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» The Problem:

V(t) = f t
(t) max, (x,t)

X*(t) = {x e X (1) [f (x,t) = V (1)}

» What are the properties of the value function V7

» Under what conditions is V differentiable?
> If differentiable, what is V' (t)?
» How does V relates to its derivative?

» Envelope theorems give answers to these questions.



Standard Envelope Theorem - MWG

>LetX(t):{x|g1(x,t):O y v 7gk(X7t):0}
» Let A1 (t),..., Ak (t) be the Lagrange multipliers.

» Let V be differentiable at ty € [0,1] and f and g are
differentiable in x and t and the solution X* (t) is a
differentiable function at tg.

» Then:

Vv (to):—

: Of (X* (to) , to) Zk:A_ag,- (X* (to) , o)
ot p ' ot

> If there are no restrictions then: V' (ty) = W

» The proof follows from manipulating FOC.
» What are the conditions for V and X* to be differentiable?



Beneveniste & Scheinkman (1979) and SLP

» An extension to dynamic programming problems.

= max f(Xis Xea1, 0 argmax = t, i)}
el t)z iy Xt+1 g {g(t, )}z

x = (x0,x1,--.) M(t) ={x|Vixit1 €T (x;)) xo =t}

» Assumptions over I : X = X

» I has a convex graph (stronger than convex valued)
» Non-empty valued, Compact valued and continuous.
» int (I (x)) # 0 for all x € X

» Assumptions over f

» Bounded

» Continuous and differentiable (BS) or continuously
differentiable (SLP)

» Concave (BS) or strictly concave (SLP)



Beneveniste & Scheinkman (1979) and SLP

Theorem: If tg € int (X) and g (tp,0) € int (I (t)) then V is
differentiable (BS) or continuously differentiable (SLP) at ty and:

V, (to) =h (t07g(t070)’0)

» The proof relies on the convexity of correspondence I and the
concavity of f to transfer the differentiability of f to V.

» The key of the proof is the following lemma:

Lemma: Let V be a real valued concave function defined on a
convex set D C R. If W is a concave and differentiable
function in a neighborhood N of ty € D with the property that
W (to) = V (o) and W (t) < V (t) for t € N, then V is
differentiable at ty. Moreover V' (1) = W' (to).



Set up

> Objective:

» To establish differentiability in the absence of convexity and
continuity of the choice sets.
» Dispense with concavity of value function (when possible).
» Generalize result to include relation between value function
and derivative of objective function.
» Generalize differentiability results to directional derivatives.
> Inequality constraints give non-differentiable points when

binding constraints change.

> Inequality constraints may induce non-convexities in choice
sets.

» Method:

» Strengthen continuity of value function to obtain
differentiability.



Set up

Absolute Continuity: A function g : [a, b] — R is absolutely
continuous on |a, b] if:

VsV abyn, Z |bk — ax| <6 — Z g (bk) — g (ak)| <€
k=1 k=1

where {a, bx},_; is a finite (or countable) system of pairwise
disjoint subintervals (ax, bx) C [a, b].

Lemma: If f is absolutely continuous then f is of bounded
variation and has a finite derivative almost everywhere.
Theorem (Lebesgue): g (x) =g (a) + [ g (t)dt for all

x € [a, b] if and only if g is absolutely continuous in [a, b].



Set up

» Equicontinuity: A family of functions on t {f (x,t)},cx
parametrized by x is equicontinuous if:

VedsVs [t—t| <6 —|f(x,t)—f(x,t)] <e

» Equidifferentiability: A family of functions on t
{f (x,t)},cx parametrized by x is equidifferentiable at tg if:

f <X, t,) — f(x, to)

t' — to

converges uniformly (across x) as t — to.

» Lemma: If f; (x, to) exists for all x and {f; (x,t)},cx is
equicontinuous on X, then {f (x, t)}, . is equidifferentiable
on tp.



Theorem 1 - Envelope Formula

Theorem 1: Take tp € [0, 1] and x* € X* (tp). Assume f; (x*, tp)
exists.

» If tg > 0 and V is left-differentiable then
V/ (t()*) <f (X*, to).
» If tp < 0 and V is right-differentiable then
V' (to+) > i (x*, to).
» If t € (0,1) and V is differentiable then V' (o) = f; (x*, to).

Proof: Board.

Note: This result holds wherever V is differentiable, it does not
require any structure over f other than differentiability over t, it
does not require any structure over X.

Note: Implicitly the existence of a solution is required,
compactness and continuity are sufficient for this.



Theorem 2 - Differentiability A.E.

Theorem 2:
» Suppose that f (x, -) is absolutely continuous (in t) for all
x € X.

» Then its differentiable wrt t almost everywhere (on [0, 1]) and
for all x € X.

» Suppose that there exists an integrable function b: [0,1] — R
such that |f; (x, t)| < b(t) for all x and almost all t.
» Then V is absolutely continuous.
Corollary:
» Since V is absolutely continuous it is differentiable A.E. and:

V(t):V(O)+/OtV/(t)dt

» By Theorem 1, if V is differentiable its derivative is given by:
V' (to) = f; (x*, tg) when X* (t) # 0. If this holds A.E then:

V(t):V(O)+/0tft(x*(t),to)dt x*(t) € X*(t)



Theorem 2 - Differentiability A.E.

Proof: Let t',t" € [0,1] with t' < t:
‘V (t) —V (t)) sup f (x, t”) —f (x, t')
S
xeX

t
/ fi (x,s) ds
t/

/t/t b(s)ds

0 for all t and that [/ b(s)ds < oo, then

IN

"

t
g/ sup |f; (x, 5)| ds
tl

xeX

= sup

IN

Note that b (t

(t) >
V() V()

close enough so

is always bounded, one can choose t* and t”
to satisfy absolute continuity.



Theorem 2 - Differentiability A.E.

Note:

» All assumptions over the choice set are dropped, that is,
convexity, continuity and compactness.

» Compactness is only dropped formally since it is still assumed
(in the corollary) that there is a solution A.E.

» Concaveness of objective function is dropped.
» New assumptions:
» Stronger form of continuity.
> This gives differentiability, before it was imposed.
» Boundedness of derivative.

> Derivative is dominated by an integrable function.






Theorem 3 - Directional Differentiability Everywhere

Theorem 3: Let to € [0, 1], if {f (x,-)},cx is equidifferentiable at

to and sup |f; (x, to)| < 0o, and also X* (t) # () for all t, then:
xeX

» V is left and right differentiable at tg with:

Vto-) = lim (< (0.6) V(o4 = lim fi(< (1), 10)

lim £
t—to+
» V is differentiable at ty if and only if f; (x* (t), to) is

continuous at ty

Proof: In the paper (this one is longer).
Note: There are no restrictions over X.



Mechanism Design |

» There is an agent with payoff function f (x, t) that depends on
outcome x € Y and type t € [0, 1].

» There is a mechanism formed by a message m € M and an
outcome function h: M — Y.

» The agent participates in the mechanism by choosing a
message, or equivalently an outcome:
xeX={h(m)ime M} CY.

» We say that X* (t) is a choice rule implemented by the
mechanism.

If f(x,t) is absolutely continuous on t for all x € Y and
sup |f: (x, t)] is integrable then:
x€Y

V(t)) = V(O)%—/0 fi (x,s) ds



Mechanism Design |

» This result has been obtained by Mirrlees (1971), Laffont and
Maskin (1980), Fudenberg and Tirole (1991) and Williams
(1999).

» The Mayerson-Satterthwaite theorem and the revenue
equivalence theorem can be obtained using the formula.

» Note that the space of actions, and messages is completely
arbitrary.

» Any choice rule can be implemented.

» Previous results requires the choice rule to be piecewise
continuously differentiable.

» The absolute integrability of f; can be relaxed to:

» Spence-Mirrlees single crossing property.
» Quasilinear preferences with strictly increasing differences.



Mechanism Design - Example

Fudenberg and Tirole (1991) - Optimal Mechanisms
Principal maximizes expected utility subject to agent's IC and IR
Agent has a type 6 € [0, 1] unknown to the principal.

max Eolup (x(0),£(6),0)]

v

u

st. uy(x(8),t(8),0) > u, (x (9) ,t(é) ,é) us (x(6), (), 0)

Under monotonicity the second constraint implies
u; (x(0),t(0),0) =u=0.
Under quasilinear preferences: u,(x(6),t(6),0) = v(x,0) + t.



Mechanism Design - Example

Define the agent's payoff under type 6 as:

U, (0) = max u, (x (9) ,t(é) ,9) — us (x(8),t(0),0)

0

Using envelope theorem and results above:

” Ou, (x(s),t(s),s)
00

Ua (9) = Ua (0) +/ ds

0
0 vIix|(s),S
U (x(6),£(6),0) — u—i—/o a(a(g)’)ds

» This allows to eliminate the IC constraint by the above
expression and monotonicity of x ().



Mechanism Design |l

» Suppose that a mechanism implements choice rule x* and
gives payoff V.
» The following result characterizes types that maximize payoff.

Let to € argmaxV/ (t), if {f (x,-)},cy is equidifferentiable and

sup |f: (x, to)| < oo then V is differentiable at tp and:
xeY

V' (to) = f (x*, 1) = 0



Beneveniste & Scheinkman (Again)

Corollary: Suppose X is a convex set in a linear space and

f: X x[0,1] — R is a concave function. Let ty € [0, 1] and

x* € X*(t) such that f; (x*, tp) exists. Then V is differentiable at
to and V, (to) =1 (X*, to)

Proof: Take t',t" €[0,1] and XA € (0,1), for any x,x" € X:

f(xn ty) > A (x/, t/) F(-NF <x”, t//)

Taking sup over x' and x” and using convexity of X one gets:

V(t;)ZAV(t/)—F(l— ( )
Then V is directionally differentiable and V' (t—) > V' (t+).
From Theorem 1 one gets: V' (t—) < f; (x*,t) < V' (t+)

Joining inequalities one gets the result.
Note: Set X is arbitrary, in particular let X =1 (t) and

f(x,t)=u(F(t)—x1)+> 0°u(F(xs) — Xst1)-



Cont. Functions over Compact sets

One can strengthen the results above under standard continuity
and compactness assumptions.

Corollary: If X is compact, f is upper-semicontinuous and f; (x, t)
is continuous on x and t then all assumptions of Theorems 2 and 3
are satisfied. Moreover the sup in theorem 3 can be replaced by a
max and V is differentiable if and only if {f; (x,t) |x € X*(t)} is a
singleton.

Note:

» Good behavior of the value function does not depend on good
behavior of maximizers. No conditions are imposed over X* (t)
other than non-emptiness.

» Maximizers might be discontinuous in the parameter but V is
absolutely continuous.

» If f is strictly concave then X* (t) is a singleton, then V is
differentiable everywhere, even at parameters where maximizer
is not differentiable.

» The proof of the envelope theorem from FOC depends on
differentiability of maximizers.






Saddle point problems

v

These problems allow to study:

» Nash eq. payoffs of two players zero sum games.
» Ex post efficient mechanisms.
» Parametrized constraints (Lagrangians).

Let X and Y be non-empty sets and f : X x Y x [0,1] — R.
(x*,y*) is a saddle point at t if:

FOGyS ) < POy t) < (X5 y,t)

The saddle set is: X* (t) x Y* (t) where:

v

v

v

X* (t) = argmaxinf f (x,y,t) Y*(t) =argminsupf (x,y,t)
X y y X

The saddle value is:

v

V (t) =supinf f(x,y,t) =infsupf (x,y.t)
x Y Y x



Results

» Under extra assumptions over the topological properties of
spaces X and Y one can establish that:

If f is absolutely continuous, X* (t) x Y*(t) # 0, and |f;| < b(t),

then:

» V is absolutely continuous, hence A.E differentiable.

If in addition X and Y satisfy the second axiom of countability , f;
is continuous on t, and {f (x,y,")}, )exxy is equidifferentiable,

then:

> V' () = V(0) + [y fe (x*,y*,s) ds
Morevoer if X and Y are compact sets

» V is everywhere directionally differentiable with:

V' (t+)

Vv (t-)

max min f;(x,y,t) =
xEX*(t)yGY*(t)t( y:t)

min  max f;(x,y,t) =
xEX*(t)er*(t)t( y:t)

min  max
yeEY*(t) xeX*(t)
max  min

yeY*(t) xeX*(t)

fe (x,y,t)

fe (x,y,t)



Parametrized constraints
Consider the problem:

V(t) = sup  f(x,t) where g : X x [0,1] — R¥
x€X;g(x,t)>0

X () ={xeX|f(x.t)=V () A g(xt)>0}

» If X is convex, f and g are concave and 3/ _yg (x/, t) >0

then the constrained maximization can be represented as a
saddle point problem for the Lagrangian:

k
LA ) =F () + > Megie(x t)
i=1

» V(t) equals the saddle value of the Lagrangian.
» X*(t) and A* (t) form the saddle set, where:

N* (t) = argmin (sup L(x, A, t))
AERK xeX



Parametrized constraints

Suppose X is convex, f and g are continuous and concave in x and
f and g; are continuous in (x,t) and 3/ _y g (x', t) > 0, then:

» V is absolutely continuous, hence A.E differentiable.
> V(o) = V(0)+ [y Le (x*(s),y* (5),5) ds
» V is everywhere directionally differentiable with:

Vi(t+) = max min L;(x,\t)= min  max L¢(x,\t)
xEX*(t) AeN*(t) AEN*(t) xeX*(t)
V'(t=) = min max Le(x,\,t)= max min L¢(x, A t)

xEX*(t) AeN*(t) AEN*(t) xeX*(t)






