g]
′
.

(c) Let k̂1 = 0 and ŝt be given by the series defined in part (4).

(d) Use the policy function to simulate variables.
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Part IV

Estimation of the model
The objective is to estimate by maximum likelihood the parameters of a model whose solution can be
represented as a VAR process. Since not all of the variables in the VAR are observable (for example
the wedges) the parameters that form the VAR matrices cannot be estimated directly. The Kalman
filter allows to overcome this by embedding the VAR in a state space system.

A state space system is conformed by a transition equation and measurement equation. Two types
of variables are considered in the system, “states” and “observables”, this “states” are not the same thing
that was called a state when solving the model, here the “states” are -potentially- unobserved variables
that affect the observable variables. The measurement equation describes the relation between states
and observables, while the transition equation describes the dynamics of the states.

As will be shown below one way to proceed is to use the VAR representation of the model’s solution
to form the transition equation and then relate those variables to observables using the measurement
equation.

The Kalman filter allows to recover series for the unobserved variables and also generates a like-
lihood function for the model, one can then use this likelihood function to estimate parameters of
interest.

The following two sections cover the construction of the Kalman filter from the solution of the model
(the linear policy functions) and then how to use the Kalman filter to obtain the model’s likelihood
function.

15 Kalman Filter

15.1 Model’s solution
Let kt be a vector of the endogenous states of the model, in the prototype economy of homework 2
the only endogenous state is capital but kt is in general a nk × 1 vector1. Let st be a vector of the
exogenous states of the model of size ns× 1. Let dt be a nd× 1 vector containing the model’s decision
(or control) variables and the prices, for example labor, consumption, wages, etc.

The solution of the model is formed by three equations:

k̂t+1 = Amk̂t +Bmŝt

d̂t = Cmk̂t +Dmŝt

ŝt+1 = P ŝt +Qεt+1

Where x̂ = x− xss and, for simplicity, it is assumed that ε ∼ (0, I) is of dimension ns × 1, this is not
necessary since matrix Q can be adapted for other sizes of ε. The above equations can be obtained
by solving the linear quadratic approximation to the original problem or by solving the first order
approximation of the original FOC of the problem.

Note that usually d contains only one or two decision variables (h and c for example), and that the
other decision variables (like investment and prices) have been replaced out of the system using their
definitions. This definitions can be (log) linearized to obtain a system like:

d̂2
t = α1k̂t + α2k̂t+1 + α3d̂t + α4E

[
d̂t+1

]
+ α5ŝt + α6E [ŝt+1]

Where d2 is a vector listing all other decisions and prices that one wishes to include in the d vector,
and αi are matrices of the right dimension. Once this is done one can replace for the solutions above

1Depending on the solution method kt = ln kt or kt = kt, the same thing goes for all the other variables.
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to get:

d̂2
t = (α1 + α2Am + α3Cm) k̂t + (α5 + α2Bmŝt + α3Dm) ŝt + α4E

[
d̂t+1

]
+ α6E [ŝt+1]

= (α1 + α2Am + α3Cm) k̂t + (α5 + α2Bmŝt + α3Dm + α6P ) ŝt + α4E
[
Cmk̂t+1 +Dmŝt+1

]
= (α1 + α2Am + α3Cm + α4CmAm) k̂t + (α5 + α2Bmŝt + α3Dm + α6P + α4 (CmBm +DmP )) ŝt

This gives a dynamic for d2 as a function of k and s and then can be stacked below d in the equations
above.

When solving the linear approximation to the FOC of the problem one can omit the above calcu-
lations by including the (non-linear) definitions of the variables in d2 as part of the FOC system. The
solution of the model will then include the dynamics of all the variables in d2 as part of d with no need
of any extra computations.

The solution to the model can be then express as a VAR by first noting that:

d̂t+1 = Cmk̂t+1 +Dmŝt+1

= Cm

(
Amk̂t +Bmŝt

)
+Dm (P ŝt +Qεt+1)

= CmAmk̂t + (CmBm +DmP ) ŝt +DmQεt+1

Which gives: k̂t+1

d̂t+1

ŝt+1

 =

 Am 0nx×nd Bm
CmAm 0nd×nd CmBm +DmP
0ns×nx 0ns×nd P

 k̂t+1

d̂t+1

ŝt+1

+

 0nx×ns
DmQ
Q

 εt+1

For ease of notation call xt =
[
k̂
′

t, d̂
′

t, ŝ
′

t

]′
and then define:

xt+1 = Axt +Bεt+1

Where:

A =

 Am 0nx×nd Bm
CmAm 0nd×nd CmBm +DmP
0ns×nx 0ns×nd P

 B =

 0nx×ns
DmQ
Q


15.2 State Space
As mentioned above all the model variables (endogenous states, exogenous states and decisions) are
treated as “states” of the state space system. The VAR obtained above forms the transition equation
of the state space since it characterizes the dynamics of the states of the model. The other equation
that completes the state space is the measurement equation:

yt = Cxt + ωt

Where yt is a vector of size ny×1 of observed variables and ωt is a vector of (possibly) serially correlated
measurement errors that follow:

ωt+1 = Dωt + ηt+1 ηt ∼ iid (0, R)

Matrix C is determined by which variables are included in the observable set, usually it only has
zeros and ones that link an observed variable to its equivalent in vector x (for example consumption
or GDP).

39



For simplicity in what follows define an auxiliary variable yt = yt+1 −Dyt so that:

yt = yt+1 −Dyt
= Cxt+1 + ωt+1 −D (Cxt + ωt)

= C (Axt +Bεt+1)−DCxt + (ωt+1 −Dωt)
= (CA−DC)xt + CBεt+1 + ηt+1

yt = Cxt + CBεt+1 + ηt+1

Where C = CA−DC. The state space system is then:

xt+1 = Axt +Bεt+1

yt = Cxt + CBεt+1 + ηt+1

ωt+1 = Dωt + ηt+1

Using this system one can derive formulas for the predictions of xt given the observed variables yt (hence
yt) and an initial guess for the value and variance of xt. These predictions are obtained through the
Kalman filter. Note that all of this is done given a set of parameter values, and the subsequent model
solution for those values.

15.3 Kalman Filter
To obtain the predictions first define the projection of Y onto X as:

Ê [Y |X] = E [Y ] + ΣxyΣ−1
xx (X − E [X])

Σxx = E
[
(X − E [X]) (X − E [X])

′]
Σxy = E

[
(Y − E [Y ]) (X − E [X])

′]
This formula is valid for any variables Y and X. The idea is to apply it to predictions of yt given its
past values yt−1 and a guess for the initial value x. The reason that only an initial value is needed is
that further predictions of x are obtained given the observations of y, so given the information in yt−1

there is no extra information in the predictions of x.
Define the innovation (or prediction error) as:

ut = yt − Ê
[
yt|yt−1, x0

]
= yt − Ê

[
Cxt + CBεt+1 + ηt+1|yt−1, x0

]
= yt − CÊ

[
xt|yt−1, x0

]
− Ê

[
CBεt+1 + ηt+1|yt−1, x0

]
= yt − CÊ

[
xt|yt−1, x0

]
= yt − Cx̂t−1

t

yt = Cx̂t−1
t + ut

Where x̂t−1
t is the prediction for x at time t given information up to time t−1. This gives an equation

that relates the observed variable yt to the predictions of x (which are observable) and the innovation
term. Given a distribution for the innovation term this equation can be used to construct the likelihood
function of the model.

For the following results note that:

Ê [Y |X1, . . . Xn] = E [Y ] +

n∑
i=1

(
Ê [Y |Xi]− E [Y ]

)
Xi ⊥ Xj
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Also note that since
{
yt−1, x0

}
spans the same linear space than

{
ut−1, x0

}
and that the elements in

the latter set are orthogonal to each other by construction (since innovations are uncorrelated with
each other. Then:

x̂tt+1 = Ê
[
xt+1|yt, x0

]
= Ê

[
xt+1|ut, x0

]
= Ê [xt+1|ut, x0] +

(
Ê
[
xt+1|ut−1, x0

]
− E [xt+1]

)
= Ê [xt+1|ut, x0] + Ê

[
Axt +Bεt+1|ut−1, x0

]
− E [xt+1]

= Ê [xt+1|ut, x0] +AÊ
[
xt|ut−1, x0

]
− E [xt+1]

=
(
E [xt+1] + Σxt+1utΣ

−1
utut (ut − E [ut])

)
+Ax̂t−1

t − E [xt+1]

= Ax̂t−1
t + Σxt+1utΣ

−1
ututut

This equation gives a law of motion for the prediction x̂t−1
t , to complete the system one needs the

covariance matrices Σxt+1ut and Σutut . For future reference Σutut = Ωt.
The expression for the matrices are:

Σxt+1ut = cov [xt+1, ut]

= cov
[
Axt +Bεt+1 , yt − Cx̂t−1

t

]
= cov

[
Axt +Bεt+1 , C

(
xt − x̂t−1

t

)
+ CBεt+1 + ηt+1

]
= E

[
(Axt +Bεt+1 − E [xt+1])

(
C
(
xt − x̂t−1

t

)
+ CBεt+1 + ηt+1 − E [ut]

)′]
= E

[
(A (xt − E [xt]) +Bεt+1)

(
C
(
xt − x̂t−1

t

)
+ (CBεt+1 + ηt+1)

)′]
= E

[
A (xt − E [xt])

(
xt − x̂t−1

t

)′
C
′]

+ E
[
Bεt+1

(
xt − x̂t−1

t

)′
C
′]

+E
[
A (xt − E [xt]) (CBεt+1 + ηt+1)

′]
+ E

[
Bεt+1 (CBεt+1 + ηt+1)

′]
= E

[
A (xt − E [xt])

(
xt − x̂t−1

t

)′
C
′]

+BE [εt+1εt+1]B
′
C
′

= A
(
E
[
(xt − E [xt])

(
xt − x̂t−1

t

)′])
C
′

+BB
′
C
′

Where, using the fact that x̂t−1
t is unbiased so that E [xt] = E

[
x̂t−1
t

]
and that it is also orthogonal to

the prediction error so that E
[
x̂t−1
t

(
xt − x̂t−1

t

)′]
= 0:

E
[
(xt − E [xt])

(
xt − x̂t−1

t

)′]
= E

[
xt
(
xt − x̂t−1

t

)′]
− E

[
E [xt]

(
xt − x̂t−1

t

)′]
= E

[(
xt − x̂t−1

t + x̂t−1
t

) (
xt − x̂t−1

t

)′]
− E [xt]E

[(
xt − x̂t−1

t

)′]
= E

[(
xt − x̂t−1

t

) (
xt − x̂t−1

t

)′]
+ E

[
x̂t−1
t

(
xt − x̂t−1

t

)′]
= E

[(
xt − x̂t−1

t

) (
xt − x̂t−1

t

)′]
= Σt

Where Σt is the variance of the one step prediction error for xt. Then:

Σxt+1ut = AΣtC
′

+BB
′
C
′
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For the covariance matrix of the forecast error ut:

Ωt = E
[(
C
(
xt − x̂t−1

t

)
+ CBεt+1 + ηt+1

) (
C
(
xt − x̂t−1

t

)
+ CBεt+1 + ηt+1

)′]
= CΣtC

′

+ CBB
′
C
′
+R

Letting
Kt = Σxt+1utΩ

−1
t =

(
AΣtC

′

+BB
′
C
′
)

Ω−1
t

This is referred to as the Kalman gain, it determines how much of the forecast error of the observable
variables is used to update the prediction for x, note that if this error is too volatile (big Ω) then
the forecast error is not used as much, in the same way the more correlation is between x and u the
information in u becomes more relevant to update the prediction of x.

One gets the law of motion for the prediction of x given known parameters and the variance of the
prediction error for x (Σt).

x̂tt+1 = Ax̂t−1
t +Ktut

To complete the system one needs to determine Σt. Note first:

xt+1 − x̂tt+1 = (Axt +Bεt+1)−
(
Ax̂t−1

t +Ktut
)

= A
(
xt − x̂t−1

t

)
+Bεt+1 −Kt

(
yt − Cx̂t−1

t

)
= A

(
xt − x̂t−1

t

)
+Bεt+1 −Kt

(
Cxt + CBεt+1 + ηt+1 − Cx̂t−1

t

)
=

(
A−KtC

) (
xt − x̂t−1

t

)
+ (B −KtCB) εt+1 −Ktηt+1

Then:

Σt+1 = E
[(
xt+1 − x̂tt+1

) (
xt+1 − x̂tt+1

)′]
=

(
A−KtC

)
Σt
(
A−KtC

)′
+ (B −KtCB) (B −KtCB)

′
+KtRK

′

t

To further simply it note:

(B −KtCB) (B −KtCB)
′

= (B −KtCB)
(
B
′
−B

′
C
′
K
′

t

)
KtRK

′

t

= BB
′
−KtCBB

′
−BB

′
C
′
K
′

t +KtCBB
′
C
′
K
′

t

And: (
A−KtC

)
Σt
(
A−KtC

)′
= AΣtA

′
−AΣtC

′

K
′

t −KtCΣtA+KtCΣtC
′

K
′

t

Replacing gives:

Σt+1 = AΣtA
′
+BB

′
−
(
AΣtC

′

+BB
′
C
′
)
K
′

t −Kt

(
CΣtA+ CBB

′
)

+Kt

(
CΣtC

′

+ CBB
′
C
′
+R

)
K
′

t

= AΣtA
′
+BB

′
− ΣxuK

′

t −KtΣ
′

xu +KtΩtK
′

t

= AΣtA
′
+BB

′
− ΣxuΩ−1

t Σ
′

xu − ΣxuΩ−1
t Σ

′

xu +KtΩtK
′

t

= AΣtA
′
+BB

′
− ΣxuΩ−1

t Σ
′

xu − ΣxuΩ−1
t Σ

′

xu + ΣxuΩ−1
t ΩtΩ

−1
t Σ

′

xu

= AΣtA
′
+BB

′
− ΣxuΩ−1

t Σ
′

xu

Using the definition of Σxu and Ωt one gets:

Σt+1 = AΣtA
′
+BB

′
−
(
AΣtC

′

+BB
′
C
′
)(

CΣtC
′

+ CBB
′
C
′
+R

)−1 (
AΣtC

′

+BB
′
C
′
)′

This is a recursive formula for Σ. With this the Kalman filter is completely characterized.
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15.3.1 Relevant equation Kalman Filter

The relevant equations of the system are:

Ωt = CΣtC
′

+ CBB
′
C
′
+R

Kt =
(
AΣtC

′

+BB
′
C
′
)

Ω−1
t

ut = yt − Cx̂t−1
t

x̂tt+1 = Ax̂t−1
t +Ktut

Σt+1 = AΣtA
′
+BB

′
−
(
AΣtC

′

+BB
′
C
′
)

Ω−1
t

(
AΣtC

′

+BB
′
C
′
)′

The system describes a recursive system that can be used to construct predictions of the unobserved
states x by starting with a guess for x̂−1

0 and Σ0. With that guess one can built Ωt, Kt, ut and then
x̂tt+1 providing a series for predictions of x. It allows to construct Σt+1 that, along with x̂tt+1, enables
to repeat the procedure for the next period.

The problem of what to use as initial guesses can be solve by setting x̂−1
0 = 0, its unconditional

mean, and Σ0 = Σ where Σ is the solution to the matrix equation:

Σ = AΣA
′
+BB

′
−
(
AΣC

′

+BB
′
C
′
)(

CΣC
′

+ CBB
′
C
′
+R

)−1 (
AΣC

′

+BB
′
C
′
)′

Or to the system:

Ω = CΣC
′

+ CBB
′
C
′
+R

Σ = AΣA
′
+BB

′
−
(
AΣC

′

+BB
′
C
′
)

Ω
−1
(
AΣC

′

+BB
′
C
′
)′

Doing this also eliminates the first, second and last step of the iterative procedure described above
since one gets: Ωt = Ω, Σt = Σ and Kt = K =

(
AΣC

′

+BB
′
C
′
)

Ω
−1

for all periods. The matrix
equations above can be solve by iteration starting from an arbitrary positive definite matrix.
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16 Likelihood function and estimation

16.1 Likelihood function
Under the assumption that ut ∼ N (0,Ωt) and noting that ui ⊥ uj for all i 6= j one has that ui is
independent of uj (since in the normal distribution no-correlation implies independence. From the
Kalman filter procedure one obtains a series for {ut} any given ut has PDF:

f (ut|Γ) = (2π |Ωt|)−
1
2 e−

1
2utΩ

−1
t u

′
t

Where |Ωt| is the determinant of matrix Ωt and Γ is a vector with all the parameters of the model.
The likelihood of the sample is (by independence):

L (Γ|u) =

T∏
t=1

f (ut|Γ)

The log-likelihood function is:

l (Γ) =

T∑
t=1

(
−1

2
ln (2π)− 1

2
log |Ωt| −

1

2
utΩ

−1
t u

′

t

)

Note that utΩ−1
t u

′

t is a scalar and hence utΩ−1
t u

′

t = tr
(
utΩ

−1
t u

′

t

)
= tr

(
Ω−1
t u

′

tut

)
, where tr (·) is the

trace operator. The negative of the log-likelihood is then proportional to:

nl (Γ) ∝
T∑
t=1

(
log |Ωt|+ tr

(
Ω−1
t u

′

tut

))
This function can be minimized to find the maximum likelihood estimator for Γ.

16.2 Estimation Procedure
The estimation procedure is the following:

1. Set a value for parameters Γ0 (this includes P,Q,C,D,R).

2. Solve the model to get: Am, Bm, Cm, Dm and with them A and B.

3. Solve for the steady state of the kalman filter Σ, Ω and K.

4. Use the Kalman filter to get a series for {ut}.

5. Evaluate the negative of the likelihood function nl (Γ0)

6. Update to Γ1 (the computer should give you this).

7. Repeat (2) to (6) until convergence in Γ.
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Part V

Signal extraction problems
The objective of these Sections is to show the solution of (linear) rational expectations models with
imperfect information. In them agents face uncertainty about the realization of exogenous shocks and
learn about them through unbiased signals. First a static model of consumption and leisure choice
is presented and solved manually. The complete information is covered first as a benchmark, then
imperfect information under iid and AR(1) shocks. Then the general solution is considered for two
special cases: when all decisions are taken with the same information set and when different decisions
use different information sets.

17 A static problem
Consider an agent that has to decide how much to work and consume given a level of productivity.

max
c1−σ

1− σ
+ χ ln (1− n) s.t. c = anα

Without uncertainty the solution is given by solving the following set of equations:

− χ

1− n
+ c−σαanα−1 = 0

anα − c = 0

One can linearize these FOC around an arbitrary point and solve them:

− χ

(1− n)
2nn̂+ c−σαanα−1 (−σĉ+ â+ (α− 1) n̂) ≈ 0

â+ αn̂− ĉ ≈ 0

Which using the non-linear FOC:

− n

1− n
n̂− σĉ+ â+ (α− 1) n̂ ≈ 0

â+ αn̂− ĉ ≈ 0

Finally:

− n

1− n
n̂− σ (â+ αn̂) + â+ (α− 1) n̂ ≈ 0

− n

1− n
n̂+ (1− σ) â+ (α (1− σ)− 1) n̂ ≈ 0

(1− n) (1− σ) â+ (α (1− n) (1− σ)− 1) n̂ ≈ 0

The solution is:

n̂ ≈ (1− n) (1− σ)

1− α (1− n) (1− σ)
â

ĉ = â+ αn̂
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18 A static problem with signals and iid shocks
Now suppose that at the beginning of the period n is chosen without complete knowledge of a. The
agent receives an unbiased signal about a. Suppose that ln a ∼ N

(
0, κ−1

)
and that the signal is

ln as ∼ N
(
ln a, κ−1

s

)
. After n is chosen the agent observes a and consumes. The problem is now:

max E

[
c1−σ

1− σ
+ χ ln (1− n) |as

]
s.t. c = anα

The FOC are:

− χ

1− n
+ E

[
c−σαanα−1|as

]
= 0

anα − c = 0

As before one can linearize these FOC around an arbitrary point and solve them:

− χ

(1− n)
2nn̂+ c−σαanα−1E [(−σĉ+ â+ (α− 1) n̂) |as] ≈ 0

â+ αn̂− ĉ ≈ 0

And by canceling terms: (
(α− 1)− n

1− n

)
n̂+ E [(−σĉ+ â) |as] ≈ 0

â+ αn̂− ĉ ≈ 0

Guess that the solution has the form:

n̂ = γâs ĉ = π1â
s + π2â[

n̂
ĉ

]
=

[
γ 0
π1 π2

] [
âs

â

]
This guess captures the fact that only the signal is available to the agent when choosing labor, but
both the signal and the realization of the productivity are available when choosing consumption.

Using the second equation:

(1− π2) â+ (αγ − π1) âs = 0

This equation gives:
π1 = 1 π2 = αγ

Using the first equation and replacing by consumption:(
(α− 1)− n

1− n

)
n̂+ E [(−σĉ+ â) |as] = 0(

(α− 1)− n

1− n

)
n̂+ E [(−σ (â+ αn̂) + â) |as] = 0(

(α− 1)− n

1− n
− σα

)
n̂+ (1− σ)E [â|as] = 0

((1− n) (1− σ)α− 1) n̂+ (1− n) (1− σ)E [â|as] = 0

By bayesian updating one gets:
E [â|âs] =

κs
κ+ κs

âs
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With this and n̂ = γâs:

((1− n) (1− σ)α− 1) γâs + (1− n) (1− σ)
κs

κ+ κs
âs = 0(

((1− n) (1− σ)α− 1) γ + (1− n) (1− σ)
κs

κ+ κs

)
âs = 0

Finally:

γ =
(1− n) (1− σ)

1− (1− σ) (1− n)α

κs
κ+ κs

Note that when the signal becomes arbitrarily good (κs →∞) the solution converges to that of perfect
information:

lim
κs→∞

γ =
(1− σ) (1− n)

1− (1− σ) (1− n)α
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19 A static problem with signals and AR(1) shocks
Now suppose that a follows an AR(1) process so that:

ln a = ρ ln a− + ε ε ∼ N
(
0, κ−1

)
In the perfect information case the solution does not change since the problem that the agent faces is
static and the previous the current value of a is known when taking decisions. If there is imperfect
information over a one has that the value of a− is known when choosing n, as well as an unbiased
signal as such that ln as ∼ N

(
ln a, κ−1

s

)
. After n is chosen the agent observes a and consumes.

Given the information structure the agent enters the period with a prior over a given by:

ln a ∼ N
(
ρ ln a−, k

−1
)

This information is updated with the signal to get a posterior distribution over a given by:

ln a ∼ N
(
kρ ln a− + ks ln as

k + ks
, (k + ks)

−1

)
The problem is as before:

max E

[
c1−σ

1− σ
+ χ ln (1− n) |as, a−

]
s.t. c = anα

The FOC are:

− χ

1− n
+ E

[
c−σαanα−1|as, a−

]
= 0

anα − c = 0

As before one can linearize these FOC around an arbitrary point and solve them:

− χ

(1− n)
2nn̂+ c−σαanα−1E [(−σĉ+ â+ (α− 1) n̂) |as, a−] ≈ 0

â+ αn̂− ĉ ≈ 0

And by canceling terms: (
(α− 1)− n

1− n

)
n̂+ E [(−σĉ+ â) |as, a−] ≈ 0

â+ αn̂− ĉ ≈ 0

Guess that the solution has the form:

n̂ = γ1â− + γ2â
s ĉ = π1â− + π2â

s + π3â[
n̂
ĉ

]
=

[
γ1 γ2 0
π1 π2 π3

] â−
âs

â


Using the second equation:

â+ α (γ1â− + γ2â
s)− (π1â− + π2â

s + π3â) = 0

(1− π3) â+ (αγ1 − π1) â− + (αγ2 − π2) âs = 0

This equation gives:
π1 = αγ1 π2 = αγ2 π3 = 1
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Using the first equation, and replacing consumption:(
(α− 1)− n

1− n

)
n̂+ E [(−σĉ+ â) |as, a−] = 0(

(α− 1)− n

1− n

)
n̂+ E [(−σâ− σαn̂+ â) |as, a−] = 0(

(α− 1)− n

1− n
− σα

)
n̂+ (1− σ)E [â|as, a−] = 0

((1− n) (1− σ)α− 1) n̂+ (1− n) (1− σ)

(
kρ

k + ks
â− +

ks
k + ks

âs
)

= 0

Θ (γ1â− + γ2â
s) + (1− n) (1− σ)

(
kρ

k + ks
â− +

ks
k + ks

âs
)

= 0(
Θγ1 + (1− n) (1− σ)

kρ

k + ks

)
â− +

(
Θγ2 + (1− n) (1− σ)

ks
k + ks

)
âs = 0

Finally:

γ1 =
(1− n) (1− σ)

1− (1− n) (1− σ)α

kρ

k + ks
γ2 =

(1− n) (1− σ)

1− (1− n) (1− σ)α

ks
k + ks

Note that when the signal becomes arbitrarily good (κs →∞) the solution converges to that of perfect
information:

lim
κs→∞

γ1 = 0 lim
κs→∞

γ1 =
(1− n) (1− σ)

1− (1− n) (1− σ)α
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20 Incomplete information - General solution
Consider a general problem where x denotes the vector of endogenous state variables, d the vector of
control (or decision) variables and z the vector of exogenous state variables. Suppose that:

ẑt+1 = ρẑt + εt+1

and that the current value of ẑ is not observable to the agents. Instead agents observe past values of
the exogenous variables ẑ− and a contemporaneous signal zs. The exogenous states of the solution are
then S = [z−, z

s]
′
.

Assume that ε iid∼ N
(
0, α−1

)
. Then, conditional on z− one gets ẑ ∼ N

(
ρẑ−, α

−1
)
, this is the prior

distribution of the agents, that is, prior to observing the signal. Letting ρ = 0 one gets to the iid case.
Agents receive a (common) signal zs of the form:

ẑs = ẑ + εs εs ∼ N
(
0, α−1

s

)
such that ẑs ∼ N

(
ẑ, α−1

s

)
. Then it follows that, given z− and zs, the posterior distribution of z is

z ∼ N
(

α

α+ αs
ρ ln z− +

αs
α+ αs

ln zs, (α+ αs)
−1

)
when z is a scalar. This formula can be generalized for the multivariate case.

Call α̂ = αs
α+αs

the relative precision of the signal. In the linear model only the expected value of
z is relevant.

Note that the system of FOC is obtained as a function of z and not zs, it can be expressed as:

f (xt, dt, st, xt+1, dt+1, st+1) ≈ A1

[
x̂t
d̂t

]
+A2E

s

[
x̂t+1

d̂t+1

]
+ Z1E

s [ẑt] + Z2E
s [ẑt+1]

The objective is to find laws of motion of the form:

x̂t+1 = Ax̂t +BŜt

d̂t = Cx̂t +DŜt

As before, by certainty equivalence, matrices A and C can be obtained from solving the non-
stochastic model, the solution is:

A = vxΩxv
−1
x C = vdxv

−1
x

where: A = −A−1
2 A1 and V and Ω are given by the Eigen-decomposition of A = V ΩV −1.

Knowing A and C its possible to find B and D by replacing on the FOC.
The expected value of ẑ conditional on ẑ− and ẑs is a linear function. In this case:

E [ẑ|ẑ−, ẑs] =
αρ

α+ αs
ẑ− +

αs
α+ αs

ẑs =
[ αρ
α+αs

αs
α+αs

] [ ẑ−
ẑs

]
In what follows Λ1 =

[ αρ
α+αs

αs
α+αs

]
, this matrix represents the linear operator Es [·]. Finally note

that
Es [ẑt+1] = Es [E [ẑt+1|ẑt]] = Es [ρẑt] = ρΛ1Ŝt

and that:

Es [St+1] =

[
Es [ẑt]
Es
[
ẑst+1

] ] =

[
Λ1Ŝt

Es
[
E
[
ẑst+1|ẑt+1

]] ] =

[
Λ1Ŝt

Es [ẑt+1]

]
=

[
Λ1Ŝt
ρΛ1Ŝt

]
=

[
Λ1

ρΛ1

]
Ŝt = Λ2Ŝt
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Using this one gets:

A1

[
x̂t
d̂t

]
+A2E

s

[
x̂t+1

d̂t+1

]
+ Z1E

s [ẑt] + Z2E
s [ẑt+1] = 0

A1

[
x̂t

Cx̂t +DŜt

]
+A2E

s
t

[
x̂t+1

Cx̂t+1 +DŜt+1

]
+ Z1Λ1Ŝt + Z2ρΛ1Ŝt = 0

A1

[
x̂t

Cx̂t +DŜt

]
+A2

[
Ax̂t +BŜt

C
(
Ax̂t +BŜt

)
+DΛ2Ŝt

]
+ Z1Λ1Ŝt + Z2ρΛ1Ŝt = 0

A1

[
x̂t

Cx̂t +DŜt

]
+A2

[
Ax̂t +BŜt

CAx̂t + (CB +DΛ2) Ŝt

]
+ (Z1 + Z2ρ) Λ1Ŝt = 0

Letting A1 = [A1xA1d] and A2 = [A2xA2d] one has:

A1xxt +A1d

(
Cx̂t +DŜt

)
+A2x

(
Ax̂t +BŜt

)
+A2d

(
CAx̂t + (CB +DΛ2) Ŝt

)
+ (Z1 + Z2ρ) Λ1Ŝt = 0

(A1x +A1dC +A2xA+A2dCA) x̂t + (A1dD +A2xB +A2d (CB +DΛ2) + (Z1 + Z2ρ) Λ1) Ŝt = 0

(A1x +A1dC +A2xA+A2dCA) x̂t + (A1dD + (A2x +A2dC)B +A2dDΛ2 + (Z1 + Z2ρ) Λ1) Ŝt = 0

At this point it can be checked that:

A1x +A1dC +A2xA+A2dCA = 0

And then B and D are obtained such that:

A1dD + (A2x +A2dC)B +A2dDΛ2 + (Z1 + Z2ρ) Λ1 = 03×ns

Vectorizing:

vec (A1dD) + vec ((A2x +A2dC)B) + vec (A2dDΛ2) + vec ((Z1 + Z2ρ) Λ1) = 0

(Ins ⊗A1d) vec (D) + (Ins ⊗ (A2x +A2dC)) vec (B) +
(

Λ
′

2 ⊗A2d

)
vec (D) + vec ((Z1 + Z2ρ) Λ1) = 0(

(Ins ⊗A1d) +
(

Λ
′

2 ⊗A2d

))
vec (D) + (Ins ⊗ (A2x +A2dC)) vec (B) + vec ((Z1 + Z2ρ) Λ1) = 0

The system of equations can be stacked to give:[
(Ins ⊗ (A2x +A2dC))

(
(Ins ⊗A1d) +

(
Λ
′

2 ⊗A2d

)) ] [ vec (B)
vec (D)

]
= −vec ((Z1 + Z2ρ) Λ1)

[
vec (B)
vec (D)

]
= −

[
(Ins ⊗ (A2x +A2dC))

(
(Ins ⊗A1d) +

(
Λ
′

2 ⊗A2d

)) ]−1

vec ((Z1 + Z2ρ) Λ1)
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21 Asymmetric information - General solution
Consider now a problem in which some of the decisions are taken with knowledge of the current value of
ẑ and others are taken as before only with knowledge of ẑ− and ẑs. Since decisions are taken with two
different information sets I treat different the coefficients on variables depending on the information
set used on them. The relevant exogenous state vector is S = [z, z−, z

s]
′
.

The system of FOC can be expressed as:

0 ≈ A1

[
x̂t
d̂t

]
+A2E

[
x̂t+1

d̂t+1

]
+A3E

s

[
x̂t+1

d̂t+1

]
+ Z1ẑt + Z2E

s [ẑt] + Z3E [ẑt+1] + Z4E
s [ẑt+1]

In this case Z3 = Z4 = 0 but I include them for completeness of the argument.
The objective is to find laws of motion of the form:

x̂t+1 = Ax̂t +BŜt

d̂t = Cx̂t +DŜt

As before, by certainty equivalence, matrices A and C can be obtained from solving the non-
stochastic model, the solution is:

A = vxΩxv
−1
x C = vdxv

−1
x

where: A = −A−1
2 A1 and V and Ω are given by the Eigen-decomposition of A = V ΩV −1.

Knowing A and C its possible to find B and D by replacing on the FOC.
The expected value of ẑ conditional on ẑ− and ẑs is a linear function. In this case:

E [ẑ|ẑ−, ẑs] =
αρ

α+ αs
ẑ− +

αs
α+ αs

ẑs =
[

0 αρ
α+αs

αs
α+αs

]  ẑ
ẑ−
ẑs


In what follows Λ1 =

[
0 αρ

α+αs
αs

α+αs

]
, this matrix represents the linear operator Es [·]. Finally

note that
Es [ẑt+1] = Es [E [ẑt+1|ẑt]] = Es [ρẑt] = ρΛ1Ŝt

and that:

Es
[
Ŝt+1

]
=

 Es [ẑt+1]
Es [ẑt]
Es
[
ẑst+1

]
 =

 Es [ẑt+1]

Λ1Ŝt
Es
[
E
[
ẑst+1|ẑt+1

]]
 =

 Es [ẑt+1]

Λ1Ŝt
Es [ẑt+1]

 =

 ρΛ1Ŝt
Λ1Ŝt
ρΛ1Ŝt

 =

 ρΛ1

Λ1

ρΛ1

 Ŝt = Λ2Ŝt

Note that by construction Λ1 and Λ2 make the weight on ẑ zero.
It is also necessary to define the “complete information” expected value operators:

E [zt+1] =
[
ρ 0 0

]
St = Λ3St

E
[
Ŝt+1

]
=

 E [ẑt+1]
E [ẑt]
E
[
ẑst+1

]
 =

 ρ 0 0
1 0 0
ρ 0 0

 Ŝt = Λ4Ŝt
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For what follows let Λ0 =
[

1 0 0
]
. Using this one gets:

A1

[
x̂t
d̂t

]
+A2E

[
x̂t+1

d̂t+1

]
+A3E

s

[
x̂t+1

d̂t+1

]
+ Z1ẑt + Z2E

s [ẑt] + Z3E [ẑt+1] + Z4E
s [ẑt+1] = 0

A1

[
x̂t
d̂t

]
+A2E

[
x̂t+1

d̂t+1

]
+A3E

s

[
x̂t+1

d̂t+1

]
+ [Z1Λ0 + Z2Λ1 + Z3Λ3 + Z4ρΛ1] Ŝt = 0

A1

[
x̂t

Cx̂t +DŜt

]
+A2Et

[
x̂t+1

Cx̂t+1 +DŜt+1

]
+A3E

s

[
x̂t+1

Cx̂t+1 +DŜt+1

]
+ Z0Ŝt = 0

A1

[
x̂t

Cx̂t +DŜt

]
+A2

[
Ax̂t +BŜt

C
(
Ax̂t +BŜt

)
+DΛ4Ŝt

]
+A3

[
Ax̂t +BŜt

C
(
Ax̂t +BŜt

)
+DΛ2Ŝt

]
+ Z0Ŝt = 0

A1

[
x̂t

Cx̂t +DŜt

]
+A2

[
Ax̂t +BŜt

CAx̂t + (CB +DΛ4) Ŝt

]
+A3

[
Ax̂t +BŜt

CAx̂t + (CB +DΛ2) Ŝt

]
+ Z0Ŝt = 0

Where Z0 = Z1Λ0 + Z2Λ1 + Z3Λ3 + Z4ρΛ1.
Letting A1 = [A1xA1d] , A2 = [A2xA2d] and A3 = [A3xA3d] one has:

A1xxt +A1d

(
Cx̂t +DŜt

)
+A2x

(
Ax̂t +BŜt

)
+A2d

(
CAx̂t + (CB +DΛ4) Ŝt

)
+A3x

(
Ax̂t +BŜt

)
+A3d

(
CAx̂t + (CB +DΛ2) Ŝt

)
+ Z0Ŝt = 0

(A1x +A1dC +A2xA+A2dCA+A3xA+A3dCA) x̂t

+ (A1dD +A2xB +A2d (CB +DΛ4) +A3xB +A3d (CB +DΛ2) + Z0) Ŝt = 0

At this point it can be checked that:

A1x +A1dC +A2xA+A2dCA+A3xA+A3dCA = 0

And then B and D are obtained such that:

(A2x +A3x + (A2d +A3d)C)B +A1dD +A2dDΛ4 +A3dDΛ2 + Z0 = 03×ns

Vectorizing:

vec ((A2x +A3x + (A2d +A3d)C)B) + vec (A1dD) + vec (A2dDΛ4) + vec (A3dDΛ2) + vec (Z0) = 0

[Ins ⊗ (A2x +A3x + (A2d +A3d)C)] vec (B) +
[
Ins ⊗A1d + Λ

′

4 ⊗A2d + Λ
′

2 ⊗A3d

]
vec (D) + vec (Z0) = 0

The system of equations can be stacked to give:[
(Ins ⊗ (A2x +A3x + (A2d +A3d)C))

(
Ins ⊗A1d + Λ

′

4 ⊗A2d + Λ
′

2 ⊗A3d

) ] [ vec (B)
vec (D)

]
= −vec (Z0)

[
vec (B)
vec (D)

]
= −

[
(Ins ⊗ (A2x +A3x + (A2d +A3d)C))

(
Ins ⊗A1d + Λ

′

4 ⊗A2d + Λ
′

2 ⊗A3d

) ]−1

vec (Z0)
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