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1 Overview of the course

This course covers solution methods for dynamic general equilibrium models (DSGE). Depending on
the characteristics of the model different methods apply to the solution. We understand by the solution
of a model a set of policy functions that characterize the optimal response of endogenous variables to
changes in exogenous variables and the endogenous states of the model.

The methods presented seek to approximate the solution of the model linearly. These type of meth-
ods are much less computationally intensive than global non-linear methods and have high accuracy
in most circumstances.

The course starts by presenting solutions to economies without distortions (Part , the case of the
neoclassical growth model is studied along with three different solution methods. Part [T deals with
economies with distortions in a general way, this is done by studying the prototype “wedge” model of
Chari, Kehoe & McGrattan (2008), the authors show that many, more complicated models, can be
shown to be equivalent to their prototype. The solution methods presented in Part [[] are modified to
handle the distortions (or wedges).

Then, following Chari, Kehoe & McGrattan (2008), the Business Cycle Accounting procedure is
introduced by means of the prototype model of Part[[I] This procedure allows to determine, given data
from national accounts, the relative importance of the different wedges (or distortions), measured by
their ability to explain business cycle fluctuations. To better explain the procedure a simple model
with news shock in the spirit of Jaimovich & Rebelo (2009) is presented and then its equivalence to the
prototype economy is established. The BCA procedure is then explained in two parts, first it is neces-
sary to recover series for all the wedges, this uses the data and the solution to the prototype economy,
then the model can be used to decompose the business cycle fluctuations of aggregate variables in the
effects of each wedge. Note that in order to conduct the BCA procedure it is first necessary to obtain
values for the model’s parameters.

Part [[V] shows how to estimate the model by maximum likelihood using the linear policy functions
(of the approximated solution). In order to estimate the model the Kalman filter must be introduced
and a way to express the solution of the model in state space established. Once this is done the
likelihood of the model is constructed and the model can be estimated.

Finally Part [V]extends one of the solution methods presented before to deal with economies where
agents face signal extraction problems.



Part 1
Economies without distortions

The following sections study the stochastic growth model and solve it using four different methods. Sec-
tion 2] presents the model, its first order conditions and steady state. Section [3] makes a short reference
to the dynamic programming problem that solves the model. Section [ solves for a linear-quadratic
approximation of the problem, that is: the objective function is approximated with a quadratic func-
tion and the constraints with a linear function, the resulting problem can be solved using dynamic
programming (Section or by means of Vaughn’s method (Section . The solution in either case
consists on policy functions for the endogenous variables of the model. Finally, Section ] solves for the
policy functions directly using the first order conditions of the original model.

2 The stochastic growth model

Consider the following growth model:

max
{kt+1,ct,ze,he }

E Zﬁt (loger + 1 log (1 — hy)) Nt]
=0

l-«a

s.t. 0=k ((1 + fyz)t ztht) T
0=((1—=0)ki +xt) Nt — Neyrkp

Where:
logz; = plogzi_1 + €& and 1+ ’yn)t
Using the definition of the population level the problem can be stated as:

Cmax B[S (84 ) (logé+log (1 he) + tlog (1 4+ 7)) (21)
{kt+15t@mht} =0
s.t. 0= k& (zehe)' ™" — & — &y

0=(1—=0) ke + & — (1+72) (1 +7n) krpr
where the hatted variables are defined as:
N K; k;
ke = 3 T = T
(IT+7) A+v)"  (1+7)

Note also that the consumption and the investment decision can be eliminated using the two constraints
in which case the problem is:

max F
{kt+1 ht}

Zﬂt(log( (20ha)' ™+ (1= 8) by = ks ) + Y log (1= he) + tlog (14+72)) | (2:2)

where 8 = B (14 7,) and v = (1 +72) (1 + ).
The (non-stochastic) steady state of the model can be obtained from the first order conditions:

(1— o) kgzy~“h;® o
];3? (Ztht)l_a + (1 — 5) lgit — ’Y];'t_i_l B 1- ht
i v i ] _ e aky (zephen)'” +A( ) ]
kg (zehe)' ™% 4+ (1= 8) ky — vhiga kgey (zeprhen)' ™%+ (1= 0) kogr — vhieo




In the non-stochastic steady state z; = zp41 = 1, lAct = l;:H_l = IQH_Q =0and hy = heyy = he

(1—a)k*h— 0

]%ahl—oc_i_(l_(s_fy)]% 1—h
0% B (ozlzzo‘flhlfa +(1- 5))

From the second equation:

14+5-1\T"
h_ (B ) =A
k o
Replacing in the first equation:
(I1—a)A™@ B )
(Aot (I—5—7)k  1-h
® ~
1-h)— = k
(1—h) ”

Where © = %. Then using the definition of A:

_A® v, _ v\
h= m (1—h)—>A@h—1—h—>h—(1+A@>
This determines the steady state.
© v\ o
1—h)—h=(1+-—"—= =(1—h)—
( h)¢h ( +A@) kE=( h)1/1

3 Value function iteration
The problem above solves also the functional equation:
. 1 oo = o (1 5V ks — ~k . .
Vi (kvz) = max % (kt (ahe) ™" + (1= 0) Ko thH) + BE {Vt+1 (kt+1azt+1)]
{kes1.he} +¢logl (1 — hy) +tlog (14 72.)

Note that the time dependence of the value function is deterministic and additively separable from the
rest of the function, then one can solve instead for:

Vv (]%7 Z) =  max {1og (];3? (2the) ™" + (1= ) ke — ’Y]%t—i-l) +1log (1 — h) + BE {V (l%t+17 Zt-&-l)}}

{kt+1yht}

The above problem can be solved by value function iteration.



4 Linear-Quadratic approximation

Let z; = [zt, l%t} be a 2 x 1 vector of states and u; = l%t_H, ht] be a 1 x 1 vector of control variables.
L

The one-period return function of the problem in (2.2)) is given by:

T (xt,ut) =7 (Zt7 ]Aﬂt, ]Aﬂt+1, ht) = 10g (if? (Ztht)lia + (]. — (S) ]A€t — '7]%t+1) + z/Jlog (1 — ht)

A second order approximation around the steady state takes the following form (where Z;; =

%+ — x; and U; ¢ = u; ¢+ — u; denote deviations from steady state):
r(x,u) R T ATy T+ T To  Tu Ui+ TuyUoy

1 ~92 1 ~2 1 ~2 1 ~2
+§T$1$1x1,t + §TI2I2x2,t + §ru1u1ul,t + Eruzuqu,t

1 ~2 1 ~2 1 ~2 1 ~2
+7T$1$1'r1,t + 7TI2I2'7:2,1‘/ + 7Tu1u1u1,t + 77au2u2u27t
2 2 2 2
FT2122T1,6T2,¢ + Tojuy T1,tU1 ¢ + Toyus T1,6U2. ¢

+ra:2u1 ‘%2,t’al,t + raizuz‘i‘Q,taz,t

+ru1u2a1,tﬂ2,t
This can be expressed compactly using matrix notation:

(T u) T Ty Tip  TayToy Ty Urg + Ty Uz

T1,t
+1 [ Tir Tog Uiy U ] [H,] To,t
- .t ! it it r |~
2 ’ Ut
U ¢
And even more as:
2r [ Tze Tas Tu;  Tug ]
1 T
r(Tgu) R *[ 1 21y Zop Uy Uy } Tas I
2 r
Tus
L L Tue
1
r 14
~ Y01 dy Fa oy e )| T || &
~- 1t T2 Uip Uy 2.t
2 J, H, -
- Ut
U2t

%

[:Tc/ ﬂ/] Q?;x3 Wsxa Ty
COE T Ways Roxe ||

Where i’t = [1,{‘131’“.%2’15} and dt = [fbl,h’l’lg’t] .
Law of motion for the states is given by:

fy1 = A4 Biy + Cepyy

1 100 1 0 0 0
1,441 = 0 p O Zip |+ 0 O {gl’t}—i- o | €41
For1 00 0 o 10 2,8 0

The problem is then:

max EYp (:z;th + @, Rity + 25:;W11t) s.t. Foi1 = A%y + Biig + Cegn

{@t,¢41}

Tt
T2t
Uit

U, ¢

(4.1)



Next one can re-define variables and matrices to get rid of Bt and the cross product:

Ty = Bt/zi"t

w = P (at T R_lwlit)

€41 = Bt/26t+1
A = \@ (A . BR*W’)
B = /BB
Q = Q-wr'W
c = BC
The problem is now:
ma }E (f;@ft + ﬁtRﬂt> S.t. Tya1 = ATy + By + Cep (4.2)
Ut Tt41

4.1 Solution using Ricatti equation

The problem described in equation ([4.2]) solves as well for the functional equation:

V(Z) = maxZ QT+ 0 Ru+ EV (T41)  s.t. Ty = AT+ Bu+ Cegq (4.3)

U, T 1

This dynamic programming problem can be solved by guess and verify. Guess that the solution has
the form:

Vi (z) =7 P+ B'c
Then the problem is:
Vi (T) = max TQT+uRu+E [TI_HPE_H} + 4% e st Ty = AT+ Bu+ Ceyy
And replacing the restriction is:
V(@ = max T Q7 +u Ru+E [(ZE +Bu+Ceyy) P (AT + Bu+ @H)] + B e

= max7 QT +u Ru+TA PAz + 27A PBu+u B PBu+ E [¢2,] C PC + ¢

U, T 41

= maxT (@ + Z/PZ) T+a (R + EIPE) @+ 24 PBu+ B [€34] T PC + ftie

U,Tg1
The FOC is:
P (R +§/P§> 428 PAZ = 0
@ = —(r+BPB) (BPA)z
T = -F%

Note that F'is a function of P.

The objective is to find P to obtain F' which determines the policy function, relating current states
Z to the decisions taken by the agent 4. Once P and F are known the change of variable is reversed
to express the solution in terms of & and u .



Replacing the policy function on V one gets:
TPT+fle=7 (@ + Z/PZ) T+7TF (R + EIPE) FZ—2%A PBFT + E [€2,] T PC + e
Note that this equation can be further expressed in terms of Z and e:
PPi+c=i [(Q+APA)+F (R+B PB)F-2A PBF|3+E[&,]C PC+jec  (44)
Equating coefficients one gets:
P = <@+Z/PZ> +F (R +§/P§) F — 94 PBF
P = <@+Z/PZ> _ A PBF (4.5)
Where the second step follows from replacing F " in the middle term. This equation is called the Ricatti

equation and can be solved by iterating over P, a fixed point gives the value function. Once a value
for P has been found the policy function is obtained. The law of motion for the variables is then:

Et+1 = (Z - EF) T + €€t+1 (47)

Note that this is not the final objective of the method since what is needed is a solution for the
dynamics of u; and Z;. Recall that T; = Bt/zj?t and u; = Bt/Q (ﬂt + R_lle':t), replacing on "

Gy = — [F + R—IW'] Zt (4.8)

Equation (4.8) gives the solution for the policy function.
For completeness one can be also interested in the constant c. Equating coefficients from equation

E2):

c=E[e,] élPé—i—Bc — c= b _o2C' PC

In general if there is more than one shock the system is:
¢ = BE [6/_,_16'/13064_1] + Be
c = BE [tr (e:rlC',PC’eH)} + Be
¢ = BBt (henc PO + fe
c = ptr (ZC'PC) + Be

c = s ~tr (EC,PC)

This completely characterizes the problem. The solution to the original problem (equation (4.1))) is
given by: )
V() =z Pt+c



4.2 Solution using Vaughan’s method

An alternative to the problem presented in section [4.1] is to solve for P using the set of first order
conditions of the sequential problem (4.2). This method offers an alternative to solving the Ricatti
equation (Eq. which requires iteration. Instead P is obtain from the eigen-decomposition of a
matrix as shown below.

Recall the problem (4.2) and disregard the stochastic part:

max (E;@@ T ﬂ;Rﬂt) s.t. Ty = ATy + Buy

{@s,Tr41}

Letting 2)¢41 be the multiplier on the restriction for Z;,; one gets:

2Ru; = —2B 41
2QTi+1 = 2M41 — 24 Myo
Ty1 = Az, + By,

The system can be reduced by eliminating w using the first equation and lagging one period the second.
The result is:

QT +A N1 = M (4.9)
Ti1+ BR'B Ny = ATy (4.10)
Where %i; = —R™'B A\ 1. The objective is to relate ;41 to Z; in order to obtain the policy function

for @, then the change of variable is reversed, as before, to obtain a relation between decisions @ and
states .

If A is invertible one can express the system (4.9)-(4.10) as:

QT+ ANy = N
A7 +A BRI B Ay = T
And then:
7_17 7_17 _171 I
QA 'For + (QA BR™'B +A))\t+1 Y
Z_ljt+1 + Z_lgR_IE >\t+1 = Et
This forms Vaughan’s hamiltonian:
[ & ] [ at A 'BR'B [ Tl ]
A QA" QA'BRTB +A |LMm
Ty Tl
= H
)= ]

One can then use the eigen-decomposition of matrix H to get:
H=VAV™!

where the columns of V' contain the eigenvectors of H and A is a diagonal matrix with the corresponding
eigenvalues. V can be used to get P.



It is proven that the eigenvalues of H come in reciprocal pairs. Without loss of generality one can
write the following:

o[ s o) ]

Vor Vo 0 A! Vo1 Voo

where all eigenvalues in A are outside of the unit circle. Then:
P=VyV3* (4.11)

Once P is obtained one can use equation above to characterize the policy function.
Above it was assumed that A was invertible, if this doesn’t hold the system can be written (directly)
as:

Ziy1 +BR'B Ny = ATy
Z >\t+1 = )\t - @Tt

And in matrix form:

[%?Hﬂ o A

m 5] = w5

The generalized eigenvalues of the system give the matrix:

I BR™ 1§/ Tit1
At41

H=VAV!

One can then use V as before to obtain P and the policy function.

10



5 First order conditions method

The previous two methods solve for the policy function as a byproduct of the (more general) dynamic
programming problem. An alternative is to solve directly for the policy function using the first order
conditions of the sequential problem. This is possible since, provided standard convexity conditions,
the solution of the problem is characterized by sequences that satisfy the FOC at all time.

This method requires to obtain the system of first order conditions, linearize it around the steady
state and then solve for a linear policy function. It also allows for more flexibility in terms of the vari-
ables that can be included. Implicit in the previous methods was the need to eliminate for ’irrelevant’
variables, that is variables for which restrictions can be used to replace them out of the problem, like
consumption or investment.

5.1 First order conditions
Recall problem (2.1)):

i max ) E ZBt(logét—i-wlog(l—ht)—i-tlog(l-i-’yz))
keyiCe 2o he

t=0
];7? (Zth,t)lia — ét — i’t

s.t. 0=
0= (1—(5)]%t+.’i't —’}/]%t+1

Letting B\ be the multiplier in the first restriction and 3* ¢ the multiplier in the second one the set
of first order conditions is:

1
0 = T—)\t
Ct
0 = Y + A (1 — )k zi— o
1-h, t %t t
= —ype+ BE [Mprakf S (zeahin)' ™ 4 e (1— 5)}
= A+

= K (zehe) e —

0
0
0
0 = (1—08)ks+ &t — vk

Although not necessary one can eliminate the multipliers from the system. This leaves:

'(/) 1 ra l—ap—a

0 = —17ht+é—t(l—a)kfztl h;
1 7T o— —«

0 = -V + ﬂE |:A (ak?;ll (Zt+1ht+1)1 + 1-— 5):|
Ct Ct41

= (1 —5) kt-f—(%t —’th+1
Without counting the exogenous variable z; this is a system of four equations in four variables:
[]AC, h,¢, i] One can group these variables into endogenous states and controls (o decisions). The

endogenous state of the problem is x = {l%} and the decisions are d = [h, ¢, :2]/. All exogenous variables

are state as well and are group in S = [z]. This notation will be used later.
In general one can express the system of first order conditions as a function that maps realizations

11



of the variables in ¢ and ¢ + 1 to R* x R?. Call the FOC function f, then we in this model:

— 4 L (1 — )k

1—hy Ct
_~L 1 ja—1 l—a _
f (CUtadtast;$t+ladt+17$t+1) = ’yét + BE [étﬂ (aktJrl (Zt+1ht+1) +1 5)}

]%tg (Ztht)lie — ét — IIATt
(1 - (5) k‘t + i‘t - 7kt+1

A solution for this problem is a pair of functions h, (z,5) and hg (x,S) so that if x4 = hy (x4, St)
and dy = hg (x4, S¢) then f(-) = 0 at all times for any pair (x, S).

5.2 Solution

The policy functions are obtained by approximating f with a linear function. The policy functions are
then linear. In general the system can be represented as:

Z by . .
[ (e, des st g1, digr, Se41) = As { dt ] + A2FE { dt-H } + Z15; + Z2F [Sﬂ_l} (5.1)
t t+1

Where hatted variables represent deviations from the steady state. The objective is to find laws of
motion of the form:

Zip1 = Ady+ BS,
d, = C#;+ DS,

given that: R R
Sty1 = PSt + €141

By certainty equivalence matrices A and C' can be obtained from solving the non-stochastic model

where: A .
Tt Tt41
A < |+ A A =0
' [ dy } ’ [ d41 }

(so that the first order conditions are equal to zero).

1. If A, is invertible let A = fAz_lAl and then the system is:

Ti1 -1 Ty Ty
it — _AZMA | T =Al
[dtﬂ} ? l{dt] {dt]
Consider the Eigen-decomposition of A = VQV ~! where the first n, eigenvalues of A are inside
the unit circle (these correspond to the variables in z) the product can be expressed as:

A= Vg Vzd Qr 0 %% Vzd -
N Vda Ud 0 Qq Vie Vd
Matrices A and C are then:
A= szzvgl C = vdmvajl

2. If Ay is not invertible then generate A = VQV ~! where Q are the generalized eigenvalues of A;
and As. A and C are defined as before.

12



Knowing A and C' its possible to find B and D by replacing on the FOC. Note that F |:»§t+1:| = PS,

A [ ot } + ASE, [ T ] 2.8, + Zo B [S‘m} - 0
d; di+1
Ay N e + Az By N Tear +(Zi+ ZP)S; = 0
CIt + DSt CIt+1 + DSt+1
&y Ady + BS, .
A ) . A . Zi+ ZsP)S = 0
1 { Ciy + DS, ] A { CA#,+(CB+ DP) S, ] (214 2:P) S

Letting Ay = [A1, A14) and As = [Ag, Aoy one has:

At + Arg (Ci“t + DS;) + Ay, (A:%t + BS}) + Ay (CA:%t +(CB + DP) 5}) Y (Zy+ ZoP) S, =

(A1 4 A1aC + Agp A + AggCA) &y + (A1aD + A9y B + AgqCB + AgqDP + Zy + ZoP) S, =
(A1y + A1gC + Agg A+ AzqgCA) &y + (A1gD + AgqDP + (Agy + AsgC) B+ Zy + Z,P) S, =

At this point it can be checked that:
Arg + A1aC + Aoz A+ AsqCA =0
And then B and D are obtained such that:
A1gD + A2gDP + (Agy + A2qC) B+ Z1 + ZoP = 0(, 4ny) xm,
Vectorizing:

vec (A14D) + vec (A2qDP) + vec ((Azy + A24C) B) +vec (Z1 + Z3P) = 0
(Ins ® A1g + P Azd) vee (D) 4 (I, ® (Agz + A2qC)) vec (B) +vec (Z1 + ZoP) = 0
The system of equations can be stacked to give:

vec (B)

| (T, ® (Ass + 4240)) (T, @ Ara+ P’ @ Aza) | [ vec (D)

} = —vec (Z1 + ZyP)
{ Zgg EIB;; ] == { (In, ® (A2z + A24C)) ([ns ® A+ P ® A2d) }_1 vec (Z1 + Z3P)

With this the matrices A, B, C and D are known and the policy functions are fully characterized.

13



Part 11
Economies with distortions

The following sections study the a prototype economy with distortions as the one introduced in Chari,
Kehoe & McGrattan (2008). Because of the distortions the methods presented in the part (I) must be
modified. In particular its no longer possible to replace the agents in the economy by a central planner
as in the stochastic growth model of section [2] Agents in the prototype model must take prices and
aggregate quantities as given when taking decisions.

Section [6] presents the model, its first order conditions and steady state. Section [7] makes a short
reference to the dynamic programming problem that solves the model. Section [§] solves for a linear-
quadratic approximation of the problem, unlike the LQ problem already solved only the policy functions
are obtained. Finally, Section [9] modifies the method presented in section [f] to solve for the distorted
model.

6 Prototype model

Consider the following growth model where variables are already detrended:

max B[S (1)) (o + vlog (1 )
t+1,Ct, Tt t=0
s.t. 0=riki + (1 —Tne) wihe + Ty —cp — (14 7o) ¢

0=(1—06)kt+m¢ — (14 vn) (1 +72) ke

Where S; = Py + PSi—1 + ¥¢; and ¢ is distributed iid N (0,7). The firm’s technology is Y¥; =
Ky (tht)lfa. The resource constraint of the economy is Y; = C; + X; + G;. Upper case variables
represent per-capita aggregates. Sy = {In z;, Tpt, Tnt, N Gy} and Ty = 7.4 Xy + Tpwi Hy — Gy

6.1 FOC
The FOC of an individual household are:
1,
Ct
1 iﬁht = M (1 - Tnt)wt
T+ 7)) (T+7) (T +72) A = B+ 7) Aeyr (rer + (1 + 7wey1) (1= 9))

From the FOC of the firm one gets:

=« ki) wy=(l—a)z AN
t = K, : = t\ &,

Since all households are identical it follows that, in equilibrium:

Kt:kjt Ht:ht Xt:J?t
Then the resource constraint of the economy is:

kg (zhe) ™% + (1= 0) ke = ¢ + Go + (1 + 7n) (1 +72) ke

14



The exogenous processes follow:
Sy =Py + PS;_1 + Xe

The FOC are then:

A—rm)(1—a)z (32) ©
Ct B 1—ht

11—«
0 = B (a (ztﬂht“) + (1 + 7pq1) (1= 5)) _ (A 7ee) (L4 73)

Ct+1 kt+1 Ct

0 = kX (zh)  “+ Q=8 ki—ci— Gy — (1 +m) (1 +72) ks

6.2 (Non-Stochastic) Steady state

The (non-stochastic) steady state of the model can be obtained from the conditions above

exogenous processes satisfy:
Ses=(I—P) " Py
From the resource constraint consumption satisfies:
Cos = kS, (Zashas) ™+ (1 =0 — (147) (1+72)) kss — G
From the FOC of the household:

(1 + Tmss) (1 + 72) = /8 (Tss + (1 + Tzss) (1 -

() (2 o) = a (Bl

<(1+a7xss> <(1+ﬁ%)_(1_5)>)1ia %

Z‘;Shss
Moo= =

This implies:

SSHSS - —
wss = (1 — @) 25 <ZK > = (1 — ) zssA]

One can set the value of G¢ so that is some given percentage of the output in steady state, that

1—
way: Gss = (bg}/ss = ¢gkgs (Zsshss) .
From the resource constraint consumption satisfies:

Css = k?s (Zsshss)lia + (1 —0- (1 + ’Yn) (1 + 72)) kss — GSS

= (1 - ¢g) kgs (ZsshSS)l_a =+ (1 -0 (1 =+ 'Yn) (1 + 'YZ)) kss

= (L= A7+ (1 =0 = (L+) (1+72)) kss
= Asts
Replacing one gets:
¢Css
1- hss
¢A2kss =
¢A2kss + (1 - Tnss) wsshss ==
1- ans ssA
@M+<T)wl>%

SS

1- Tnss) Wss
ss

-1
kss — |:wA2 + (1 - Tnss) wssA1:| (

15
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6.3 Additional variables

From the solution to the problem above one can also get dividends, firm’s accounting profits and stock
valuations.
Dividends are defined as firm’s profits that are not used for investment:

dy = K& (2eHy)' ™" — weHy — (14 70t) Xy

Note that it is assumed that firms pay wages to households who then pay taxes on them to the
government, while firms are the ones investing in new capital and pay investment taxes.
Accounting profits are given by dividends plus capital replacement:

Pry =dy + ki1 — ket

Finally stock valuations are obtained from Tobin’s Q. In the model

Qr = (1 + 744)
and "
Qt = E
Then

UV = (1 =+ T:L’t) Kt
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7 Recursive competitive equilibrium

The full non-linear solution of the problem takes the form of a recursive competitive equilibria.
An RCE is a set formed by a value function V, policy functions gx and g and transition functions
G, and Gy, such that:

1. The value function V solves for the following functional equation:
V (kS K) = max{loge+plog(1—n)+ (1+7)8E |V (K5 k) Is]}
k' ,h

s.t. c=rk+(1—m)wh+T—(1+7)x
=1 +7)1+7)k —1-08)k

_ (2N
T =« K

w:(l—a)z<f>_a

T=r ((1+7) A7) K = (1= K) +rwH —g

S/:Po-I-PlS—l-EE
H =Gy (S,K)
K =Gy (S, K)

2. The policy functions g and g, are such that:
V (k, S, K) = log " + log (1= gn (k, S, K)) + (1 + ) BE |V (g (k. S, K) . ', K ') |S]

Where ¢* evaluates all definitions at h = g (k, S, K) and K = g (k,S,K).
3. The aggregate states move according to:

4.

Gr(S,K) = gi(K,S5 K)
Gh(SaK) = gh(KasaK)

To solve the RCE with a recursive procedure note that the problem that V' solves is indexed by Gy
and Gy, then one can pick a G and a GY (arbitrarily) and solve for V9, g% ¢ given the guess for
aggregate policy functions. One can update the guess by the rule in (3) so that:

Gy (S, K) =gp (K,S,K) Gy (8,K) =g} (K,S,K)

And continue until convergence is achieved between the policy functions.
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8 Linear-Quadratic approximation - Distortions

!
!’ ! 7 7
Let 1, =Ink;, oy = 8¢ = [In 2y, Tyr, Tt In gy , 3, = 0Ky, In K11, Hy] and 2, = [w17t,x27t,x3)t}

be the states of the problem. zy; if formed by endogenous individual states (in this case only capital),
x2,; is formed by exogenous states contained in vector s, and x3: contains the aggregate states. Let

up = [Inkpy1, ht]/ be the vector of household decisions.
The one-period return function of the problem is given by:

r (xtjut) = log (Tteln et -+ (]_ — Tnt) U}tht + Tt — (1 + Tmt) .’Et) + 'l/)lOg (1 - ht)

o 2 Hy e - 2 Hy -
re=« n i, we = (1 —a) 2 K
o= (1+7)1+7) e ke (1-19) e ki
Tt = Ty ((1 +'Yn) (1 +’Yz) eant+1 _ (1 _ 5) eant) 4 Tnttht o elngt

Where:

Note that 7, w, z¢, ¢ are only definitions and don’t come into the problem as variables, they are
completely characterized by the states and controls.

A second order approximation around the steady state takes the following form (where &;; =
Tip — Tjgs and Uy = up — Uss):

1
’ jjlt ~
1 _ . . . o J L N, Qoxos  Woxa Ty
~ = 1 T = ’ ~
T R S A AR F A Ik
Uy
r (e, up) & 3,Qdy + 4, Riy + 2, Wi
Where &, = [1, 41, 2.4, 43.4] -
Law of motion for the states is given by:
i't—',-l = Ali't + B?lt + C€t+1
1 1 0 0 0 1 0 0 O1x4
1041 _ 0 A A Ags T1y i 1 0 (5 i O1x4 -
Zo 141 0 Oax1 Ao Az To O4x1  O4x1 U ¢ Yaxa | T
3 141 0 Osx1 Asz Ass T3¢ 03x1  O3x1 034

Note that in this case A1; = 01x1, A12 = 01x4 and A3 = 0143 since next period’s capital is given
directly by the decision made today. It also holds that Ass = P;, since variables are expressed in
deviations from the SS there is no constant term Py, also Ass3 = 04x3. Matrices Az and Asz are
unknown but they are not needed in what follows.

The problem is then:

max EYp (@;Q@t 4, Ry, + @;Wat) st. G141 = A%y + By + Cepn

{G¢,81,641}

Next one can re-define variables and matrices to get rid of Bt and the cross product:
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B2,

T, =
W o= A7 (@ RW i)
i - \/E<A—BR*1W/>
B = B

Q = Q-wRrRW

The problem is then:

(A }EZ (f;@@ T E;Rﬂt) S.t. Typr = ATy + Buy + Cepgn
Ut,T1,t+1

. — — 7/ — — . . A A
For convenience let 5, = [1, T1,t, xQ’t} and z; = T3, and name the following matrices A,, A, and

Ey so that the law of motion is:

ft+1 == th + Eﬂt + égt+1

Yer1 _ Ay A, Yy By | |~
e = = — T+ u; + Ce
[ Zt+1 ] [ [0 Az | Asg Zt Ogx2 | i

There are two methods for solving this problem, one can use the dynamic programming representa-
tion of it and guess the form of the value function and then obtain the coefficients by solving a Ricatti
equation recursively, as in section or one can using the first order conditions and the Vaughan

approach, as in section Solving for the Ricatti equation requires to know Asy and Ass, then only
the Vaughan approach is pursued.

8.1 Vaughan’s method to LQ method - Distortions
Recall the problem and disregard the stochastic part:

max (f;@@ + ﬂtRﬂt) s.t. Ty = ATy + Buy

{@e,Te 41}

Suppose that the whole sequence for aggregate variables Z; is known. Noting matrix Q as:

o= | % @
QZ QZZ
the problem takes the form:
max (7,5, + 20Q.2 + ZQ.Z + TRT) st Ty = AF, + A7+ Byt
Ut Yt41

Letting 2A;11 be the multiplier on the restriction for 7, ,; one gets:

2Rﬂt = —2§y)\t+1 (81)
2Q, 71 +2Q. 21 = 2Xp1 — 24, M40
Yiy1 = Ay, + Az + Byuy
From the first equation
ﬂt = —R_]"Ey)\t+1 (84)
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This equation will be used to obtain the policy function of the problem. First its necessary to eliminate
z form the system, then one can express A as a function of the endogenous states (y), with this the

policy function will be known.
Using (8.4) and lagging equation @D one gets (solving for 7, from the third equation and A; from
the second):

yyt = yt-i,—l - Zzzt + EyRilﬁyAtJ’_l

|

)‘t = nyt + @zzt + Zy>\t-‘,-1
At the same same time it is known from market clearing conditions that in equilibrium:
Ky =k Kit1 = ki Hy=hy

This allows to express a law of motion for Z as:

ét == @gt—f—\lj’&t
n K, [0 1 014 | 0 0
1n[§t+1 = O1x6 g+ | 1 0 |
H, O1x6 0 1

This condition has to be mapped to the modified variables. Recalling that w; = Bt/ 20, + R™W'Z, and
naming

R'W =[2, o,]

one gets:
Z = Oy + ¥y
Z = Oy, + v
Z = Oy, + V(U — 0,7, — %)
Z = (L+9d,) " (0-Ud,)7, + (I, +Ud,) " Uy,
zZ = Oy, + Yu,
Replacing for u:
% = (L+00.) ' (0-0d,)7, — (I + ¥d.) " WRB, )\,
Zr = Oy, — U\

One can then replace for Z in the system of first order conditions:

Ay, = Tpy1— A. (07, — UA41) + ByR "B A
Moo= QU +Q, (07, — VA1) + AN
Joining terms:
(A, +A.0) = For+ (AT +B,R'B,) A

Let

O N
.
Qx|
< N <
+ &+

2=

©]



so that the system is:
Ay, = T + B (85)
Moo= Qu+ (A, Q) den (8.)
As before there are two cases for getting the dynamical system.

1. If A is invertible the equations are:

7, = A'g +A "B\
Moo= Qu+ (A, -0.9) A
To get the dynamical system one replaces 3, from the first equation
Yy = A_lyt-i-l + le_lg)‘t—kl
Moo= QAT+ (QA B+ A, - Q.7) \n

In matrix form:
Yt Y41
SR

2. If A is not invertible then:

A 0
Hl[—@z]

One can then use the eigen-decomposition of matrix H (or the generalized decomposition of matrices
H; and H») to get:
H=VAV™!

The eigenvalues of H don’t longer come in reciprocal pairs, but there must be as many eigenvalues
inside the unit circle as there are states. One can write the following:

Vii Vo A O Vii Vip |7
H = 8.7
[V21 V22}{ 0 A2][V21 Vm} (8.7)

where all eigenvalues in A; are outside of the unit circle.
Guess that \; = S7,, it is shown in section [8:2] that:

S=VaViy'
As before this gives a relation between the controls and the states. Using equation (|8.4):
Uy = 7R71§ysyt+1

Then, from equation (8.5 one gets:

AYy = Y1+ B
Ay, = Yy + BSY
~ -1
(I+ BS) Ay = Ui



Joining results one obtains the policy function:
_ ~ -1
@ =-R'B,S (1 + BS) A7, (8.8)
_ _ ~ -1 _
Let F=R7'B,S (1+BS) A
Then for the variables in level we have:

uy = _Fyt
W+ R W&, = —Fy
Uy + (Pyfe + ®.2) = —Fij
U + (Pyye + P (O + Vi) = —Fi
i+ ((Py + 9.0) gy + ©.¥0) = —F§
(I + (I)Z\I/) Uy + (q)y + (I)z@) (TS _F?gt
(1-rWew)a, = —(F+,+2.0)i
Uy = *(IJF(DZ‘I/)_l (FJF(I)yJF(Dz@) (7
Which gives the transition for the original variable u; = — F'y; where:
F = (I+.0) ' (F+d,+.0) (8.9)

The first row of F' gives the policy function for capital, the second one the policy function for labor.
The exogenous states evolve according to their VAR process.

8.2 Solution to Hamiltonian (by Emily Moschini)

Yt Y1
=H
BARE

Rearrange the system so that it is moving forward in time.

Yt+1 1| Ut
=H
B

From the eigen-decomposition of the matrix H one has:

H-1 — Vii. Via | [ A1 0 Wit Wia
Var Va2 || 0 A War Waa

The above problem has the form:

where the notation has been changed from equation ({8.7]), A; represents the eigenvalues inside the unit
circle, Ao those outside, and:

{ Wy Wi ] { Vi Vi ]1
W21 W22_ V21 V22

Remember that we guess the form of the relationship between the states y, and co-states A\; to be
A¢ = S7;. Substitute in this guess to the system above and solve for S, subject to the constraint that
it puts 0 weight on the eigenvalues outside the unit circle, A;. The method below is from “A note
on computing competitive equilibria in linear models”, by Ellen McGratten, 1992.

|:yt+1:| _ [Vu ‘/12}{/\1 0}{W11 le][yt}

SYi1 Va1 Va 0 A War  Waa Sy,

{ Yt+1 } _ [ ViiAi Wit + Vig Ao Wo ViiAiWia 4+ Vig Ao Wao } [ Yy }
Sti41 Va1 Ay Wit + Vas Ao Wy Vo1 A Wig + Voo Ao W SY,
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This gives two equations:

U1 = (VirAr (Wi + W12S) + Viz Ao (War + Wa2S)) 7
Gi1 = ST (VarAy Wiy + W12S) + Vag Ay (Way + Wa2S)) 7,
Since you want to put zero weight on Ay, you can set S = 7W2_21W21. If the weight on the second

term of the two equations is zero, then they become:

1 = (ViiAy (Wi + W12S)) 4
Gep1 = ST (VarAy (Wiq + WiaS)) 7,

Which means that S~'Va; = Vi1 since the two RHS have to be equal. This implies:
Vit = S

Let’s check that this is an equivalent condition on S. Take the system of equations:

g1 = (Virhy (Wi + WaiaVar Vip') + VigAg (War + WaeVai Vip')) e
U1 = VirVar " (Var Ay (Win + WiaVar Vi ') + Vas Ao (Way + Waa Vi ViTY)) 7

G = (VitAr (Wit + WiaVar ViT) + VisAs (Way + Waa Vi Vi 1)) 3
G = (ViAr (Wi + WiaVarViph) + Vin Vi ' Vas Ao (War + WaaVar Vi 1)) 3,

VizAy (War + WngglVﬁl) — Vi1V 'Vaz s (War + W22V21Vﬁl) = 0

[Vig = Vi1 Vi 'Vao] Ag (Way + WaaVor ViT') = 0

Wa1 + W22V21‘/1;1 = 0
S = V21V1_11 = *W2_21W21

The second-to-last line follows from the next point. Note that the matrix V is invertible, one of its
terms is:

_ _ _ _ -1
Vi Var Vit 4+ Vig' = (Viz = Vi Vg Vi)
which means that a necessary condition for V to be invertible is that Vip — Vi1 Vs, Vag # 0.

8.3 Vaughan’s method for LQ approximation (following Ellen McGrattan’s
notation)

Recall the problem and disregard the stochastic part:

max (f;@ft + ﬁtRm> s.t. Tye1 = Az, + By

{@e, Tt 41}

Suppose that the whole sequence for aggregate variables z; is known. Noting matrix @ as:

o-|% @
QZ QZZ
the problem takes the form:
L (y;@yyt +270,Q.% +7,Q..% + ﬂﬂ@) s.t. Tpa1 = Ayl + A7 + By
Ut Yt+1
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Letting 2)A;11 be the multiplier on the restriction for 7,,, one gets:

QRE,: = _2§y)‘t+1
2Q, 71 +2Q. 201 = 2Xp1 — 24, M40
Upp1 = A, +AZ + By
From the first equation w; = —Rflﬁy)\tﬂ and lagging the second equation one period one gets (solving

for 7, from the third equation and A; from the second):

v+ = Ypp1 — Az + EyR_lﬁyAt'f‘l

|

Moo= Qu+Q.zZ+ A Nn

At the same same time it is known from market clearing conditions that:

Zr = Oy + Vi,
n K, [0 1 014 | 0 0
In K41 q = O1x6 g+ | 1 0 |
H, O1x6 0 1
Letting:
—_— ’ -1 ’ J— ’ -1
6= (1+wr'W.)) (0-wr'W,) T=(I+vR'W)) ¥
Where
_ | Wy
-]
Then: - -
z, = Oy, + U,

One can then replace for u; to get:
Z =0y, — VR 'B Ay
And then plug Z in the system above to get:
(Zy + ZZ@) Yy = Y41+ (ZZ@ + Ey) Rilg At—i—l
o= (@,+Q.8)7 + (4, - QIR 'B,) hix

Replacing 7, in the second equation one gets the system:

’

U = Ay + AT'BRT'B A
At = QAilyt—i-l + ((QAilB - @Z@) Rilgy +Zy) At-‘,—l

Where :

A=A,+48 0=0

And then in matrix form:

[ Yt } :H{ Y41 } H— QA_l A_lBR_lg

<

’

)y Ao = ((QA'B-Q.¥)R'B,+ 7))
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One can then use the Eigen-decomposition of matrix H (or the generalized decomposition of ma-
trices Hy and Hs) to get:
H=VAV™!

The eigenvalues of H don’t longer come in reciprocal pairs, but there must be as many eigenvalues
inside the unit circle as there are states. One can write the following:

7 Vit Vio Ay O Vit Vio -
Vo1 Vag 0 A Vo1 Vag

where all eigenvalues in A; are outside of the unit circle. It can be showed that S = VglVﬁl where S
is such that

/

U= — (R+§;SB)71§Z}SA@

. 7/ ~ 71 7/ ~
Let F = (R+B,SB) B,SA.
Then for the variables in level we have:

Uy = 7F?t
Ww+R Wi, = —Fi
iy + R [W;yt + W;zt} - _Fy
iy + R [W;yt W, (O + \Izat)} - _Fg,
iy + R [(W; + W;@) Ge + W;\Ifat} - _Fy
(1+rR ' Ww)a = —(F+Rr (W, +W.0))s
o = —(1+ R’1WZ'\I/)_1 (F+r (W, +W.e))g
Which gives the transition for the original variable 4; = —F'y; where:
F o= (1+R'W.9) - (F+r (W, +w.0))

The first row of F' gives the policy function for capital, the second one the policy function for labor.
The exogenous states evolve according to their VAR process.
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9 First order conditions - Distortions

An alternative to the problem above is to solve for the system of first order conditions. Consider
the original problem’s first order conditions. This method is simpler and uses the exact same tools
presented in section , the only difference lies in the problem the FOC are obtained from. Because
of the distortions the household has to take decisions given the prices and aggregate quantities, then,
after the FOC are obtained one can use the market clearing conditions to eliminate the aggregate
variables.

For the household the conditions are:

1
0 - 7_)\t

Ct
O = 71—Lht+)\t (lant)wt
= (Lt 7)) yAe + B+ ) E[Ag1 (re41 + (1 + Torg1) (1= 0)))]

From the FOC of the firm one gets:

T =« zHy o wy=(1l—a)z i\
t = K, t = '\ &,

Since all households are identical it follows that, in equilibrium:

0

Kt = I{it Ht = ht
Then the resource constraint of the economy is:
0= kta (Ztht)l_a + (1 - 5) kt — Ct — Gt - ’th_i_l

The exogenous processes follow:
Sy =Py + P1Si_1 + Xe

In equilibrium one can cease to use the aggregate variables, and the rental rate and wage can be
replaced into the household FOC, also A; can be eliminated, the the set of conditions is:

1/1 1 11—« ht -
= - S A=) (1— (2
O 1_ht+ct( Tt)( O[)Zt kt
Cty1 B Zeprhepn )
0 = —(14+7) L+ E a<M> + (1 + Turg1) (1 =6
(47 224 2 ( = (14 7ae) (1 =)
0 = ]ﬂ? (Ztht)lia + (1 - (5) kt — Ct — Gt - ’ykt+1
Sit1 = B+ PiSi+ e

In the above system the variable ¢ can be eliminated using the third condition, but its not necessary
to do so.

This is a system of 7 equations (S has dimension 4) and seven variables {c, h, k, S}. Define the
states x; = In ky, decisions d; = {In ¢, h:} and exogenous states S;. Then the system has 3 first order
difference equations for 3 endogenous variables and it can be represented with a function f : R'6 — R*
where the domain is all variables {{x,d;, St} , {Ti+1, det1, Sev1}}-

One can then linearize around the steady state of the model. This gives:

T 3 N .
f e, de, Sey Teqr, dig1, Se1) = As { X ] + A F [ d:i } + 218 + 2L F |:St+1:|

This is the same function obtained in equation (5.1). The policy functions can be then obtained
exactly as in section [l The only difference was in the construction of the non-linear function f.
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10 Simulations

10.1 Using LQ

Using the solution of the LQ problem one gets a law of motion for capital and labor , so that:

_ 1
ke | —_p | g,

Using the law of motion for §; one has:
St41 = P13 + X

It is then possible to simulate data for the model given that e; ~ N (04, I4x4) following the algorithm
below:

1. Set Inko = 0.
2. Draw a 4 x 1 vector of variables € from the standard normal distribution. Call it €.

3. Draw a 4 x T matrix of variables e form the standard normal distribution. Call the #** column
€t.

4. Generate §9 = Xeg.
5. For t =0,...,T generate:
In ]ft+1 —F /1\ 02><4
Aht B [ [ O4x2 P1 | ] lnAkt +{ by }etﬂ
St4+1 St

This provides time series for the seven variables included in the problem. Then define:

In ky+1n ks 2
kitzen ¢F1n ks, ht:ht+hss

_ elﬁz-i-ln Zss In gr+1n gas

Zt Tnt = Tnt + Tn,ss Tet = Txt + Tx,ss gt = ¢€

Once one has the time series for the (detrended) levels of the variable one can get any of the other
variables of the model using the definitions presented below:

vy = (T4y) (1 +72) ke — (1 —06) ky

oo af2)
t = Tt

zehe\
wy = (1—a)z (;J)
¢

Ti = Toe (L4 70) (L +72) kg1 — (1= 0) kt) + Tnpwihy — g
et = rike+ (1 — 7o) wehy + Ty — (14 7o) x4
di = Kk (zhy)' ™" —wihy — (14 7ar) by

Pry = di+kip1—ke
ve = (14 7u) ke
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10.2 Using FOC

Using the solution of the FOC one gets a law of motion for capital and labor (and consumption), so

that: _—
— Ink
Inkiz1=| A B t
mhoa= 4 ]| R
and :

In ¢ St

[ﬁi]:[c D][l@}

Using the law of motion for §; one has:
St41 = P13y + X

It is then possible to simulate data for the model given that ¢; ~ N (04, I4x4) following the algorithm
below:

1. Set Inkg = 0.
2. Draw a 4 x 1 vector of variables € from the standard normal distribution. Call it ¢q.

3. Draw a 4 x T matrix of variables e form the standard normal distribution. Call the #** column
€¢.

4. Generate 55 = Xeg.

5. For t =0,...,T generate:

In ko
Bt+1 A1><1 B1><4 l/\
¢ _ nk; 03x4
— = | Cax1 Daxa { ~ }4—{ > :|Et+1
lAnct O4x1 P1 5t
St4+1

This provides time series for the seven variables included in the problem. Then define:

kt _ 6ln ki+Inkss ht _ ht + hss cp = 6lnctJrln Css

— lnztnzg, In gy +1n ges

Zt Tnt = Tnt T Tn,ss Tet = Tpt + Tx,ss gt = ¢€

Once one has the time series for the (detrended) levels of the variable one can get any of the other
variables of the model using the definitions presented below:

Ty = (1 +’7n) (1 +'YZ) kiyr — (1 _5) ki

Ztht -«
ry = of—
t kt

Tr = 7o (L4 7) (L +72) kg1 — (1= 0) kt) + Tnpwihe — gy
di = K (zhe)' ™ = wihy — (14 7a0) by

Pre = di+kipr —Fe
ve = (14 7a) ke
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Part III
The BCA procedure

The following sections examine how to establish equivalence results between detailed models and ht
prototype model of Section [} These type of results are necessary to use the BCA procedure. As an
example a detailed version of the prototype model is used and equivalence is shown. The detailed
version presents news shocks and investment productivity shocks in the spirit of Jaimovich & Rebelo
(2009).

Once the equivalence result has been obtained one can use the prototype model (Section@ to study
the data and recover series for the wedges. Contrasting the type of wedges present in the data with
the ones implied by the model through the equivalence results is a way to validate the detailed model.
This validation does not only rely on the wedged recovered but also on the series implied by each
wedge (the wedge series can seem non-important and have a seizable effect over the other variables of
the model).

Section [T1] presents the detailed prototype model, section [I2] the equivalence results with the pro-
totype model of section [6] Then section [[3] shows how to recover the wedges from using data on
aggregate series and the prototype model. Finally section 14| shows how to simulate the series implied
by any given combination of wedges. With this the complete BCA procedure can be implemented.

11 Prototype economy with news shocks and investment pro-
ductivity

Consider the following growth model where variables are already detrended:

max E Z((l—i-’}’n)ﬁ)t (log ¢; + ¢ log (1 — hy))
{kty1,ce,z¢,he} t=0
s.t. 0 = reky + (1 — Fp) wihe + Tp — ¢ — (1+7~—xt)%

t
0:(1—6)]{3t+1§t—(I—F’yn)(l—F’}/z)kH_l

Where S; = Py + PS,_1 + Q& and ¢ is distributed iid N (0,I). The firm’s technology is Y; =
Ky (éth)lfa. The resource constraint of the economy is Y; = C; + X; + Gt. Upper case variables
represent per-capita aggregates. Sy = {In Z;, Tut, Tnt, In Gy, In 27 } and Ty = T Xi + Fopwi Hy — Gy

There are two types of shocks that affect the production and investment efficiency process, con-
temporary and lagged shocks. In particular:

Inz = (1—p)lnZs+p.nZ 1 +e+1
Mz = (1= po)Inst +polnzf, + e 407,
11.1 FOC
The FOC of an individual household are:
) 1 -
- (-7,
1-— ht Ct ( T t) e
A 147, 1-96
(1 +722) (1 +7n) (1‘*‘%)2*; = B(L+7) A1 (Tt+1+ ( 1;4;1)( ))
i t41
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From the FOC of the firm one gets:

= LN we=(1—-0a)z At
t = K, ¢ = t\ 7k,

Since all households are identical it follows that, in equilibrium:

Kt:kjt Ht:ht Xt:l't

Then the resource constraint of the economy is:
o~y —a 1 ~ 1
kt (Ztht) + fo (1 —5) kt = Ct+Gt—|— Zj(lﬁ"}%) (1+7z)kt+l
i t

The exogenous processes follow: ~ ~ y
St =Py + P1Si-1 + Qe

The FOC are then:

-m) -z ()",

= — 11.1
0 Ct 1-— ht ( )
~ -« ~ ~
Ct41 ks 28 zie
_ _ 1 -
0 = ko (Ghy) o4 Bk 23”” ke g, (11.3)
i

11.2 (Non-Stochastic) Steady state

The (non-stochastic) steady state of the model can be obtained from the conditions above. First the
exogenous processes satisfy:

- -\ —1 .
Ss = (I - P) By
From the FOC of the household:

1 ~xss 1 z 1 ~acss 1-
(1+7 1( +7:) _ B<rss+( +7 m)( 5))
ZSS ZSS
A+ %) (A7), o (Zashss )T
o 5 (1-9) = « T
1 +%wss (1 +7z) _ (1 _5) ﬁ _ gsshss
az¥, I6] zE N kss
~SShSS
A= sts

This implies:
~SShSS - ~ —
Wss = (1 - Oé) 285 (Zk) = (1 — Oé) ZssAl «

One can set the value of G, so that is some given percentage of the output in steady state, that
way: Gss = ¢9Y95 = ngk?‘s (gsshss)l_a-
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From the resource constraint consumption satisfies:

x
88

—a kss ~
Css = k’?s (2sshss)1 + (1 -6 (1+’7n) (1+7z)) o _Gss
kss

= (1 —oy)kgs (ésshSS)lia +(1=0—(1+vm)1+7)) o
1_5_(1+7n)(1+72))> k

= (a-opabes(

25
= Aok
Replacing one gets:
C ~
1%;; = (1_Tnss)wss
¢A2kss = (1 %nss) Wss (1 — hss)
wA2kss + (1 - 7~—nss) wsshss = (]- - %nss) Wgs
1 - 7~_nss wssA ~
<1/)A2 + (2)1> kss = (1 - 7—nss) Wss
1- ans ssA -
s = [?/JA2 " (T)“’l} (1= Fse) s
Zss
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12 Equivalence Result

In order to get the equivalence result consider first three special cases of the prototype economy of last
section. In all of them the labor, investment and government spending wedge will be turned off, so
that Tt = Thss, Tat = Tass, Gt = Gss. The cases to be presented are:

1. There are only efficiency shocks but they are perfectly forecastable one period in advance, that
is:
Inz,=(1-—p,)InZss+p.In2_ 1+ 111 zf = 2%,
2. There are only investment efficiency shocks that with no lagged shocks:
Inzf =(1—py)Inzl, +p.Inzf | + € Zp = Zss
3. There are product and investment efficiency shocks with current and lagged shocks:
Inz, = (Q—p)InZgs+p.InZ 146 +vig

Inzf = (1 —p)Inzi +plnzf |+ +v7,

12.1 News shocks in efficiency
Let z; = 2 and 7,4 = Tnt. From equation (6.1)) of the prototype economy one gets:

(1= 70) (1= ) 2 (5 " (1= Fur) (1= 0) 2 () ”
= E— =
Ct 1-— ht (& 1-— ht
Which is equation ([11.1)) of the news economy.
Let
~ 1—-0)ki—(14+v,) QA +v)k
G = G PB4 90) (1 492 )

z
Then from equation (6.3) of the prototype economy one gets:

k(b)) ™+ (1= ke = e+ G+ (14 70) (1+72) ke

- 1_6141 ~ 1 n 1 zk;
k?(gtht)l +Q = Ct+Gt+( +7)( +’Y) 141

xT xT
Zi 2

Which is equation (|11.3]) of the news economy.
Finally the investment wedge is defined implicitly by:

Ct &t+1 kt+1

At7)A+v) _ B a(zmﬁm) + (L + 7ge41) (1= 0) (12.1)

Where {Et, iLt, l;t} are the equilibrium allocations of the news economy and {z;} is the series the

efficiency wedge in the prototype economy.

The reason the investment wedge is not given by 7, = % — 1 as one could have imagined from
the household’s budget constraint is that the agents in the news economy are taking expectations over
future values of Z and since the one step forecast error is zero always they take different actions when
facing Z and z, there is forecast error involved in the one-step ahead forecast of z. 7,; must guarantee
the equivalence of both models.

This shows that a news shocks presents itself as an efficiency and investment wedge leaving unaltered
the labor wedge. The change in the government wedge only depends on the value of the investment
efficiency wedge, note that if ¥, = 1 then G, = Gy.
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12.2 Investment efficiency wedge
As above its clear that if z; = Z; and 7,y = T,¢ then equations (6.1) and (11.1)) are identical. In

the same way the relation between Gy and G; (and zf) remains unchanged so as to guarantee that
equations 1) and lj are identical. Finally if 7,; = £7=t — 1 one gets from equation |)
t

. -«
(I+7)(1+7) B a(“ﬂ“v + (14 Torgr) (1-0)

Ct Cy1 ki1

Which turns into:

) L 0 () (2 me) )

zf Ct Ctt1 ki1 Zi

Which is equation ([11.2)). Then both economies are equivalent.
An investment efficiency shock presents itself as both an investment wedge and a government
spending wedge.

12.3 News in efficiency and investment efficiency wedges

From above when both wedges move and are subject to news shocks one can define all the wedges in
the same way they were defined when there are only news shocks to the efficiency wedge. In this case:

2t = Zt Tnt = Tnt

Gy = éw—“_ﬁh_“+%”“+%M”“Hu—®h—u+%ﬂﬂ+%mwu

xT
Zi

And 7, is defined implicitly so that equation (12.1)) holds. Note that there is no change in the labor
wedge.
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13 Wedges

Once one has estimated all the unknown parameters of the model it is possible to recover the wedges
from observed data. The estimation is discussed below in Part [Vl From national accounts one has
access to output (y;), consumption (c;), investment (z;) and labor (hy) series for periodst = 1,2,...,T..

First one has to recover the capital series using the investment. Let k1 = kgs (1 4+ v,) (1 + 7,), then
one can define the capital series recursively as:

k;tJrl =X + (1 —(5)kt

Note that these series are in aggregate terms and have not been detrended to eliminate population or
technology growth.
Then the government wedge can be obtained as:

gt =Yt —Ct — Ty
and the efficiency wedge as:

Yt
kg ((1 +7.)" ht) o

Zt =

and the labor wedge as:

Yoy .
A=k (@ =a)ke (1472 2) A

Tntilf

The investment wedge is treated differently and is recovered from the log-linear approximation of
the model (this allows to compute the expectation in the intertemporal first order condition.
The intertemporal condition is:

h 1o 14 7p) (147,
o - 5|2 (a(zm m) +(1+MH)(1_5)>]_( 7at) (14 72)
Ct+1 kt+1 Ct
0 = E, [667 Inceyr (ae(lfa)(lnz¢+1*lnkt+1)ht1;104 + (1 + 7o) (1 — 5))} — (1 +72) 1 +72) e~ Inc

0 = E[A-B

For convenience consider the linear expansion of the first term only:

A = oo (aell - b plog (14 7y) (1= )
zh\ ¢ A T - 13 .
A = g [— (a (k) + (1 + Tm) (1 — 6)) Ct+1 + (1 — Oé) « (k) (Zt+1 — kt+1 + h 1ht+1) + (1 — (5) Ta:t+1‘|
1+ xss 1+ zZ) A zh e A 7 —17 ~
A = g —( T ;( i )Ct+1 + (]. — a) « <k> (Zt+1 — ktJrl + h lht+1) + (1 - 5) Tmt+1]

The second term yields:

(14 7at) (1 +72) e e
(1+ ’72)7@ _ (1 + Tass) (1 +7Z)é

~ xt 1

Cc Cc
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Joining:

0 ~ FE
! (14+72) k

p ((1 —a)a (Zh) o (2t+1 — ke + hiliLtH) +(1-9) 72xt+1>‘| — Tat + (14 Tpss) (6 — By [(2341)

Finally one can use the solution of the model to obtain the current investment wedge since:

L, {l%t+1] = ki
Ei 2] = Pi5
By [Tetv1] = Pss
E; [EtJrl] = leftﬂ + D P3;
Eilérr1] = Chkeyr 4+ DoP3,
Finally note that:g
Pis; = PaZi+ PioTot + PisTat + Piage

And then: .
DjP3; = " Dji (Pa2 + Pofut + Pistar + Puadt)
=1

Replacing the previous results on (13.1) one can then solve for 7,::

(1+7.)

+ (1 + szs) (éf — CQ]ACt_i_l — Dgpét)

. h -« R . - A A A
Tet = ﬁ ((1 — 0[) « <Zk> (Plst - kt+1 + h ! (Clkt+1 + D1P5t)> + (]. - 5) P38t>

o= i (- (3) T ann) s a-aa () 0mte -y i)

+ (14 Tuss) (6 = Cohuss — DaP3,)

l—«
ot ( p ((1 —a)a (’Zkh) (Py+h™'DyP) + (1 4) P3> — (1 + Toss) D2P> 8

Q

Q

(1+172)
+ <m (Zkh) ) (hﬂC’l - 1) — (1 4 Tass) Cg) lActH + (1 + Tass) &

%

B(l—a)a [zh\'"™° .
7A-act F<§f + <(1‘i‘7z> <k/’> (h7101 - 1) - (1 + Tacss) CQ) kt-‘rl + (1 + szs) ét

%

Tt

e

l—o
(1+’7 ) A ) (h*lcl —1) —(1—|—sz$)02> kt+1+(1+7—xss)ét‘|

-1, Iz +ToTpe +Tage + (

Where:

. L e @ -« . B ) )
F_<(1+vz) <(1 ) <k> (Pr+h7'D1P) + (1 6)P3> (1+;css)D2P>

Note that in order to apply this formula is necessary to detrend, log and express in deviations form
steady state all the series.
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14 BCA

Once one has series for all the wedges one can form a vector of states §; = [, Tnt, Tut, gt]', The BCA
procedure aims to determine the direct effect of each wedge, while separating it from the forecast
effect. To do this consider the following variant of the prototype model in which the variables s; and
[2¢, Tnt, Tut, gt) are separated. Variables in s; will be regarded as exogenous states for the model and
their evolution will be given by: §;.41 = P38; + Qei1. The wedges [z¢, Tnt, Tut, g:] Will be treated as
part of the controls vector d and will be determined by:

A MO0 -0
Zt .
Tl o= | 00N 3
ot A3 0
gt 0 Y

Where A is a diagonal that determines which of the states in s have a direct effect over the model and
which are only used for forecasting other states. In particular the prototype model has A = I, since
all wedges are active. If the BCA procedure is performed to establish the direct effect of the efficiency
wedge alone then A\; = 1 and Ay = A3 = A4 = 0. This implies that although all states in s take their
recovered values only Z; is affected by them.

The set of equation to linearize is then:

A=) (=) (32) ©

0 = — 14.1

Cy 1-— h’t ( )

[P 14 70e) (14 .
0o = P (a (zt“ t“) +(1+Tmt+1)(1—5)> _ (47 (A +7) (14.2)
Ct+1 eyt Ct
0 kS (zehe) ™+ (1= ) by — i — Gy — (1 4+90) (1 4+ 72) ks (14.3)
0 = 2z —\is) (14.4)
0 = Tot— Nosi (14.5)
0 = 7Tu— )\33? (14.6)
0 gt — Mast (14.7)
Where the only exogenous states are [s%, ceey sﬂ.

The decomposition is then obtain in the following way:
1. Obtain the full set of parameters of the prototype economy. (This involves maximum likelihood).

2. Recover the capital series.

(a) Set an initial value k1 = kg5 (1 +v,) (1 +72)
(b) Tterate forward: kir1 = z¢ + (1 — 0) ky

3. Recover series for all wedges:
(a) gt =yr —ct — ¢

1—a
— Yt
(b) = = <k?((1+’¥z)tht)1a>

_ Per
(1=he)(1—a)kg ((1472) 02 ) "Ry ©

(C) Tnt = 1
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A ~ A~ A~ —a)a [z -« _ 7 ~
(d) Tyt = ﬁ {Flzt + ToTnt +Tags + (5((11_"_772)) (?h) (h 1y - 1) - (1 + szs) CQ) kip1 + (1 + szs) Ct:|

11—«
(1:%2) ((1 —a)a (if) (Pr+h~'DiP) +(1-0) P3> — (14 Tyss) Do P

4. Re-label the wedges as:

St ét
0 | T
8 | | T
5t 7

5. For the effect of the i" wedge do:

(a) Set A\; =1 and A\; =0 for j # 0.
(b) Solve the linear approximation to the set of equations ((14.1)) to (14.7)) to obtain a solution
of the form:
]A€§+1 = Aiiﬂt + Blgt
di = C'k,+D's
Where d = [h,C,Z,Tn,Tz,g]/.
(¢) Let k1 = 0 and &, be given by the series defined in part (4).

(d) Use the policy function to simulate variables.
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Part IV
Estimation of the model

The objective is to estimate by maximum likelihood the parameters of a model whose solution can be
represented as a VAR process. Since not all of the variables in the VAR are observable (for example
the wedges) the parameters that form the VAR matrices cannot be estimated directly. The Kalman
filter allows to overcome this by embedding the VAR in a state space system.

A state space system is conformed by a transition equation and measurement equation. Two types
of variables are considered in the system, “states” and “observables”, this “states” are not the same thing
that was called a state when solving the model, here the “states” are -potentially- unobserved variables
that affect the observable variables. The measurement equation describes the relation between states
and observables, while the transition equation describes the dynamics of the states.

As will be shown below one way to proceed is to use the VAR representation of the model’s solution
to form the transition equation and then relate those variables to observables using the measurement
equation.

The Kalman filter allows to recover series for the unobserved variables and also generates a like-
lihood function for the model, one can then use this likelihood function to estimate parameters of
interest.

The following two sections cover the construction of the Kalman filter from the solution of the model
(the linear policy functions) and then how to use the Kalman filter to obtain the model’s likelihood
function.

15 Kalman Filter

15.1 Model’s solution

Let k; be a vector of the endogenous states of the model, in the prototype economy of homework 2
the only endogenous state is capital but k; is in general a nj x 1 vectorﬂ Let s; be a vector of the
exogenous states of the model of size ngy x 1. Let d; be a ng X 1 vector containing the model’s decision
(or control) variables and the prices, for example labor, consumption, wages, etc.

The solution of the model is formed by three equations:

/Aft+1 = Amfft + B4
dAt = Cmift + Dy
Si41 = P54 Qe

Where & = 2 — 255 and, for simplicity, it is assumed that e ~ (0, I) is of dimension ns x 1, this is not
necessary since matrix ) can be adapted for other sizes of e. The above equations can be obtained
by solving the linear quadratic approximation to the original problem or by solving the first order
approximation of the original FOC of the problem.

Note that usually d contains only one or two decision variables (h and c¢ for example), and that the
other decision variables (like investment and prices) have been replaced out of the system using their
definitions. This definitions can be (log) linearized to obtain a system like:

CZ? = Oé1i€t + 042/%,54.1 + agcit + OL4E {CZHJ} + Oé5§t + OéﬁE [§t+1]

Where d? is a vector listing all other decisions and prices that one wishes to include in the d vector,
and «; are matrices of the right dimension. Once this is done one can replace for the solutions above

1Depending on the solution method k¢ = Ink; or k; = k¢, the same thing goes for all the other variables.
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to get:

ISy
N
I

(Oél + g A, + 0&3Cm) I%t + (045 + as B, 5 + Oé3Dm) St + au B |:Cit+1} + agF [§t+1]

(0[1 + O[QAm + Oégcm) ]Aft + (0[5 + O[QBm§t + 0[3Dm + OZGP) §t + CV4E |:Cmi€t+1 + Dm§t+1

= (a1 4 azAy, + @3Cn + a4Cry A ki + (a5 + a2 Bpdy + asDyy, + a6 P + ay (Coy By + Dy P)) 54
This gives a dynamic for d? as a function of k and s and then can be stacked below d in the equations
above.

When solving the linear approximation to the FOC of the problem one can omit the above calcu-
lations by including the (non-linear) definitions of the variables in d? as part of the FOC system. The
solution of the model will then include the dynamics of all the variables in d? as part of d with no need
of any extra computations.

The solution to the model can be then express as a VAR by first noting that:
02t+1 = Cmfft+1 + Dpdi41

= Cm (Amift + Bmgt) + Dm (Pgt + Q€t+1)
= OmAm]%t + (OmBm + Dmp) ét + DmQ€t+1

Which gives:

];itqtl Am OnT Xng Bm I%tJrl OnT XN g
dt+1 = CmAm Ond XMg CmBm + DmP dt+1 + DmQ €t4+1
§t+1 Onb XNy Onb Xng P §t+1 Q

’

For ease of notation call x; = [l%;, d;, §;} and then define:

Tir1 = Axy + Berpr

Where:
Am OnT XNng Bm OTLT XNg
A= | Chln Onyxn, CmBm+ DnP B = D,,Q
Ons XNy Onb Xng P Q

15.2 State Space

As mentioned above all the model variables (endogenous states, exogenous states and decisions) are
treated as “states” of the state space system. The VAR obtained above forms the transition equation
of the state space since it characterizes the dynamics of the states of the model. The other equation
that completes the state space is the measurement equation:

Yy = Oy +wy

Where y, is a vector of size n, x 1 of observed variables and w, is a vector of (possibly) serially correlated
measurement errors that follow:

Wi41 = Duw; + MNt+1 ne ~ iid (0, R)
Matrix C' is determined by which variables are included in the observable set, usually it only has

zeros and ones that link an observed variable to its equivalent in vector x (for example consumption

or GDP).
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For simplicity in what follows define an auxiliary variable 7, = y¢+1 — Dy so that:

Yy = Y41 — Dy

Criy1 +wip1 — D (Cxp + wy)

C (Azy + Bery1) — DCxy + (wig1 — Duwy)
(CA — DC) xy + CBeépy1 + nya1

Yy, = Cxy + CBery1 + ne41

Where C = CA — DC. The state space system is then:

Tep1 = Axy+ Bega
Yy = Cx+CBeq1 + miq1
wit1 = Dwy+ 141

Using this system one can derive formulas for the predictions of z; given the observed variables y; (hence
7,) and an initial guess for the value and variance of x;. These predictions are obtained through the
Kalman filter. Note that all of this is done given a set of parameter values, and the subsequent model
solution for those values.

15.3 Kalman Filter
To obtain the predictions first define the projection of Y onto X as:

EYIX] = E[Y]+ 34,35 (X - BIX])
Yoo = E|(X-EBX)(X-E[X)]
Sy = E|(Y-EBY)(X-EX)]

This formula is valid for any variables Y and X. The idea is to apply it to predictions of ¥, given its
past values 7° ! and a guess for the initial value x. The reason that only an initial value is needed is
that further predictions of = are obtained given the observations of 7, so given the information in 7 ~*
there is no extra information in the predictions of x.

Define the innovation (or prediction error) as:

U = Y- E [@t@til’xo}

= U — E Wxt +CBegy1 + 1|yt xo}

= 7, — CE [wt@t_l,xo] - F [CBetH + nt+1|§t_17m0]

= 7, — CE [a:t@tfl,xo]

= Y- 6ﬁ_1

7, = 0%, +

Where i’i_l is the prediction for x at time ¢ given information up to time ¢ — 1. This gives an equation
that relates the observed variable 7, to the predictions of 2 (which are observable) and the innovation
term. Given a distribution for the innovation term this equation can be used to construct the likelihood

function of the model.
For the following results note that:

E[Y|X1,... X)) = E[Y]+ Y (E Y] X,] —E[Y]) X L X,



Also note that since {ytfl, :co} spans the same linear space than {utfl, xo} and that the elements in
the latter set are orthogonal to each other by construction (since innovations are uncorrelated with
each other. Then:

x§+1 = E[$t+1|§tax0]

= F [J:t+1|ut,x0]
- K [p1|ut, o] + (E [xt+1|ut71,x0] - E [xt+1]>

= Elzy|ug, 20l + E [Az, + Begyq|ut™1, xo| — E [z441]

E [p1|ut, o] + AFE [gct|u sco] — Ex41]

(B [e41] + Extﬂufzu,}u, (ur — E [ug])) + AT — Blzyyq]
= A2+ 20 S0

ufut

This equation gives a law of motion for the prediction sﬁi_l, to complete the system one needs the
covariance matrices Yz, v, and X,,,,. For future reference ¥, = Q4.
The expression for the matrices are:

E$t+1ut = cov [xt-i-l: ut]
_ Sat—1
cov [Azy + Beyy1, §, — Cif 1]

= Ccov [AIIL + B€t+1 ; C (l’f — l'f ) + CB€f+1 + 77f+1]
= B[(An+ Byt — Eloa)) (C (00— 27Y) + CBevys +mess — B ) |
C

- Ekﬂw—Ewm+an<<w—ﬁ1»ua&HHmHmJ

= F _A (SCt At 1) 7i| + F [B€t+1 (SCt — i’iil)l 6/]
+E { (e — E[24]) (CBetgr + mi41) } +E {Bﬁt+1 (CBetyr + Tlt+1),]
= F _A (l't —i’i 1) 7:| + BE [€t+16t+1]B,OI

= A(E [<xt—Ew>(xt—f:i Y])e + BB

Where, using the fact that 2i~* is unbiased so that E [z;] = E [mi 1] and that it is also orthogonal to
the prediction error so that £ [ it (z1 — - 1) ] =0:

Bl Bl (m-at) ] = Blam—d™) ] - BBl -2 ]
= Bl(m—a" 437 (w37 | - Bla B [(m— a7 |
= Blln—a) (m—af ) | + B[ @Y ]
= B [(w— 3" (w0 -3 1)'}
= Y

Where ¥ is the variance of the one step prediction error for z;. Then:

5 — A%,C + BB C

Tt41Ut
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For the covariance matrix of the forecast error u;:
Qt = F |:(6 (’It - i’i_l) + OBEtJ,_l + 7]t+1) (6 (Z’t — ’i’i_l) + CBEt_;,_l + 77t+1) :|

Ox,C +CBB'C' +R

Letting
Ky =Y. ,0, ! = (Azté + BB’C’) 0!

This is referred to as the Kalman gain, it determines how much of the forecast error of the observable
variables is used to update the prediction for x, note that if this error is too volatile (big 2) then
the forecast error is not used as much, in the same way the more correlation is between x and u the
information in u becomes more relevant to update the prediction of x.
One gets the law of motion for the prediction of = given known parameters and the variance of the
prediction error for x (X;).
it = AT+ Ky

To complete the system one needs to determine 3;. Note first:

T — 3y = (Azg+ Beyr) — (A3 + Kyw)
= A (xt — ﬁi_l) + Bery1 — Ky (@t - éﬁ_l)
= A (xt — ﬁifl) + Bepyr — Ky (6% + CBér1 + ney1 — 6‘@71)
= (A-K Q) (2 — &) + (B — KiCB) €141 — Kyt
Then:
S = B [(oe1 = ) (2o - #) |

= (A-K.C)% (A-KC) +(B—KCB)(B— K:CB) + KRK,

To further simply it note:

’

(B — K,CB) (B — K,CB)

(B - K,CB) (B’ - B/C/K;> K.RK,
= BB - K,CBB —BB'C'K, + K,CBB C'K,

And:

’

(A— KC) % (A - K,C) = A A — A%,C K, — K,C% A + K,C%,C K,
Replacing gives:
S = AS,A BB — (Azté + BB’C’) K, - K, <€ztA + CBB') K, (ézﬁ +CBBC + R) K,
= AN A + BB - %K, - K%, + KK,
= AN A + BB —%,,9,'S,, — SouQ 'S, + KUK,
= AN A + BB — 5., 'S, — Sou 'S, 4+ Sea 101
= AN A + BB - %,,0,'%,,

Using the definition of 3., and £2; one gets:

Sy = A, A + BB — (Azﬁl + BB’C’) (ézf’ +CBBC + R) B (Azf' + BB/C’/)/

This is a recursive formula for 3. With this the Kalman filter is completely characterized.
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15.3.1 Relevant equation Kalman Filter

The relevant equations of the system are:

Q, = Cx.C +CBB'C'+R
K, = (4T +BBC)o;
Ut = ?t — éi‘i_l
i, = A+ Ko
S = AS,A + BB — (Azté' + BB'O’) 0t (Azﬁ’ + BB’C’)

The system describes a recursive system that can be used to construct predictions of the unobserved
states x by starting with a guess for 2, 1 and . With that guess one can built Q;, K, u; and then
&t 41 providing a series for predictions of z. It allows to construct ¥;; that, along with &t 11, enables
to repeat the procedure for the next period.

The problem of what to use as initial guesses can be solve by setting 1 = 0, its unconditional
mean, and Yy = 3 where ¥ is the solution to the matrix equation:

S — ASA + BB - (AW’ +BEC) (W +CBBC +R) B (AW' v BB,C’),
Or to the system:

Q = OSC +CBBC +R

’

ASA + BB - (A%’ + BB’C’) a! (A%' n BB’C’)

[\
I

Doing this also eliminates the first, second and last step of the iterative procedure described above
since one gets: O = Q, ¥y =¥ and K;, = K = (A% + BBIC’/) 571 for all periods. The matrix

equations above can be solve by iteration starting from an arbitrary positive definite matrix.
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16 Likelihood function and estimation

16.1 Likelihood function

Under the assumption that u; ~ N (0,€)) and noting that u;, L u; for all ¢ # j one has that u; is
independent of w; (since in the normal distribution no-correlation implies independence. From the
Kalman filter procedure one obtains a series for {u;} any given u; has PDF:

Fug|D) = (27 |Q]) "2 e~ 3w Mu

Where || is the determinant of matrix Q; and I' is a vector with all the parameters of the model.
The likelihood of the sample is (by independence):

T
L(T|u) = Hf (ug|T)
t=1

The log-likelihood function is:

T
1 1 1 1
= ; (—2 In (27) — 3 log || — itht lut)

Note that u,€; *u;, is a scalar and hence u;Q; tu; = tr (utﬂ;lu;) =tr (Q;lu;ut>, where tr (+) is the
trace operator. The negative of the log-likelihood is then proportional to:

nl (T) o i (108; 2] + tr (Qt_luLut))
t=1

This function can be minimized to find the maximum likelihood estimator for T.

16.2 Estimation Procedure

The estimation procedure is the following:
1. Set a value for parameters I'y (this includes P, Q,C, D, R).
2. Solve the model to get: A, By, Cm, D), and with them A and B.
Solve for the steady state of the kalman filter 3, Q and K.
Use the Kalman filter to get a series for {u;}.
Evaluate the negative of the likelihood function nl (T'y)

Update to I'; (the computer should give you this).

N ook W

Repeat (2) to (6) until convergence in T
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Part V
Signal extraction problems

The objective of these Sections is to show the solution of (linear) rational expectations models with
imperfect information. In them agents face uncertainty about the realization of exogenous shocks and
learn about them through unbiased signals. First a static model of consumption and leisure choice
is presented and solved manually. The complete information is covered first as a benchmark, then
imperfect information under iid and AR(1) shocks. Then the general solution is considered for two
special cases: when all decisions are taken with the same information set and when different decisions
use different information sets.

17 A static problem

Consider an agent that has to decide how much to work and consume given a level of productivity.

l1-0o
max

1_J+xln(1fn) s.t. ¢ =an®

Without uncertainty the solution is given by solving the following set of equations:

X +c%aan®t = 0
1—n

an®—c = 0

One can linearize these FOC around an arbitrary point and solve them:

%
o

— sniv+ ¢ Taan® !t (—oé+a+ (a — 1) n)
(1—n)

a+an—¢ = 0

Which using the non-linear FOC:

1 n—ot+a+(a—1)n ~ 0
a+an—¢ ~ 0
Finally:
n.o A o N o
- n—o(a+an)+a+(a—1)n = 0
1—-n
—7 n+(l—o)a+(a(l—0o)—1)n = 0
—-n
I-n)(l-0)a+(a(l=n)(l-0)—1)n =~ 0

The solution is:

A 1-n)1-0)
l—a(l=n)(1-o0)
¢ = a+oan
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18 A static problem with signals and iid shocks

Now suppose that at the beginning of the period n is chosen without complete knowledge of a. The
agent receives an unbiased signal about a. Suppose that Ina ~ N (07,‘{_1) and that the signal is
Ina®* ~ N (ln a, st_l). After n is chosen the agent observes a and consumes. The problem is now:

l1—0o
max FE 1 +xln(1—-n)|a® s.t. ¢ =an®
-0
The FOC are:
—ﬁ +E[c?aan® a®] = 0

an®—c = 0

As before one can linearize these FOC around an arbitrary point and solve them:

—%nﬁ +c %aan®* 'E[(~oé+a+ (a—1)n)|a®] ~ 0

(1-n

at+an—¢ =~ 0

And by canceling terms:

Guess that the solution has the form:

fL:’de ézﬁlds-l-’ﬂ'Qd

HEEEk

This guess captures the fact that only the signal is available to the agent when choosing labor, but
both the signal and the realization of the productivity are available when choosing consumption.
Using the second equation:

o D

(I1-m)a+ (ay—m)a® = 0

This equation gives:
m =1 Ty = Qv

Using the first equation and replacing by consumption:

((a—l)— lﬁn>ﬁ+E[(—Ué+d) @] = 0
(mn&)mm(a(mmw@ e’ = 0
((a—l)— 1fn —aa>ﬁ+(1—0)E[&|as] = 0
(1=n)Q-0)a—1)n+(1-n)(l—0)FElale®’] = 0
By bayesian updating one gets: .
E[&‘&S] - /i+sf<as a



With this and n = va®:

((1_n)(1_0)o‘_1)7&S+(1—n)(1—0),{j—snsds =0
<((1—n)(1—0')0é—1)’y+(1_n)(1_0)Hi(el‘is)ds - 0

Finally:
— (l_n)(l—(f) Kg
v= 1-(1-0)(l—n)ak+ ks

Note that when the signal becomes arbitrarily good (ks — c0) the solution converges to that of perfect
information:

' — (1-0)(1-n)
nshgloofy - I-(1-0)(1-n)a
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19 A static problem with signals and AR(1) shocks

Now suppose that a follows an AR(1) process so that:
Ina=plna_ +e¢ GNN(O,K_l)

In the perfect information case the solution does not change since the problem that the agent faces is

static and the previous the current value of @ is known when taking decisions. If there is imperfect

information over a one has that the value of a_ is known when choosing n, as well as an unbiased

signal a® such that Ina® ~ N (ln a, Hs_l). After n is chosen the agent observes a and consumes.
Given the information structure the agent enters the period with a prior over a given by:

Ina~ N (plna,,k_l)

This information is updated with the signal to get a posterior distribution over a given by:

kplna_ + ksIna® 1
Inag ~ N k+ ks
na ( =R e+ ))
The problem is as before:
Cl—a
max F L —&-Xln(l—n)as,a_} s.t. ¢ =an®
-0
The FOC are:
X —0 a—1|,s
—m-i-E[C aan® ta®,a_] = 0
an®—c = 0

As before one can linearize these FOC around an arbitrary point and solve them:

%
=

fﬁnﬁ +c%aan® 'E(—cé+a+ (o —1)7)|a®,a_]

And by canceling terms:

Guess that the solution has the form:

= y1G- + 72a° ¢ =Tm1a_ + ma® + m3a
. a_
nl_|m 72 0 P
é 1 uw) T3 d

Using the second equation:

This equation gives:



Using the first equation, and replacing consumption:

<(a—1)—1fn)ﬁ+E[(—aé+a)aS,a] = 0
((0_1)_lfn>ﬁ+E[(_aa_mﬁ+a)aS,a_] =0
((a—n_1fn_aa>ﬁ+(1_a)E[aa5,a_] =0
((1—n)(1—a)a—l)ﬁ+(1—n)(l—a)(kipksd+kisk8&é> ~ 0
9(71&+”2&8)+(1_”)(1_”)<kipksd+kisksds> — 0

kp
+ ks

>d_+<@72+(1n)(10)kk5 )&5 =0

<@71+(1n)(10)k + kg

Finally:
 (1=n)(1-o0) kp  (1=n)(1-o0) ks
NI 0-nl—o0)ak+tk P 1-0Q-nd-0)ak+k
Note that when the signal becomes arbitrarily good (ks — o) the solution converges to that of perfect
information:

(1-n)(1-o0)
1-1-n)(l-0)«

lim v =0 lim v =
Kg—>00 Ks—>00
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20 Incomplete information - General solution

Consider a general problem where x denotes the vector of endogenous state variables, d the vector of
control (or decision) variables and z the vector of exogenous state variables. Suppose that:

241 = P2 + €141

and that the current value of Z is not observable to the agents. Instead agents observe past values of
the exogenous variables Z_ and a contemporaneous signal z°. The exogenous states of the solution are
then S = [2_, 2°] .
Assume that ¢ %4 N (0, 05_1). Then, conditional on z_ one gets 2 ~ N (pé_, oz_l), this is the prior
distribution of the agents, that is, prior to observing the signal. Letting p = 0 one gets to the iid case.
Agents receive a (common) signal z° of the form:

35 =24 ¢€° e~ N (0,0;")
such that 25 ~ N (2, a;l). Then it follows that, given z_ and z°, the posterior distribution of z is

g

o -
z~N<a+asplnz_+ o In 2%, (o + as) 1)

when z is a scalar. This formula can be generalized for the multivariate case.
Call & = 24~ the relative precision of the signal. In the linear model only the expected value of
z is relevant.

Note that the system of FOC is obtained as a function of z and not z°, it can be expressed as:

T |z L S A
f @, de, St @41, dpyr, Se41) = Ag [ d: } + A E?° [ sz: ] + Z1E° (2] + ZoE® [Z144]

The objective is to find laws of motion of the form:
fp1 = Ady+ BS,
dy = Ciy+ DS,

As before, by certainty equivalence, matrices A and C' can be obtained from solving the non-
stochastic model, the solution is:

A= szivgl C= vdxvgl

where: A= —A;'A; and V and Q are given by the Eigen-decomposition of A = VQV L.
Knowing A and C' its possible to find B and D by replacing on the FOC.
The expected value of Z conditional on Z_ and 2° is a linear function. In this case:

sz 28 ap Qs g a o Z-
E[Z‘Z—vz]:a+asz—+a+asz :[ a+gs atag ] |: 38 :|
In what follows Ay = [ aigs a-?-fxs ], this matrix represents the linear operator E® [-]. Finally note
that N
E® [Z41] = B° [E [Ze4a]2]] = E® [p2:] = pA1Sy
and that:
E* [ét] ] { Algt ] { Algt } [ Algt ] { Ay } G q
Es S = ~s = R R = . = A = S = A S
(St { E® [244] E® [E [£41]2041]] B [241] pA1S; pAy |70 T
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Using this one gets:

A, [ fzt ] + Ay [ f{“ ] + Z1E® 2] 4 Z2E® [2i41]
t

t+1
= { Ciy aj:D,SA't ] +A2Bq [ C’:%Hfz:bgtﬂ } + Z1M Sy + Zophi Sy
Ay [ C’;i"tf—tDS’t } + Ay C (Ai;fthji DALS, + ZiM Sy + Zophi Sy
. [ CfctitDSt } e [ CA#, ffé;i%m)ét ] (2t Zap) WS,

Letting Ay = [A1, A14) and Ay = [Aa, Aag) one has:

sy + Arg (C’i:t n DS’t) + Ay, (Aj;t n BS}) ¥ Aoy (CAa}t + (CB + DAs) S*t) F(Z1 + Zap) A1 S

(Alx + AldC' + AQ;EA + AQdOA) .ft + (AldD + AQxB + A2d (CB + DAQ) + (Zl + Z2,0) A1
(Are + A1aC + Agp A+ A2gCA) &y + (A1aD + (A2 + A2qC) B + A2g DAy + (Z1 + Zap) Ay

At this point it can be checked that:
Aig + A1qC + Aoz A+ A3qCA=0
And then B and D are obtained such that:
A1aD + (Agy + A2qC) B + AsqgDAs + (Z1 + Zap) Ay = O3xp,

Vectorizing:

vec (A14D) 4 vec ((Azz + A24C) B) + vec (AagDAs) + vec ((Z1 + Zap) A1)
(In. ® Arg) vee (D) + (In., ® (Asg + AsaC)) vec (B) + (A; ® AQd) vec (D) + vec (Zy + Zop) Ay)

((Inﬁ ® Arg) + (A; ® Azd)) vec (D) + (In, ® (Asy + A2gC)) vec (B) + vee (Z1 + Zap) Ay)

The system of equations can be stacked to give:

[ (In, ® (Age + A24C)) ((Ins ® A1a) + (Al? ® Azd)) } {

} = —vec ((Z1 + Zap) A1)

) S
) S

{ ZEE ggg } =— [ (In, ® (Agy + A2q(C)) ((Ins ® Aiq) + (A/z ® Aza)) }_1 vec ((Z1 + Zap) A1)
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21 Asymmetric information - General solution

Consider now a problem in which some of the decisions are taken with knowledge of the current value of
% and others are taken as before only with knowledge of Z_ and 2°. Since decisions are taken with two
different information sets I treat different the coefficients on variables depending on the information
set used on them. The relevant exogenous state vector is S = [z, z_, zs]l.

The system of FOC can be expressed as:

0~ A [ it } + AsE [ Pas } + A3E° [ Fan }  Zhk+ ZoER (3] + Z3E [Bepr] + Z4E° [Ze]
dt dt+1 dt+1
In this case Z3 = Z4 = 0 but I include them for completeness of the argument.
The objective is to find laws of motion of the form:

Ty = Ai, + BS,
dy = Ciy+ DS,
As before, by certainty equivalence, matrices A and C' can be obtained from solving the non-
stochastic model, the solution is:

A= szzvgl C = vdmvgl

where: A= —A;'A; and V and Q are given by the Eigen-decomposition of A = VQV L.
Knowing A and C' its possible to find B and D by replacing on the FOC.
The expected value of Z conditional on Z_ and 2° is a linear function. In this case:

3
s a ap O o X A
Blz)s, 2 = . s=[0 % o ]z
[Z|Z 7Z ] Oé+O{SZ + a+OéSZ [ atoag atoag } 223
In what follows Ay = [ 0 ;34— %5 |, this matrix represents the linear operator E* []. Finally
note that R
E® [Z141] = E° [E [Z41|2]] = E® [p2] = pA1Sy
and that:
X E® [Z441] E® [244] B [244] PAlst pAL | X
Es |:St+1:| = Es [ét] = AISt == AlSt == Ale == A1 St = AQSt
B® [2714] B [E [23441]2041]] B [241] pA1S; phi

Note that by construction A; and As make the weight on Z zero.
It is also necessary to define the “complete information” expected value operators:

E[2t+1] = [ 14 0 0 }St :A3St

X E[Z44] p 0 0| X
E[SH}_ Elz] [=|1 0 08 =A8
E[34] p 0 0
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For what follows let Ay = [ 1 0 0 ] Using this one gets:

A, [ ot } +A2E[ PO } + A3E® [ PO } 205+ ZoB (2] + Z3E [Bian] + Z4E® [2is] = O
dt dt+1 dt+1
Ay [ Lt } +A2E[ T+ } + AsE® [ Trtl } + [Z1Mo 4 ZoAy + ZsAs + ZypAi] S, = 0
dt dt+1 dt+1
Ty T1 Ty ] 5
A R X AyE R . AsES | . Zo8; = 0
! [ Ciy + DS, } AR { Civyr + DSy ] a3 [ Ciryr + DSy | T707
4 £ ) Az + BS, N Ady + BS, | Jp .
! [ C#y + DSy } T2 o (ar+BS) + DM | T 0 (Ad+ BS) +DAS, | T T
i’t Ai’t + Bgt Ait + BS’t | Q
A . A . A . 208 = 0
L [ Cé, + DS, } A [ CA#, + (CB + DAY &, ] A [ CAéy +(CB+DAy) &, | 207
Where Z() = Zle + ZQAl + ZgAg + Z4pA1.
Letting Ay = [A1x A14] , A2 = [A2y Aog] and Az = [A3, Asq] one has:
Alxxt + Ald (C:i?t + Dgt) + AQQ; (Ait + Bgt> + Agd (CAi‘t + (CB + DA4) St)
+As, (Afct n BS}) + Asg ((JA@ + (CB + DAy) §t) Y75, = 0
(Alx + A14C + Ao, A+ AsyCA+ A3 A+ AngA) Tt
+(A1aD + A2, B + Aoq (CB + DAy) + A3y B + A3 (CB + DAs) + Zg) S = 0

At this point it can be checked that:
A1z + A1aC + Az A+ A2qCA + Azg A+ A3qCA =0
And then B and D are obtained such that:
(Agz + Aze + (A2q + A3a) C) B+ A1aD + AgaDAy + AzaDAs + Zo = 035,

Vectorizing:

I
o

vee ((Aaz + Asz + (Aaq + Asq) C) B) + vec (A14D) + vec (A2qgDAy) + vec (AsgDAs) + vec (Zp)
(Lo, ® (Agy + Ase + (Asg + Azq) C)] vec (B) + [1 ® Ara+ Ay ® Agg + Ay ® Agd} vec (D) + vec (Zy) = 0

The system of equations can be stacked to give:

/ / B
{ (In, ® (Agz + Asy + (A2q + Aszq) C)) <Ins ® Arg + Ay ® Agg + Ay ® ASd) } [ zgz EDg } = —vec (Zy)

’ ’ -1
] =- { (In, ® (Agg + Azy + (Asqg + Asq) C)) (]nS ®A1g+ A ®@Asg + Ay ® ASd) } vec (Zo)
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