Envelope Theorems... for arbitrary choice sets

Sergio Ocampo Díaz

Department of Economics - University of Minnesota

August 20, 2015

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

The Problem:

$$V(t) = \max_{x \in X(t)} f(x, t)$$
$$X^{\star}(t) = \{x \in X(t) \mid f(x, t) = V(t)\}$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

What are the properties of the value function V?

- Under what conditions is V differentiable?
- If differentiable, what is V'(t)?
- How does V relates to its derivative?
- Envelope theorems give answers to these questions.

Standard Envelope Theorem - MWG

• Let
$$X(t) = \{x \mid g_1(x, t) = 0 , \dots, g_k(x, t) = 0\}$$

- Let $\lambda_1(t), \ldots, \lambda_k(t)$ be the Lagrange multipliers.
- Let V be differentiable at t₀ ∈ [0, 1] and f and g are differentiable in x and t and the solution X^{*}(t) is a differentiable function at t₀.
- Then:

$$V^{'}(t_{0}) = \frac{\partial f\left(X^{\star}(t_{0}), t_{0}\right)}{\partial t} - \sum_{i=1}^{k} \lambda_{i} \frac{\partial g_{i}\left(X^{\star}(t_{0}), t_{0}\right)}{\partial t}$$

• If there are no restrictions then: $V'(t_0) = \frac{\partial f(X^*(t_0), t_0)}{\partial t}$

- The proof follows from manipulating FOC.
 - What are the conditions for V and X* to be differentiable?

Beneveniste & Scheinkman (1979) and SLP

An extension to dynamic programming problems.

$$V(t) = \max_{\underline{x} \in \Pi(t)} \sum_{i=0}^{\infty} f(x_i, x_{t+1}, i) \quad \text{argmax} = \{g(t, i)\}_{i=0}^{\infty}$$

$$\underline{x} = (x_0, x_1, \ldots) \qquad \Pi(t) = \{\underline{x} \mid \forall_i x_{i+1} \in \Gamma(x_i) \quad x_0 = t\}$$

- Assumptions over $\Gamma : X \rightrightarrows X$
 - Γ has a convex graph (stronger than convex valued)
 - Non-empty valued, Compact valued and continuous.
 - $int(\Gamma(x)) \neq \emptyset$ for all $x \in X$
- Assumptions over f
 - Bounded
 - Continuous and differentiable (BS) or continuously differentiable (SLP)
 - ► Concave (BS) or strictly concave (SLP)

Beneveniste & Scheinkman (1979) and SLP

Theorem: If $t_0 \in int(X)$ and $g(t_0, 0) \in int(\Gamma(t_0))$ then V is differentiable (BS) or continuously differentiable (SLP) at t_0 and:

$$V'(t_0) = f_1(t_0, g(t_0, 0), 0)$$

- The proof relies on the convexity of correspondence Γ and the concavity of f to transfer the differentiability of f to V.
- The key of the proof is the following lemma:

Lemma: Let *V* be a real valued concave function defined on a convex set $D \subset \mathbb{R}$. If *W* is a concave and differentiable function in a neighborhood *N* of $t_0 \in D$ with the property that $W(t_0) = V(t_0)$ and $W(t) \leq V(t)$ for $t \in N$, then *V* is differentiable at t_0 . Moreover $V'(t_0) = W'(t_0)$.

Set up

Objective:

- To establish differentiability in the absence of convexity and continuity of the choice sets.
- Dispense with concavity of value function (when possible).
- Generalize result to include relation between value function and derivative of objective function.
- Generalize differentiability results to directional derivatives.
 - Inequality constraints give non-differentiable points when binding constraints change.
 - Inequality constraints may induce non-convexities in choice sets.

- Method:
 - Strengthen continuity of value function to obtain differentiability.

Set up

► Absolute Continuity: A function g : [a, b] → ℝ is absolutely continuous on [a, b] if:

$$orall_{\epsilon} \exists_{\delta} orall_{\left\{ a_{k}, b_{k}
ight\}_{k=1}^{n}} \quad \sum_{k=1}^{n} \left| b_{k} - a_{k}
ight| < \delta \longrightarrow \sum_{k=1}^{n} \left| g\left(b_{k}
ight) - g\left(a_{k}
ight)
ight| < \epsilon$$

where $\{a_k, b_k\}_{k=1}^n$ is a finite (or countable) system of pairwise disjoint subintervals $(a_k, b_k) \subset [a, b]$.

- ▶ Lemma: If *f* is absolutely continuous then *f* is of bounded variation and has a finite derivative almost everywhere.
- ► Theorem (Lebesgue): g(x) = g(a) + ∫_a^x g'(t) dt for all x ∈ [a, b] if and only if g is absolutely continuous in [a, b].

Set up

► Equicontinuity: A family of functions on t {f (x, t)}_{x∈X} parametrized by x is equicontinuous if:

$$orall_{\epsilon} \exists_{\delta} orall_{x} \quad \left| t - t'
ight| < \delta \longrightarrow \left| f\left(x, t
ight) - f\left(x, t'
ight)
ight| < \epsilon$$

• Equidifferentiability: A family of functions on $t \{f(x, t)\}_{x \in X}$ parametrized by x is equidifferentiable at t_0 if:

$$\frac{f\left(x,t^{'}\right)-f\left(x,t_{0}\right)}{t^{'}-t_{0}}$$

converges uniformly (across x) as $t' \rightarrow t_0$.

▶ Lemma: If f_t (x, t₀) exists for all x and {f_t (x, t)}_{x∈X} is equicontinuous on X, then {f (x, t)}_{x∈X} is equidifferentiable on t₀.

うして ふゆう ふほう ふほう うらつ

Theorem 1 - Envelope Formula

Theorem 1: Take $t_0 \in [0, 1]$ and $x^* \in X^*(t_0)$. Assume $f_t(x^*, t_0)$ exists.

- ▶ If $t_0 > 0$ and V is left-differentiable then $V'(t_0-) \le f_t(x^*, t_0)$.
- If $t_0 < 0$ and V is right-differentiable then $V'(t_0+) \ge f_t(x^*, t_0)$.

▶ If $t \in (0, 1)$ and V is differentiable then $V'(t_0) = f_t(x^*, t_0)$. **Proof:** Board.

Note: This result holds wherever V is differentiable, it does not require any structure over f other than differentiability over t, it does not require any structure over X.

Note: Implicitly the existence of a solution is required,

compactness and continuity are sufficient for this.

Theorem 2 - Differentiability A.E.

Theorem 2:

- Suppose that $f(x, \cdot)$ is absolutely continuous (in t) for all $x \in X$.
 - ▶ Then its differentiable wrt *t* almost everywhere (on [0, 1]) and for all $x \in X$.
- ▶ Suppose that there exists an integrable function $b : [0, 1] \to \mathbb{R}$ such that $|f_t(x, t)| \le b(t)$ for all x and almost all t.
- Then V is absolutely continuous.

Corollary:

• Since V is absolutely continuous it is differentiable A.E. and:

$$V(t) = V(0) + \int_{0}^{t} V'(t) dt$$

► By Theorem 1, if V is differentiable its derivative is given by: $V'(t_0) = f_t(x^*, t_0)$ when $X^*(t) \neq \emptyset$. If this holds A.E then: $V(t) = V(0) + \int_0^t f_t(x^*(t), t_0) dt$ $x^*(t) \in X^*(t)$ Theorem 2 - Differentiability A.E.

Proof: Let $t', t'' \in [0, 1]$ with t' < t'':

$$\begin{aligned} \left| V\left(t^{''}\right) - V\left(t^{'}\right) \right| &\leq \sup_{x \in X} \left| f\left(x, t^{''}\right) - f\left(x, t^{'}\right) \right| \\ &= \sup_{x \in X} \left| \int_{t'}^{t^{''}} f_t\left(x, s\right) ds \right| \leq \int_{t'}^{t^{''}} \sup_{x \in X} \left| f_t\left(x, s\right) \right| ds \\ &\leq \int_{t'}^{t^{''}} b\left(s\right) ds \end{aligned}$$

Note that $b(t) \ge 0$ for all t and that $\int_{t'}^{t''} b(s) ds < \infty$, then $\left| V(t'') - V(t') \right|$ is always bounded, one can choose t' and t'' close enough so as to satisfy absolute continuity.

Theorem 2 - Differentiability A.E.

Note:

- All assumptions over the choice set are dropped, that is, convexity, continuity and compactness.
- Compactness is only dropped formally since it is still assumed (in the corollary) that there is a solution A.E.
- Concaveness of objective function is dropped.
- New assumptions:
 - Stronger form of continuity.
 - This gives differentiability, before it was imposed.
 - Boundedness of derivative.
 - Derivative is dominated by an integrable function.

Theorem 3 - Directional Differentiability Everywhere

Theorem 3: Let $t_0 \in [0, 1]$, if $\{f(x, \cdot)\}_{x \in X}$ is equidifferentiable at t_0 and $\sup_{x \in X} |f_t(x, t_0)| < \infty$, and also $X^*(t) \neq \emptyset$ for all t, then:

▶ *V* is left and right differentiable at *t*₀ with:

$$V(t_{0}-) = \lim_{t \to t_{0}-} f_{t}(x^{*}(t), t_{0}) \qquad V(t_{0}+) = \lim_{t \to t_{0}+} f_{t}(x^{*}(t), t_{0})$$

うして ふゆう ふほう ふほう うらつ

► V is differentiable at t₀ if and only if f_t (x^{*}(t), t₀) is continuous at t₀

Proof: In the paper (this one is longer). Note: There are no restrictions over X.

Mechanism Design I

- ► There is an agent with payoff function f (x, t) that depends on outcome x ∈ Y and type t ∈ [0, 1].
- ► There is a mechanism formed by a message m ∈ M and an outcome function h : M → Y.
- The agent participates in the mechanism by choosing a message, or equivalently an outcome:
 x ∈ X = {h(m) | m ∈ M} ⊂ Y.
- ► We say that X^{*}(t) is a choice rule implemented by the mechanism.

If f(x, t) is absolutely continuous on t for all $x \in Y$ and $\sup_{x \in Y} |f_t(x, t)| \text{ is integrable then:}$

$$V(t)) = V(0) + \int_0^t f_t(x,s) \, ds$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Mechanism Design I

- This result has been obtained by Mirrlees (1971), Laffont and Maskin (1980), Fudenberg and Tirole (1991) and Williams (1999).
 - The Mayerson-Satterthwaite theorem and the revenue equivalence theorem can be obtained using the formula.
- Note that the space of actions, and messages is completely arbitrary.
 - Any choice rule can be implemented.
- Previous results requires the choice rule to be piecewise continuously differentiable.
- The absolute integrability of f_t can be relaxed to:
 - Spence-Mirrlees single crossing property.
 - Quasilinear preferences with strictly increasing differences.

Fudenberg and Tirole (1991) - Optimal Mechanisms Principal maximizes expected utility subject to agent's IC and IR Agent has a type $\theta \in [0, 1]$ unknown to the principal.

$$\max_{x(\cdot),t(\cdot)} E_{\theta} \left[u_{p} \left(x \left(\theta \right), t \left(\theta \right), \theta \right) \right]$$

s.t.
$$u_{a}(x(\theta), t(\theta), \theta) \ge u_{a}(x(\hat{\theta}), t(\hat{\theta}), \hat{\theta}) \quad u_{a}(x(\theta), t(\theta), \theta) \ge \underline{u}$$

Under monotonicity the second constraint implies $u_a(x(0), t(0), 0) = \underline{u} = 0.$ Under quasilinear preferences: $u_a(x(\theta), t(\theta), \theta) = v(x, \theta) + t.$

Mechanism Design - Example

Define the agent's payoff under type θ as:

$$U_{a}(\theta) = \max_{\hat{\theta}} u_{a}\left(x\left(\hat{\theta}\right), t\left(\hat{\theta}\right), \theta\right) = u_{a}\left(x\left(\theta\right), t\left(\theta\right), \theta\right)$$

Using envelope theorem and results above:

$$U_{a}(\theta) = U_{a}(0) + \int_{0}^{\theta} \frac{\partial u_{a}(x(s), t(s), s)}{\partial \theta} ds$$
$$u_{a}(x(\theta), t(\theta), \theta) = \underline{u} + \int_{0}^{\theta} \frac{\partial v(x(s), s)}{\partial \theta} ds$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

► This allows to eliminate the IC constraint by the above expression and monotonicity of x (·).

Mechanism Design II

- Suppose that a mechanism implements choice rule x* and gives payoff V.
- The following result characterizes types that maximize payoff.

Let $t_0 \in \operatorname{argmax} V(t)$, if $\{f(x, \cdot)\}_{x \in Y}$ is equidifferentiable and $\sup_{x \in Y} |f_t(x, t_0)| < \infty$ then V is differentiable at t_0 and:

$$V'(t_0) = f_t(x^*, t_0) = 0$$

うして ふゆう ふほう ふほう うらつ

Beneveniste & Scheinkman (Again)

Corollary: Suppose X is a convex set in a linear space and $f: X \times [0,1] \to \mathbb{R}$ is a concave function. Let $t_0 \in [0,1]$ and $x^* \in X^*(t)$ such that $f_t(x^*, t_0)$ exists. Then V is differentiable at t_0 and $V'(t_0) = f_t(x^*, t_0)$ **Proof:** Take $t', t'' \in [0,1]$ and $\lambda \in (0,1)$, for any $x', x'' \in X$:

$$f(x_{\lambda}, t_{\lambda}) \geq \lambda f(x^{'}, t^{'}) + (1 - \lambda) f(x^{''}, t^{''})$$

Taking sup over x' and x'' and using convexity of X one gets:

$$V\left(t_{\lambda}
ight)\geq\lambda V\left(t^{'}
ight)+\left(1-\lambda
ight)V\left(t^{''}
ight)$$

Then V is directionally differentiable and $V'(t-) \ge V'(t+)$. From Theorem 1 one gets: $V'(t-) \le f_t(x^*, t) \le V'(t+)$ Joining inequalities one gets the result. **Note:** Set X is arbitrary, in particular let $X = \Pi(t)$ and $f(x, t) = u(F(t) - x_1) + \sum \delta^s u(F(x_s) - x_{s+1})$.

Cont. Functions over Compact sets

One can strengthen the results above under standard continuity and compactness assumptions.

Corollary: If X is compact, f is upper-semicontinuous and $f_t(x, t)$ is continuous on x and t then all assumptions of Theorems 2 and 3 are satisfied. Moreover the *sup* in theorem 3 can be replaced by a *max* and V is differentiable if and only if $\{f_t(x, t) | x \in X^*(t)\}$ is a singleton.

Note:

- ► Good behavior of the value function does not depend on good behavior of maximizers. No conditions are imposed over X^{*}(t) other than non-emptiness.
- Maximizers might be discontinuous in the parameter but V is absolutely continuous.
- ► If f is strictly concave then X^{*}(t) is a singleton, then V is differentiable everywhere, even at parameters where maximizer is not differentiable.
 - The proof of the envelope theorem from FOC depends on differentiability of maximizers.

Saddle point problems

- These problems allow to study:
 - Nash eq. payoffs of two players zero sum games.
 - Ex post efficient mechanisms.
 - Parametrized constraints (Lagrangians).
- Let X and Y be non-empty sets and $f: X \times Y \times [0,1] \rightarrow \mathbb{R}$.
- (x^*, y^*) is a saddle point at t if: $f(x, y^*, t) \le f(x^*, y^*, t) \le f(x^*, y, t)$
- The saddle set is: $X^{\star}(t) \times Y^{\star}(t)$ where:

$$X^{\star}(t) = \operatorname*{argmax}_{x} \inf_{y} f(x, y, t) \quad Y^{\star}(t) = \operatorname*{argmin}_{y} \sup_{x} f(x, y, t)$$

The saddle value is:

$$V(t) = \sup_{x} \inf_{y} f(x, y, t) = \inf_{y} \sup_{x} f(x, y.t)$$

うして ふゆう ふほう ふほう うらつ

Results

Under extra assumptions over the topological properties of spaces X and Y one can establish that:

If f is absolutely continuous, $X^{\star}(t) \times Y^{\star}(t) \neq \emptyset$, and $|f_t| < b(t)$, then:

► *V* is absolutely continuous, hence A.E differentiable.

If in addition X and Y satisfy the second axiom of countability, f_t is continuous on t, and $\{f(x, y, \cdot)\}_{(x,y)\in X\times Y}$ is equidifferentiable, then:

•
$$V'(t_0) = V(0) + \int_0^t f_t(x^*, y^*, s) \, ds$$

Morevoer if X and Y are compact sets

► V is everywhere directionally differentiable with:

$$V'(t+) = \max_{x \in X^{\star}(t)} \min_{y \in Y^{\star}(t)} f_t(x, y, t) = \min_{y \in Y^{\star}(t)} \max_{x \in X^{\star}(t)} f_t(x, y, t)$$
$$V'(t-) = \min_{x \in X^{\star}(t)} \max_{y \in Y^{\star}(t)} f_t(x, y, t) = \max_{y \in Y^{\star}(t)} \min_{x \in X^{\star}(t)} f_t(x, y, t)$$

Parametrized constraints

Consider the problem:

$$V(t) = \sup_{x \in X; g(x,t) \ge 0} f(x,t) \quad \text{where } g: X \times [0,1] \to \mathbb{R}^k$$
$$X^*(t) = \{x \in X \mid f(x,t) = V(t) \quad \land \quad g(x,t) \ge 0\}$$
If X is convex, f and g are concave and $\exists_{x' \in X} g(x',t) \gg 0$

then the constrained maximization can be represented as a saddle point problem for the Lagrangian:

$$L(x,\lambda,t) = f(x,t) + \sum_{i=1}^{k} \lambda_k g_k(x,t)$$

- V(t) equals the saddle value of the Lagrangian.
- $X^{\star}(t)$ and $\Lambda^{\star}(t)$ form the saddle set, where:

$$\Lambda^{\star}(t) = \underset{\lambda \in \mathbb{R}^{k}_{+}}{\operatorname{argmin}} \left(\underset{x \in X}{\sup} L(x, \lambda, t) \right)$$

Parametrized constraints

Suppose X is convex, f and g are continuous and concave in x and f_t and g_t are continuous in (x, t) and $\exists_{x' \in X} g(x', t) \gg 0$, then:

- ► *V* is absolutely continuous, hence A.E differentiable.
- $V(t_0) = V(0) + \int_0^t L_t(x^*(s), y^*(s), s) ds$
- V is everywhere directionally differentiable with:

$$V'(t+) = \max_{x \in X^{\star}(t)} \min_{\lambda \in \Lambda^{\star}(t)} L_t(x, \lambda, t) = \min_{\lambda \in \Lambda^{\star}(t)} \max_{x \in X^{\star}(t)} L_t(x, \lambda, t)$$
$$V'(t-) = \min_{x \in X^{\star}(t)} \max_{\lambda \in \Lambda^{\star}(t)} L_t(x, \lambda, t) = \max_{\lambda \in \Lambda^{\star}(t)} \min_{x \in X^{\star}(t)} L_t(x, \lambda, t)$$

