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I The Problem:

V (t) = max
x∈X (t)

f (x , t)

X ? (t) = {x ∈ X (t) | f (x , t) = V (t)}

I What are the properties of the value function V ?
I Under what conditions is V differentiable?
I If differentiable, what is V

′
(t)?

I How does V relates to its derivative?

I Envelope theorems give answers to these questions.



Standard Envelope Theorem - MWG

I Let X (t) = {x | g1 (x , t) = 0 , . . . , gk (x , t) = 0}
I Let λ1 (t) , . . . , λk (t) be the Lagrange multipliers.
I Let V be differentiable at t0 ∈ [0, 1] and f and g are

differentiable in x and t and the solution X ? (t) is a
differentiable function at t0.

I Then:

V
′
(t0) =

∂f (X ? (t0) , t0)

∂t
−

k∑
i=1

λi
∂gi (X ? (t0) , t0)

∂t

I If there are no restrictions then: V
′

(t0) = ∂f (X?(t0),t0)
∂t

I The proof follows from manipulating FOC.
I What are the conditions for V and X ? to be differentiable?



Beneveniste & Scheinkman (1979) and SLP
I An extension to dynamic programming problems.

V (t) = max
x∈Π(t)

∞∑
i=0

f (xi , xt+1, i) argmax = {g (t, i)}∞i=0

x = (x0, x1, . . .) Π (t) = {x | ∀ixi+1 ∈ Γ (xi ) x0 = t}

I Assumptions over Γ : X ⇒ X

I Γ has a convex graph (stronger than convex valued)
I Non-empty valued, Compact valued and continuous.
I int (Γ (x)) 6= ∅ for all x ∈ X

I Assumptions over f
I Bounded
I Continuous and differentiable (BS) or continuously

differentiable (SLP)
I Concave (BS) or strictly concave (SLP)



Beneveniste & Scheinkman (1979) and SLP

Theorem: If t0 ∈ int (X ) and g (t0, 0) ∈ int (Γ (t0)) then V is
differentiable (BS) or continuously differentiable (SLP) at t0 and:

V
′
(t0) = f1 (t0, g (t0, 0) , 0)

I The proof relies on the convexity of correspondence Γ and the
concavity of f to transfer the differentiability of f to V .

I The key of the proof is the following lemma:

Lemma: Let V be a real valued concave function defined on a
convex set D ⊂ R. If W is a concave and differentiable
function in a neighborhood N of t0 ∈ D with the property that
W (t0) = V (t0) and W (t) ≤ V (t) for t ∈ N, then V is
differentiable at t0. Moreover V

′
(t0) = W

′
(t0).



Set up

I Objective:
I To establish differentiability in the absence of convexity and

continuity of the choice sets.
I Dispense with concavity of value function (when possible).
I Generalize result to include relation between value function

and derivative of objective function.
I Generalize differentiability results to directional derivatives.

I Inequality constraints give non-differentiable points when
binding constraints change.

I Inequality constraints may induce non-convexities in choice
sets.

I Method:
I Strengthen continuity of value function to obtain

differentiability.



Set up

I Absolute Continuity: A function g : [a, b]→ R is absolutely
continuous on [a, b] if:

∀ε∃δ∀{ak ,bk}nk=1

n∑
k=1

|bk − ak | < δ −→
n∑

k=1

|g (bk)− g (ak)| < ε

where {ak , bk}nk=1 is a finite (or countable) system of pairwise
disjoint subintervals (ak , bk) ⊂ [a, b].

I Lemma: If f is absolutely continuous then f is of bounded
variation and has a finite derivative almost everywhere.

I Theorem (Lebesgue): g (x) = g (a) +
´ x
a g

′
(t) dt for all

x ∈ [a, b] if and only if g is absolutely continuous in [a, b].



Set up

I Equicontinuity: A family of functions on t {f (x , t)}x∈X
parametrized by x is equicontinuous if:

∀ε∃δ∀x
∣∣t − t ′

∣∣ < δ −→
∣∣f (x , t)− f

(
x , t ′

)∣∣ < ε

I Equidifferentiability: A family of functions on t
{f (x , t)}x∈X parametrized by x is equidifferentiable at t0 if:

f
(
x , t

′
)
− f (x , t0)

t ′ − t0

converges uniformly (across x) as t
′ → t0.

I Lemma: If ft (x , t0) exists for all x and {ft (x , t)}x∈X is
equicontinuous on X , then {f (x , t)}x∈X is equidifferentiable
on t0.



Theorem 1 - Envelope Formula

Theorem 1: Take t0 ∈ [0, 1] and x? ∈ X ? (t0). Assume ft (x?, t0)
exists.
I If t0 > 0 and V is left-differentiable then

V
′
(t0−) ≤ ft (x?, t0).

I If t0 < 0 and V is right-differentiable then
V

′
(t0+) ≥ ft (x?, t0).

I If t ∈ (0, 1) and V is differentiable then V
′
(t0) = ft (x?, t0).

Proof: Board.
Note: This result holds wherever V is differentiable, it does not
require any structure over f other than differentiability over t, it
does not require any structure over X .
Note: Implicitly the existence of a solution is required,
compactness and continuity are sufficient for this.



Theorem 2 - Differentiability A.E.
Theorem 2:
I Suppose that f (x , ·) is absolutely continuous (in t) for all

x ∈ X .
I Then its differentiable wrt t almost everywhere (on [0, 1]) and

for all x ∈ X .
I Suppose that there exists an integrable function b : [0, 1]→ R

such that |ft (x , t)| ≤ b (t) for all x and almost all t.
I Then V is absolutely continuous.

Corollary:
I Since V is absolutely continuous it is differentiable A.E. and:

V (t) = V (0) +

ˆ t

0
V

′
(t) dt

I By Theorem 1, if V is differentiable its derivative is given by:
V

′
(t0) = ft (x?, t0) when X ? (t) 6= ∅. If this holds A.E then:

V (t) = V (0) +

ˆ t

0
ft (x? (t) , t0) dt x? (t) ∈ X ? (t)



Theorem 2 - Differentiability A.E.

Proof: Let t
′
, t

′′ ∈ [0, 1] with t
′
< t

′′
:

∣∣∣V (t ′′)− V
(
t
′
)∣∣∣ ≤ sup

x∈X

∣∣∣f (x , t ′′)− f
(
x , t

′
)∣∣∣

= sup
x∈X

∣∣∣∣∣
ˆ t

′′

t′
ft (x , s) ds

∣∣∣∣∣ ≤
ˆ t

′′

t′
sup
x∈X
|ft (x , s)| ds

≤
ˆ t

′′

t′
b (s) ds

Note that b (t) ≥ 0 for all t and that
´ t′′
t′ b (s) ds <∞, then∣∣∣V (t ′′)− V

(
t
′
)∣∣∣ is always bounded, one can choose t

′
and t

′′

close enough so as to satisfy absolute continuity.



Theorem 2 - Differentiability A.E.

Note:
I All assumptions over the choice set are dropped, that is,

convexity, continuity and compactness.
I Compactness is only dropped formally since it is still assumed

(in the corollary) that there is a solution A.E.
I Concaveness of objective function is dropped.
I New assumptions:

I Stronger form of continuity.
I This gives differentiability, before it was imposed.

I Boundedness of derivative.
I Derivative is dominated by an integrable function.





Theorem 3 - Directional Differentiability Everywhere

Theorem 3: Let t0 ∈ [0, 1], if {f (x , ·)}x∈X is equidifferentiable at
t0 and sup

x∈X
|ft (x , t0)| <∞, and also X ? (t) 6= ∅ for all t, then:

I V is left and right differentiable at t0 with:

V (t0−) = lim
t→t0−

ft (x? (t) , t0) V (t0+) = lim
t→t0+

ft (x? (t) , t0)

I V is differentiable at t0 if and only if ft (x? (t) , t0) is
continuous at t0

Proof: In the paper (this one is longer).
Note: There are no restrictions over X .



Mechanism Design I

I There is an agent with payoff function f (x , t) that depends on
outcome x ∈ Y and type t ∈ [0, 1].

I There is a mechanism formed by a message m ∈ M and an
outcome function h : M → Y .

I The agent participates in the mechanism by choosing a
message, or equivalently an outcome:
x ∈ X = {h (m) |m ∈ M} ⊂ Y .

I We say that X ? (t) is a choice rule implemented by the
mechanism.

If f (x , t) is absolutely continuous on t for all x ∈ Y and
sup
x∈Y
|ft (x , t)| is integrable then:

V (t)) = V (0) +

ˆ t

0
ft (x , s) ds



Mechanism Design I

I This result has been obtained by Mirrlees (1971), Laffont and
Maskin (1980), Fudenberg and Tirole (1991) and Williams
(1999).

I The Mayerson-Satterthwaite theorem and the revenue
equivalence theorem can be obtained using the formula.

I Note that the space of actions, and messages is completely
arbitrary.

I Any choice rule can be implemented.

I Previous results requires the choice rule to be piecewise
continuously differentiable.

I The absolute integrability of ft can be relaxed to:
I Spence-Mirrlees single crossing property.
I Quasilinear preferences with strictly increasing differences.



Mechanism Design - Example

Fudenberg and Tirole (1991) - Optimal Mechanisms
Principal maximizes expected utility subject to agent’s IC and IR
Agent has a type θ ∈ [0, 1] unknown to the principal.

max
x(·),t(·)

Eθ [up (x (θ) , t (θ) , θ)]

s.t. ua (x (θ) , t (θ) , θ) ≥ ua
(
x
(
θ̂
)
, t
(
θ̂
)
, θ̂
)

ua (x (θ) , t (θ) , θ) ≥ u

Under monotonicity the second constraint implies
ua (x (0) , t (0) , 0) = u = 0.
Under quasilinear preferences: ua (x (θ) , t (θ) , θ) = v (x , θ) + t.



Mechanism Design - Example

Define the agent’s payoff under type θ as:

Ua (θ) = max
θ̂

ua
(
x
(
θ̂
)
, t
(
θ̂
)
, θ
)

= ua (x (θ) , t (θ) , θ)

Using envelope theorem and results above:

Ua (θ) = Ua (0) +

ˆ θ

0

∂ua (x (s) , t (s) , s)

∂θ
ds

ua (x (θ) , t (θ) , θ) = u +

ˆ θ

0

∂v (x (s) , s)

∂θ
ds

I This allows to eliminate the IC constraint by the above
expression and monotonicity of x (·).



Mechanism Design II

I Suppose that a mechanism implements choice rule x? and
gives payoff V .

I The following result characterizes types that maximize payoff.

Let t0 ∈ argmaxV (t), if {f (x , ·)}x∈Y is equidifferentiable and
sup
x∈Y
|ft (x , t0)| <∞ then V is differentiable at t0 and:

V
′
(t0) = ft (x?, t0) = 0



Beneveniste & Scheinkman (Again)
Corollary: Suppose X is a convex set in a linear space and
f : X × [0, 1]→ R is a concave function. Let t0 ∈ [0, 1] and
x? ∈ X ? (t) such that ft (x?, t0) exists. Then V is differentiable at
t0 and V

′
(t0) = ft (x?, t0)

Proof: Take t
′
, t

′′ ∈ [0, 1] and λ ∈ (0, 1), for any x
′
, x

′′ ∈ X :

f (xλ, tλ) ≥ λf
(
x

′
, t

′
)

+ (1− λ) f
(
x

′′
, t

′′
)

Taking sup over x
′
and x

′′
and using convexity of X one gets:

V (tλ) ≥ λV
(
t
′
)

+ (1− λ)V
(
t
′′
)

Then V is directionally differentiable and V
′
(t−) ≥ V

′
(t+).

From Theorem 1 one gets: V
′
(t−) ≤ ft (x?, t) ≤ V

′
(t+)

Joining inequalities one gets the result.
Note: Set X is arbitrary, in particular let X = Π (t) and
f (x , t) = u (F (t)− x1) +

∑
δsu (F (xs)− xs+1).



Cont. Functions over Compact sets
One can strengthen the results above under standard continuity
and compactness assumptions.
Corollary: If X is compact, f is upper-semicontinuous and ft (x , t)
is continuous on x and t then all assumptions of Theorems 2 and 3
are satisfied. Moreover the sup in theorem 3 can be replaced by a
max and V is differentiable if and only if {ft (x , t) |x ∈ X ? (t)} is a
singleton.
Note:
I Good behavior of the value function does not depend on good

behavior of maximizers. No conditions are imposed over X ? (t)
other than non-emptiness.

I Maximizers might be discontinuous in the parameter but V is
absolutely continuous.

I If f is strictly concave then X ? (t) is a singleton, then V is
differentiable everywhere, even at parameters where maximizer
is not differentiable.

I The proof of the envelope theorem from FOC depends on
differentiability of maximizers.





Saddle point problems

I These problems allow to study:
I Nash eq. payoffs of two players zero sum games.
I Ex post efficient mechanisms.
I Parametrized constraints (Lagrangians).

I Let X and Y be non-empty sets and f : X × Y × [0, 1]→ R.
I (x?, y?) is a saddle point at t if:

f (x , y?, t) ≤ f (x?, y?, t) ≤ f (x?, y , t)

I The saddle set is: X ? (t)× Y ? (t) where:

X ? (t) = argmax
x

inf
y
f (x , y , t) Y ? (t) = argmin

y
sup
x

f (x , y , t)

I The saddle value is:

V (t) = sup
x

inf
y
f (x , y , t) = inf

y
sup
x

f (x , y .t)



Results
I Under extra assumptions over the topological properties of

spaces X and Y one can establish that:

If f is absolutely continuous, X ? (t)× Y ? (t) 6= ∅, and |ft | < b (t),
then:
I V is absolutely continuous, hence A.E differentiable.

If in addition X and Y satisfy the second axiom of countability , ft
is continuous on t, and {f (x , y , ·)}(x ,y)∈X×Y is equidifferentiable,
then:
I V

′
(t0) = V (0) +

´ t
0 ft (x?, y?, s) ds

Morevoer if X and Y are compact sets
I V is everywhere directionally differentiable with:

V
′
(t+) = max

x∈X?(t)
min

y∈Y ?(t)
ft (x , y , t) = min

y∈Y ?(t)
max

x∈X?(t)
ft (x , y , t)

V
′
(t−) = min

x∈X?(t)
max

y∈Y ?(t)
ft (x , y , t) = max

y∈Y ?(t)
min

x∈X?(t)
ft (x , y , t)



Parametrized constraints
Consider the problem:

V (t) = sup
x∈X ;g(x ,t)≥0

f (x , t) where g : X × [0, 1]→ Rk

X ? (t) = {x ∈ X | f (x , t) = V (t) ∧ g (x , t) ≥ 0}

I If X is convex, f and g are concave and ∃x ′∈Xg
(
x

′
, t
)
� 0

then the constrained maximization can be represented as a
saddle point problem for the Lagrangian:

L (x , λ, t) = f (x , t) +
k∑

i=1

λkgk (x , t)

I V (t) equals the saddle value of the Lagrangian.
I X ? (t) and Λ? (t) form the saddle set, where:

Λ? (t) = argmin
λ∈Rk

+

(
sup
x∈X

L (x , λ, t)

)



Parametrized constraints

Suppose X is convex, f and g are continuous and concave in x and
ft and gt are continuous in (x , t) and ∃x ′∈Xg

(
x

′
, t
)
� 0, then:

I V is absolutely continuous, hence A.E differentiable.
I V (t0) = V (0) +

´ t
0 Lt (x? (s) , y? (s) , s) ds

I V is everywhere directionally differentiable with:

V
′
(t+) = max

x∈X?(t)
min

λ∈Λ?(t)
Lt (x , λ, t) = min

λ∈Λ?(t)
max

x∈X?(t)
Lt (x , λ, t)

V
′
(t−) = min

x∈X?(t)
max

λ∈Λ?(t)
Lt (x , λ, t) = max

λ∈Λ?(t)
min

x∈X?(t)
Lt (x , λ, t)




