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1 Petrin’s Notes

1.1 Matrix Multiplication, Transpose and Inverse
Let A be dimension n × k and B be dimension k × m. Then the product matrix, C = AB is well
defined and has elements,

cij =

k∑
s=1

aisbsj ,

which is the inner product of the ith row of A with the jth column of B.

Proposition: Multiplication is distributive: A(B + C) = AB +AC

Proof: The element of D = A(B + C) corresponding to the ith row and jth column is:

dij =

k∑
s=1

ais (bsj + csj) =

k∑
s=1

aisbsj +

k∑
s=1

aiscsj = (AB)ij + (AC)ij

Proposition: Transpose over matrix product: (AB)
′

= B
′
A
′

Proof:

(AB)
′

ij = (AB)ji =

k∑
s=1

ajsbsi =

k∑
s=1

bsiajs =

k∑
s=1

b
′

isa
′

sj =
(
B
′
A
′
)
ij

This can be extended to cases where there are more than two matrices using the associative property
of matrix multiplication:

(ABC)
′

= ((AB)C)
′

= C
′
(AB)

′
= C

′
B
′
A
′

Proposition: Transpose of an inverse is the inverse of the transpose:
(
A−1

)′
=
(
A
′
)−1

Proof: By definition of inverse:

A−1A = I(
A−1A

)′
= I

A
′ (
A−1

)′
= I

Then, again by definition of inverse: (
A−1

)′
=
(
A
′
)−1

The last two propositions are particularly useful for computing the covariance matrix of the OLS
estimator. The estimator is given by:

β̂ =
(
X
′
X
)−1

X
′
y
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Its (conditional) covariance is defined as:

EX

[
β̂β̂
′
]

= EX

[(
X
′
X
)−1

X
′
y

((
X
′
X
)−1

X
′
y

)′]

= EX

[(
X
′
X
)−1

X
′
y
(
X
′
y
)′ ((

X
′
X
)−1

)′]

= EX

[(
X
′
X
)−1

X
′
yy
′
X

((
X
′
X
)′)−1

]

= EX

[(
X
′
X
)−1

X
′
yy
′
X
(
X
′
X
)−1

]
=

(
X
′
X
)−1

X
′
EX

[
yy
′
]
X
(
X
′
X
)−1

=
(
X
′
X
)−1

X
′ (
σ2I
)
X
(
X
′
X
)−1

= σ2
(
X
′
X
)−1 (

X
′
X
)(

X
′
X
)−1

= σ2
(
X
′
X
)−1

1.2 Trace
Proposition: If A is m× n and B is n×m, then Tr(AB) = Tr(BA)

Proof:

Tr(AB) =

m∑
i=1

n∑
j=1

aijbji =

n∑
j=1

m∑
i=1

bjiaij = Tr(BA)

It follows by repeated application of the above theorem that,

Tr(ABC) = Tr(CAB) = Tr(BCA)

A useful application of this theorem is,

Tr(X(X ′X)−1X ′) = Tr(X ′X(X ′X)−1) = Tr(Ik) = k

where X is n× k having full column rank k.

1.3 Quadratic Forms and Eigenvalues
Let A be a real symmetric k × k matrix. A quadratic form is defined as,

q = b′Ab

where q ∈ < and b is any non-null k × 1 vector.

• A is positive definite if q > 0 ∀ non-null b.

• A is positive semi-definite if q ≥ 0 ∀ non-null b.

Given a k × k matrix A, the solutions to,

Ac = λc,
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are the (scalar) eigenvalues (λ) and eigenvectors (c). There are k (potentially non-unique) pairs (λi, ci).
In matrix form the k solution pairs (λi, ci) are written as,

AC = CΛ,

where the eigenvectors are the columns of C and the eigenvalues form the diagonal of Λ such that,

Λ =


λ1 0 0 · · · 0
0 λ2 0 · · · 0

. . .
...

0 0 0 · · · λk


Since A(rc) = λ(rc) ∀ r ∈ <, we normalize the eigenvectors csuch that c′c = 1.

Proposition The eigenvalues of a real symmetric positive definite matrix A are all positive.

Proof

Ac = λc, ∀(λ, c)

c′Ac = c′λc

= λc′c

= λ

Since b′Ab > 0 ∀ non-null b, λ > 0.

Proposition If A is symmetric and positive definite, a non-singular matrix P can be found s.t.
A = PP′.

Proof From Spectral decomposition of A, A = CΛC′. Let P = CΛ
1
2 (possible because the

eigenvalues are all positive). Then,

A = CΛC′

= C(Λ1/2Λ1/2)C′

= (CΛ1/2)(Λ1/2C′)

= (CΛ1/2)(CΛ1/2)′

= PP′

This is specially relevant when A is a covariance matrix, by definition it is symmetric and positive
definite.
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2 Magnus & Neudecker - Matrix Differentials

2.1 Differentials, Partial Derivatives, Jacobians, Gradients (pg93)
Let f : S → Rm be a function defined on a set S ∈ Rn. Let c be an interior point of S, and let B (c, r)
be an n-ball lying in S.

2.1.1 Differentials

Let u ∈ Rn with ‖u‖ < r, so that c+ u ∈ B (c, r). If there exists a real m× n matrix A, depending on
c but not on u, such that:

f (c+ u) = f (c) +A (c)u+ rc (u) lim
u→0

rc (u)

‖u‖
= 0

then the function f is differentiable at c. Matrix A is the first derivative of f at c, and the m×1 vector

df (c;u) = A (c)u

its (first) differential. Note that the differential is a linear function of u and maps to the same space
as f .

If f is differentiable it can be approximated by an affine function1 of u. Note that this can be done
only at an interior point of an open set.

2.1.2 Partial Derivatives

Let fi : S → R (i = 1, . . . ,m) be the ith component function of f , and ej the jth unit vector in Rn.
Consider t ∈ R such that c+ tej ∈ B (c, r) for all j.

Consider the limit:
Djfi (c) =

∂fi
∂xj

(c) = lim
t→0

fi (c+ tej)− fi (c)

t

When the limit exists it is called the jth partial derivative of fi.
The Jacobian matrix of f at c is defined as the matrix of partial derivatives, where each row

corresponds to a component of the function (i = 1, . . . ,m) and each row to a component of the argument
(j = 1, . . . , n):

Df (c) =


D1f1 (c) D2f1 (c) · · · Dnf1 (c)
D1f2 (c) D2f2 (c) · · · Dnf2 (c)

...
. . .

D1fm (c) Dnfm (c)

 =


∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
. . .

∂f2m
∂x1

∂fm
∂xn


When a function f is differentiable the matrix A of the definition above is given by A (c) = Df (c),

so that df (c;u) = (Df (c))u.
The gradient ∇f is an n×m matrix defined as the transpose of the Jacobian:

∇f (c) = [Df (c)]
′

When f is a real valued function the Jacobian is a 1× n vector and the gradient a n× 1 vector.

2.1.3 The Chain Rule

Consider now a function g : Rm → Rk such that it is differentiable at a point b = f (c), let its Jacobian
be Dg (b) then:

D (g ◦ f) (c) = (Dg (b)) (Df (c))

So that the Jacobian of the new function is the product of the Jacobian of the original two.
1An affine function has the form g (x) = a+ bx.

6



2.2 Scalar Functions of a Vector (pg200)

The two most important cases of a scalar function of an n× 1 vector x are the linear form φ (x) = a
′
x,

where a is an n × 1 vector of constants, and the quadratic form ψ (x) = x
′
Ax, where A is an n × n

matrix of constants.

Fuction Differential Jacobian Gradient
a
′
x a

′
dx a

′
a

x
′
Ax x

′
(
A+A

′
)
dx x

′
(
A
′
+A

) (
A+A

′
)
x

For the differential of the quadratic function:

dψ (x) = dx
′
Ax

= (dx)
′
Ax+ x

′
Adx

=
(

(dx)
′
Ax
)′

+ x
′
Adx

= (Ax)
′
dx+ x

′
Adx

= x
′
A
′
dx+ x

′
Adx

= x
′
(
A
′
+A

)
dx

Note that if A is symmetric then dψ (x) = 2x
′
Adx.

2.3 Examples
Chain rule:

φ (x) = ex
′
x

dφ (x) = dex
′
x = ex

′
xd
(
x
′
x
)

= ex
′
x
(

(dx)
′
x+ x

′
dx
)

= ex
′
x
(
x
′
dx+ x

′
dx
)

= 2ex
′
xx
′
dx

Dφ (x) = 2ex
′
xx
′

Note that x
′
dx = (dx)

′
x since they are or order 1× 1, hence symmetric.

OLS:
φ (β) = (y −Xβ)

′
(y −Xβ) = e

′
e

dφ (β) = de
′
e = 2e

′
de = 2 (y −Xβ)

′
d (y −Xβ) = −2 (y −Xβ)

′
Xdβ

Dφ (β) = −2y
′
X + 2β

′
X
′
X

∇φ (β) = −2X
′
y + 2X

′
Xβ
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3 Ruud (Chapter 2)

Consider a system of variables where one variable y is explained by k variables x = (x1, . . . , xk)
′
. There

are n (ordered) observations of the variables:

y1 x1,1 . . . xk,1
...

...
. . .

...
yn x1,n . . . xk,n

Observations of the variables are contained in a n × 1 vector y and a n × k matrix X, so that the
observations are [y|X].

y =

 y1

...
yn

 X =

 x1,1 . . . xk,1
...

. . .
...

x1,n . . . xk,n

 =

 x
′

1
...
x
′

n



The way in which y is explained by x is assumed to be linear. The relation is then for a given
observation i:

yi = x1,iβ1,i + . . . xk,iβk,i + εi = x
′

iβi + εi

It is furthermore assumed that the relation between x and y does not depend in the observation:
∀i,jβi = βj = β. Then it is possible to write:

y = Xβ + ε

where β is a k × 1 vector and ε = (ε1, . . . εn)
′
is a n× 1 vector or residuals.

The fit of the relation between y and x depends on β and is measured by how “small” ε is. If ε
where to be equal to zero (∀iεi = 0) then y = Xβ, this would be the best possible fit. In that case
each observation of y would be a linear combination of the variables in the corresponding observation
of x. This fact will be used below.

Even though the system has k + 1 variables, given the sample, they all belong to the same space.
All the variables can be understood as vectors of the observation space Rn, each variable is just an
ordered tuple of n observations, hence all variables belong to a space with the same dimension (n).
Since Rn is a vector space scalar multiplication and addition are well defined between its elements.
The linear relation between y and x can then be understood as: y1

...
yn

 = β1

 x1,1

...
x1,n

+ . . .+ βk

 xk,1
...

xk,n

+

 ε1
...
εn


8



Or more compactly:
y = β1x1 + . . .+ βkxk + ε

where y, x1, . . . , xk, ε ∈ Rn.
It becomes clear that x can perfectly explain any vector (of observations) that has the form Xγ

for arbitrary γ ∈ Rk. That is, any vector that belongs to the subspace (of Rn) formed by linear
combinations of the variables x1, . . . , xk ∈ Rn, since these variables are the columns of matrix X that
subspace is called the column space of X, or col (X). Formally:

col (X) =
{
z ∈ Rn|∃γ∈Rkz = Xγ

}
The procedure of varying β only allows movement across the elements of the subspace col (X) and
not in whole space Rn. When y ∈ col (X) there exists β ∈ Rk such that y = Xβ, the relation is (by
definition) perfectly linear and the best fit is achieved.

When y /∈ col (X) it is not possible to get a perfect fit (ε 6= 0), but it is possible to choose β ∈ Rk
as to find an element in col (X) that is “close” to y. Closeness in Rn can be captured by the Euclidean
norm, so the problem is to find a β that minimizes the distance between y and Xβ as measured by

the norm ‖z‖ =
√
z′z =

√
n∑
i=1

z2
i . Since the argmin of the problem is invariant to monotone increasing

transformation of the objective function this problem is equivalent to:

min
β∈Rk

‖y −Xβ‖2 = min
β∈Rk

(y −Xβ)
′
(y −Xβ) = min

β∈Rk

n∑
i=1

(
yi − x

′

iβ
)2

Or in terms of the “error” ε:

min
β∈Rk

‖ε‖2 = min
β∈Rk

ε
′
ε = min

β∈Rk

n∑
i=1

ε2

That is, finding β such that it minimizes the sum of square residuals.
Since varying β in Rk is equivalent to moving in the column space of X then the problem can be

also stated as:
min

µ∈col(X)
‖y − µ‖2

This is a known problem, the solution to it is given by µ̂ which is called the orthogonal projection of
y onto X. The minimum distance between y and its projection µ̂ is obtained when their difference
(y − µ̂) is orthogonal to the column space of X.
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When X has full column rank the projection can be obtained by means of the projector matrix:

PX = X
(
X
′
X
)−1

X
′

The solution to the above problem is given by:

µ̂ = PXy Xβ̂ = PXy Xβ̂ = X
(
X
′
X
)−1

X
′
y X

′
Xβ̂ =

(
X
′
X
)(

X
′
X
)−1

X
′
y X

′
Xβ̂ = X

′
y

β̂ =
(
X
′
X
)−1

X
′
y

Note that PX projects vector in the column space of X to themselves and vectors that are in col (X)
⊥,

the orthogonal complement of col (X), to zero:

• Let z ∈ col (X) then there exists γ ∈ Rk such that z = Xγ, moreover:

PXz = X
(
X
′
X
)−1

X
′
z = X

(
X
′
X
)−1

X
′
Xγ = Xγ = z

• Let z ∈ col (X)
⊥

=
{
z ∈ Rn|X ′z = 0

}
, then:

PXz = X
(
X
′
X
)−1

X
′
z = X

(
X
′
X
)−1

0k×1 = 0n×1

The projector matrix can also be used to project vectors to the orthogonal complement of a space by
means of the annihilator matrix:

MX = I − PX
In this wayMXz ∈ col (X)

⊥, moreover if z ∈ col (X) thenMXz = 0 and if z ∈ col (X)
⊥ thenMXz = z.

The residual (the part of y that is not explained by a linear combination of X) is then determined by
the part of y that is orthogonal to the elements in X, hence:

e = MXy = y − Pxy = y −Xβ̂

If y is orthogonal to x the solution to the problem is to set β̂ = 0, and the more close is y to be
a linear combination of the variables in X the lower the error, as shown before if y ∈ col (X) then
e = MXy = 0.

When X does not have full column rank the dimension of the subspace col (X) is less than k, there
is at least one redundant column (that is contained in the subspace formed by the other columns).
Then the orthogonal projection is still defined, but there is more than one way to express the projector
matrix.

10



4 Wooldridge (Chapter 2 - Simple Linear Model)
Consider a random sample of variables {yi, xi}ni=1 that was originated following the linear relation:

yi = β0 + β1xi + εi

under the restrictions that E [ε] = 0 and Cov [ε, x] = E [εx] = 0 (note that there are no is in the
restrictions since they hold for the random variable and not for a particular realization). Given the
relation between y and x the relation between the variables the restrictions can be written as:

E [y − β0 − β1x] = 0

E [(y − β0 − β1x)x] = 0

The method of moments can be then used to estimate
(
β̂0, β̂1

)
such that the sample counterparts of

the restrictions hold:

1

n

n∑
i=1

[
yi − β̂0 − β̂1xi

]
= 0

1

n

n∑
i=1

[(
yi − β̂0 − β̂1xi

)
xi

]
= 0

The same conditions are obtained from minimizing the sum of squared residuals.
From the first equation:

β̂0 = y − β̂1x

where y =
∑
yi/n and x =

∑
xi/n.

Replacing on the second equation:

1

n

n∑
i=1

[(
(yi − y)− β̂1 (xi − x)

)
xi

]
= 0

n∑
i=1

[(yi − y)xi] = β̂1

[
n∑
i=1

(xi − x)xi

]

Note that:
n∑
i=1

(xi − x)
2

=

n∑
i=1

(
x2
i − 2xxi + x2

)
=

n∑
i=1

((
x2
i − xxi

)
−
(
xxi − x2

))
=

n∑
i=1

(xi − x)xi −

(
n∑
i=1

xxi − nx2

)

=

n∑
i=1

(xi − x)xi −

(
x

n∑
i=1

xi − nx2

)

=

n∑
i=1

(xi − x)xi

11



and that in a similar way:

n∑
i=1

[(yi − y) (xi − x)] =

n∑
i=1

(yi − y)xi −
n∑
i=1

(yi − y)x

=

n∑
i=1

(yi − y)xi −

[
x

n∑
i=1

yi − nyx

]

=

n∑
i=1

(yi − y)xi

Replacing in the original equation

β̂1 =

n∑
i=1

(yi − y) (xi − x)

n∑
i=1

(xi − x)
2

=

1
n

n∑
i=1

(yi − y) (xi − x)

1
n

n∑
i=1

(xi − x)
2

=
Ĉov (y, x)

V̂ar (x)

In way the coefficient on x is a measure of the correlation between x and y, it has the same sign and
its level is adjusted by the variance of x. The more variance x has the lower the value (since a unit
increase in x means less when x varies in the thousands).

From the matrix form of the problem one also has:

[
β̂0

β̂1

]
=

[ 1 · · · 1
x1 · · · xn

] 1 x1

...
...

1 xn



−1 [

1 · · · 1
x1 · · · xn

] y1

...
yn


=

(
n nx
nx

∑
x2
i

)−1 [
ny∑
yixi

]
=

1

n
∑
x2
i − n2x

[ ∑
x2
i −nx

−nx n

] [
ny∑
yixi

]
=

1

(
∑
x2
i − nx)

[ ∑
x2
i y − x

∑
yixi

−nxy +
∑
yixi

]
=

1∑
(xi − x)

2

[ ∑
x2
i y − x

∑
yixi∑

yixi −
∑
xiy

]
=

1∑
(xi − x)

2

[ ∑
x2
i y − x

∑
yixi∑

(yi − y)xi

]
=

1∑
(xi − x)

2

[ [∑
(xi − x)

2
]
y − x (

∑
(yi − y)xi)∑

(yi − y)xi

]

=

 y − x
(∑

(yi−y)xi∑
(xi−x)2

)
∑

(yi−y)xi∑
(xi−x)2


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Where the first element of the second to last step is obtained as follows:∑
x2
i y − x

∑
yixi =

[∑
(xi − x)

2
]
y −

[∑
(xi − x)

2
]
y +

∑
x2
i y − x

∑
yixi

=
[∑

(xi − x)
2
]
y +

(∑
x2
i −

[∑
(xi − x)xi

])
y − x

∑
yixi

=
[∑

(xi − x)
2
]
y + xy

∑
xi − x

∑
yixi

=
[∑

(xi − x)
2
]
y − x

(∑
yixi − y

∑
xi

)
=

[∑
(xi − x)

2
]
y − x

(∑
(yi − y)xi

)
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5 FWL and Correlations

5.1 FWL with two explanatory variables
Consider a random sample of variables {yi, xi, zi}ni=1 for n = 200 that was originated following the
linear relation:

yi = β0 + β1xi + β2zi + εi

The idea is to present different ways of visualizing the data and obtaining the parameter values. There
is an inherent difficulty in presenting data when there are multiple dimensions of it, and doing two
dimensional cuts of the data does not reveal all the information needed to interpret the results. The
use of FWL facilitates the analysis of the data.

Let x ∼ LN (0.5, 1.5), z ∼ U (3, 10), ε ∼ N (0, 1) and the true parameters be given by: β0 = 50,
β1 = 1.5 and β2 = −2.

Given the sample, the correlation between x, z and y is given by:

x z y

x 1 0.0696 0.8690
z 0.0696 1 -0.4181
y 0.8690 -0.4181 1

The relation between the variables can be examined through a scatter plot, yet the dimensionality
of the problem makes it difficult to analyze:
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It becomes even more confusing when trying to present the fitted plane in the same graph (recall
that OLS will try to fit a plane to the observations the same way it fits a line when there is only one
explanatory variable):
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One alternative to the above presentation is to present two dimensional plots showing pairs (x, y)
or (z, y). It is possible to fit a line to those pairs by projecting y onto x (or z), that is the points in

the line are obtained as ŷ = Pιxy = [ι x]
(

[ι x]
′
[ι x]

)−1

[ι x]
′
y, where ι = [1, . . . , 1]

′
. Note that this line

is not the same as the one obtained when regressing y on x and z, instead it is the line obtained when
regressing y on x (or z) alone.
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The difference between the estimates of the two dimensional approach and the three dimensional
graph is presented in the following table:

β β̂xz β̂x β̂z

β0 50 49.9527 37.1273 53.8641
β1 1.5 1.5068 1.4509 0
β2 -2 -2.0138 0 -1.7508

The difference between the estimated coefficients of the two dimensional cases and the true coeffi-
cient is explained by the “omitted variable bias”.

A better way to show the relation between x and y and z and y in a two dimensional setting is
to use FWL to eliminate the variation in the interesting variables explained by the omitted variables.
The following figure plots pairs of (Mιzx,Mιzy) and (Mιxz,Mιxy) where Mιx = I − Pιx. The fitted
lines are the projection of Mιzy on Mιzx (or Mιxy on Mιxz) given by:

ŷ = PMιzxMιzy = Mιzx
(

(Mιzx)
′
Mιzx

)−1

(Mιzx)
′
Mιzy = Mιzx

(
x
′
Mιzx

)−1

x
′
Mιzy

The result is:
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The OLS estimator is then not just a measure of correlation between variables, but rather a measure
of marginal correlation, the correlation between y and an explanatory variable x after taking out the
correlation induced by the possible relation between x and other explanatory variables (z). This
marginality allows to decompose y into the effect of each of the variables that explains its movements,
while a mere correlation can only indicate the direction of the relation and how strong it is.

As will be shown below the strength of the relation between two variables can be induced by a
third variable that relates them, when the third variable is included OLS can identify its effect over the
relations between variables concentrating in first hand effects only (the direct effects of one variable
over another).
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5.2 FWL with irrelevant variables
Consider a random sample of variables {yi, xi, zi}ni=1 for n = 200 that was originated following the
linear relation:

yi = β0 + β1xi + εi zi = xi + ui

In this case there are two explanatory variables for y, but only one of them is in fact “causing” y. The
irrelevant variable is nevertheless related to the relevant one, the correlation between them makes the
irrelevant variable correlated with the independent one as well. If the variables were simply plotted in
pairs the correlation between x and z will make z appear to have a relation to y. The use of FWL to
present the variables eliminates the part of z that is correlated with x, thus eliminating its correlation
with y, in this way the irrelevance of z for the regression becomes apparent.

Let x ∼ LN (0.5, 1.5), u ∼ N (0, 3), ε ∼ N (0, 1) and the true parameters be given by: β0 = 50,
β1 = 1.5 and β2 = 0.

Given the sample, the correlation between x, z and y is given by:

x z y

x 1 0.8785 0.9918
z 0.8785 1 0.8692
y 0.9918 0.8692 1

The correlation between y and x is close to one (as expected) but the correlation between y and
z is also high (0.87), a correlation this high is sometimes taken as an early indicator of a connection
between variables. As before the

The relation between the variables can be examined through a scatter plot, yet the dimensionality
of the problem makes it difficult to analyze, it is however possible to observe that all the variation in
the vertical axis (y) is explained by variation in the right axis (x):
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When one presents the fitted plane in the same graph it can be observed that the plane does not
change along the z axis (left) when holding a value of x fixed (right), this effect becomes more difficult
to appreciate when there are more than two potential explanatory variables:
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One alternative to the above presentation is to present two dimensional plots showing pairs (x, y)
or (z, y) along with its fitted lines. In this case it would seem like variable y is related (in a causal
sense) to both x and z, yet this is only a product of the positive correlation induced between y and z
by the underlying relations x− y and x− z. Yet the fit of the line to the relation between y and z is
remarkably good in the sample (recall that the line is obtained by regressing y on x (or z) alone).
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The difference between the estimates of the two dimensional approach and the three dimensional
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graph is presented in the following table:

β β̂xz β̂x β̂z

β0 50 50.0554 50.0547 51.357
β1 1.5 1.511 1.4985 0
β2 0 -0.0123 0 1.1415

When FWL is used to present the relation between x and y and z and y result changes dramatically,
while the relation between x and y remains present the relation between z and y disappears, the fitted
lines also indicate that there is no relation between z and y once the variation of x is taken out. As
before the figure plots pairs of (Mιzx,Mιzy) and (Mιxz,Mιxy), and fitted lines given by ŷ = PMιzxMιzy
and ŷ = PMιxzMιxy.
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6 Monte Carlo
The objective of a Monte Carlo simulation is to verify finite and large sample results. Given a model
for how variables are determined one can test the performance and properties of sample estimators by
generating several samples drawn from the same population (same model with variables following the
same distribution).

Monte Carlo simulation takes advantage of the law(s) of large numbers. In general all results on
the law of large numbers specify conditions over a random variable (z) that guarantee that (given a
sample {zi}mi=1):

1

m

m∑
i=1

zi −→ E [zi]

Depending on the conditions imposed over z different types of convergence can be obtained. In general
one needs that E [zi] = µ for all i and that the random variable is bounded (in some sense), it is
sufficient to impose that E [|zi|] <∞ , but stronger convergence results can be obtained if the random
variable has bounded second moments, i.e. V [zi] = σ2 <∞.

In a Monte Carlo simulation the random variable of interest is, for example, the estimator of a
parameter

(
β̂
)
, or a statistic for hypothesis testing. Given a population each random sample, drawn

from that population, gives rise to an estimator, if there are N such samples one can compute N

estimators
{
β̂i

}N
i=1

, this set constitutes a sample of a random variable, in this case of β̂, this random

variable satisfies E
[
β̂i

]
= β for each i and has bounded second moments (provided that the underlying

process for x and ε has bounded second moments), in particular V
[
β̂i

]
= σ2

εE

[(
X
′
X
)−1

]
< ∞ for

all i. One can use this sample (of estimators) to compute sample moments, by increasing N (the
number of samples), this sample moments will converge to the true population values for β̂.

There is another dimension in which a Monte Carlo simulation treats a given random variable. If
all the random variables are drawn from the same population, then they are realizations of the same
distribution. Given a theoretical distribution for the random variable the Monte Carlo simulation
allows to verify it by examining the behavior of the realizations. This two uses of the Monte Carlo are
presented below.

Let x ∼ N
(
µ, σ2

x

)
and ε ∼ N

(
0, σ2

ε

)
be two real valued random variables such that E [ε|x] = 0,

and let y be such that:
y = β0 + β1x+ ε

for given parameters β0 and β1.

Consider now a random sample {(xi, yi)} of sample n. Define y = [y1, . . . , yn]
′
andX =

[
1 · · · 1
x1 · · · xn

]′
as the sample observations. An econometrician can compute estimates for β = [β0, β1]

′
through OLS,

she can also compute an estimator for σ2
ε . The estimators are given by:

β̂ =
(
X
′
X
)−1

X
′
y s2 =

e
′
e

n− 2

where e = y −Xβ̂.
Given the distribution of ε and the model for y it is known that:

E
[
β̂
]

= β V
[
β̂
]

= σ2
εE

[(
X
′
X
)−1

]
β̂ ∼ N

(
β, σ2E

[(
X
′
X
)−1

])
E
[
s2
]

= σ2
ε

These properties can be tested by computing averages across different samples, all drawn from the
same distribution, and all following the same model. For this, first define the size of each sample (n) and
the number of samples to be simulated (N), along with the parameters of the model: µ, σ2

x, σ
2
ε , β0, β1.
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%% Parameter Values

n = 100 ; % Sample size
N = 10000 ; % Number of samples

beta_0 = -5 ; % True intercept
beta_1 = 2 ; % True intercept

% Error term is distributed normal with mean 0 and std sigma_e
sigma_e = 0.8 ; % Error Variance

% Independent variable is distributed normal with mean mu_x and std dev sigma_x
mu_x= 7 ; % Mean of independent variable
sigma_x= 0.6 ; % Std of independent variable

Given parameter values the variables can be simulated. Note that it is more efficient to simulate
all the samples at once.

%% Variable simulation

% Error
eps_tot = normrnd(0,sigma_e,n,N);
% Independent variable
x_tot = normrnd(mu_x,sigma_x,n,N) ;
% x_tot = rand(n,N);
% Dependent variable
y_tot = beta_0+beta_1*x_tot+eps_tot ;

Then one can compute the estimators for the parameters, residuals and variance of the residuals:

%% Estimation

beta_ols = NaN(2,N) ; % Estimated Parameters
res_ols = NaN(n,N) ; % Residuals of the regression
s2 = NaN(N,1) ; % Estimates of error variance
XX_inv = NaN(2,2,N);
for i=1:N

X = [ones(n,1),x_tot(:,i)] ;
beta_ols(:,i) = ((X’*X)\X’)*y_tot(:,i) ;
res_ols(:,i) = (eye(n)-X*((X’*X)\X’))*y_tot(:,i) ;
s2(i) = res_ols(:,i)’*res_ols(:,i)/(n-2) ;
XX_inv(:,:,i) = (X’*X)\eye(2) ;

end

beta_mean = mean(beta_ols,2) ; % This should be a vector of the treu parameters

res_mean = mean(res_ols) ; % This should be a vector of zeros
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s2_mean = mean(s2) ; % This should be sigma_eˆ2

XX_inv_mean = mean(XX_inv,3) ;

beta_cov = cov(beta_ols’) ; % This should be equal to sigma_e*E[(X’X)ˆ-1]

beta_cov_0 = sigma_eˆ2*XX_inv_mean ;

The code also computes the mean of the estimators across samples and the theoretical variance of

β̂ (approximated with the
̂

E
[
(X ′X)

−1
]

= 1
n

∑(
X
′

jXj

)−1

).
The results are reported in the following tables:

β0 β1 σ2
ε

True Value -5 2 0.64
Mean of Estimates -5.0021 2.0002 0.6412

The results in the table indicate that the estimators are in fact unbiased.
And for the covariance matrix:

TrueValue β0 β1 Estimates β0 β1

β0 [ 0.9042] [-0.1283] β0 [ 0.9018] [-0.1278]
β1 [-0.1283] [ 0.0183] β1 [-0.1278] [ 0.0182]

The results hold for the variance covariance matrix of the parameters. This will also show up in
the graph below that presents the (actual) distribution of the estimators across samples.

The tables can be generates as follows:

% Reporting
b_mat = [beta_0 beta_1 sigma_eˆ2;

beta_mean’ s2_mean ];
col={’’,’b0’,’b1’,’sigma_e’};
row={’true’;’mean’};
D=[col; [row , num2cell(b_mat)]];
disp(’Parameters’)
disp(D)

c_mat = [beta_cov_0 NaN(2,1) beta_cov];
col={’True’,’b0’,’b1’,’sample’,’b0’,’b1’};
row={’b0’;’b1’};
D=[col; [row , num2cell(c_mat)]];
disp(’Covariance Matrix’)
disp(D)

Finally one can plot the distribution of the estimated parameters and the theoretical normal dis-
tribution that they are supposed to follow:
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The distribution of the parameters in the (simulated) samples resembles the normal distribution
that the parameter is supposed to take.

The code below generates the graph.

%% Ploting

% Beta_Hat

b0_points = linspace(min(beta_ols(1,:)),max(beta_ols(1,:)),500) ;
b0_pdf = normpdf(b0_points,beta_0,(beta_cov_0(1,1))ˆ0.5) ;

b1_points = linspace(min(beta_ols(2,:)),max(beta_ols(2,:)),500) ;
b1_pdf = normpdf(b1_points,beta_1,(beta_cov_0(2,2))ˆ.5) ;

figure;
subplot(1,2,1)

hold on;
[a,b] = hist(beta_ols(1,:),100) ;
plot(b0_points,b0_pdf,’k’,’linewidth’,2.5);

% bar(b,a/N/diff(b(1:2)),0.3) ;
plot(b,a/N/diff(b(1:2)),’color’,[0.6,0.6,0.6],’linewidth’,1.5) ;
line([beta_0 beta_0],[0,max(b0_pdf)],’linewidth’,2.5)
xlim([min(beta_ols(1,:)),max(beta_ols(1,:))])
legend(’\beta_0 pdf’,’\beta_0 Histogram’,’location’,’southoutside’);
title(’\beta_0 Distribution’)
hold off;
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subplot(1,2,2)
hold on;
[a,b] = hist(beta_ols(2,:),100) ;
plot(b1_points,b1_pdf,’k’,’linewidth’,2.5);

% bar(b,a/N/diff(b(1:2)),0.3) ;
plot(b,a/N/diff(b(1:2)),’color’,[0.6,0.6,0.6],’linewidth’,1.5) ;
line([beta_1 beta_1],[0,max(b1_pdf)],’linewidth’,2.5)
xlim([min(beta_ols(2,:)),max(beta_ols(2,:))])
legend(’\beta_1 pdf’,’\beta_1 hat Histogram’,’location’,’southoutside’);
title(’\beta_1 Distribution’)
hold off;

figurename=’Monte_Carlo_Beta’;
print(’-dpdf’,figurename)

The properties of the estimator that have been discussed so far are all finite sample properties,
hence they are valid for any value of n. There is a difference between the role played by n and the role
played by N . The results above hold for any n provided that N is big, that is, the higher N is (the
larger the sample of the random variable of interest) the more exact are the results to what the theory
predicted. If N is not too big there might not be enough observations of β̂ to get 1

n

∑
β̂i ∼ E

[
β̂i

]
= β,

or not enough to get β̂ to look normal.
Consider two examples, in the first maintain the number of replications N but lower n, in the second

one maintain the n but lower N . It is expected that the first one maintains all the results above, while
adjusting for a new covariance matrix of the estimator, while in the second one the approximation to
the true moments of the parameter should be less precise.

The results for the same simulations with n = 30 are presented below:

β0 β1 σ2
ε

True Value -5 2 0.64
Mean of Estimates -4.9993 1.9999 0.6448

TrueValue β0 β1 Estimates β0 β1

β0 [ 3.2296] [-0.4582] β0 [ 3.1896] [-0.4528]
β1 [-0.4582] [ 0.0655] β1 [-0.4528] [ 0.0647]
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The normal distribution still holds and the estimates are all unbiased. This changes when one takes
only 100 simulations (N = 100).

β0 β1 σ2
ε

True Value -5 2 0.64
Mean of Estimates -5.1887 2.0297 0.6323

TrueValue β0 β1 Estimates β0 β1

β0 [ 3.2804] [-0.4664] β0 [ 3.8532] [-0.5450]
β1 [-0.4664] [ 0.0667] β1 [-0.5450] [ 0.0775]
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7 Selected Exercises - Homework 2

7.1 Hayashi (p46) Exercise 3

For F = (Rb− r)
′ [
RV̂ [b]R

′
]−1

(Rb− r) |#r to be well defined matrix R
(
X
′
X
)−1

R
′
must be non-

singular, prove that it is also positive definite.

• For R
(
X
′
X
)−1

R
′
to be positive definite we need ∀z 6=0z

′
R
(
X
′
X
)−1

R
′
z > 0 with z ∈ R#r.

• We know X
′
X is positive definite then so is

(
X
′
X
)−1

.

• Since R is of full (row) rank ∀z 6=0R
′
z 6= 0.

• Define w = R
′
z then z

′
R
(
X
′
X
)−1

R
′
z = w

′
(
X
′
X
)−1

w > 0 where the inequality follows from(
X
′
X
)−1

being p.d.

• Since the above works for any z ∈ R#r\ {0} then the result is proven.

7.2 Hayashi (p46) Exercise 7

Under A1.1 to A1-5 V
[
s2|X

]
= 2σ4

n−k

• Note s2 = e
′
e

n−k = εMXε
n−k .

• Under A1.5 ε ∼ N
(
0, σ2

)
. Then ε

σ ∼ N (0, 1). Then
(
ε
σ

)
MX

(
ε
σ

)
|X ∼ χ2

(n−k).

• Then: V
[
s2|X

]
= V

[
εMXε
n−k |X

]
= V

[(
σ2

n−k

) (
ε
σ

)
MX

(
ε
σ

)
|X
]

= σ4

(n−k)2
V
[(
ε
σ

)
MX

(
ε
σ

)
|X
]

=

2σ4

n−k

7.3 Johnston & Dinardo (Chapter 1 - Relationship Between Two Variables)
I

Consider a model yi = βxi + ui without an intercept and a random sample for {yi, xi}ni=1. There are
two estimators for β:

β1 =

∑
xiyi∑
x2
i

β2 =
y

x
=

∑
yi∑
xi

All usual assumptions apply, in particular E [ui|X] = 0 and V [ui|X] = σ2.
Note that:

β1 = β +

∑
xiui∑
x2
i

β2 = β +

∑
ui∑
xi

1. Expected value of the estimators:

E [β1|X] =
1∑
x2
i

∑
xiE [yi|X] =

1∑
x2
i

∑
xi (βxi + E [ui|X]) = β

E [β2|X] =
1∑
xi

∑
E [yi|X] =

1∑
xi

∑
(βxi + E [ui|X]) = β
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2. Variance of the estimators:

V [β1|X] = V

[
β +

∑
xiui∑
x2
i

|X
]

=
1

(
∑
x2
i )

2V
[∑

xiui|X
]

=
1

(
∑
x2
i )

2

(∑
x2
iV [ui|X]

)
=

σ2∑
x2
i

V [β2|X] = V

[
β +

∑
ui∑
xi
|X
]

=
1

(
∑
xi)

2V
[∑

ui|X
]

=
nσ2

(
∑
xi)

2

3. Efficiency:

V [β1|X] ≤ V [β2|X]

σ2∑
x2
i

≤ nσ2

(
∑
xi)

2(∑
xi

)2

≤ n
(∑

x2
i

)
This can be verified with the Cauchy-Schwarz inequality: (

∑
xiyi)

2 ≤
(∑

x2
i

) (∑
y2
i

)
, choosing

yi = 1 one gets the result.

7.4 Johnston & Dinardo (Chapter 1 - Relationship Between Two Variables)
II

Consider a random sample of variables {yi, xi}ni=1 that was originated following the linear relation:

yi = β0 + β1xi + ui

This can be written as:
yi = β0 + β1x+ β1 (xi − x) + ui

for some value x. Rename variables such that γ0 = β0 + β1x, γ1 = β1 and zi = xi − x. The model is
then:

yi = γ0 + γ1zi + ui

Note that z = 0 and E [ui|z] = 0.
Given parameter estimates define the OLS residual:

ei = yi − γ̂0 − γ̂1zi

1. Verify that if one where to regress y on a constant and z (yi = γ̂0 + γ̂1zi + ei) the estimated
coefficients would be: γ̂0 = y and γ̂1 = β̂1.

γ̂0 = y − γ̂1z = y

γ̂1 =

∑
(yi − y) (zi − z)∑

(zi − z)2 =

∑
(yi − y) zi∑

z2
i

=

∑
(yi − y) (xi − x)∑

(xi − x)
2 = β̂1

2. Verify that Cov (γ̂0, γ̂1) = 0. (Hint: Use the variance-covariance matrix of the OLS estimator).

V (γ) = σ2


 1 z1

...
...

1 zn


′  1 z1

...
...

1 zn



−1

= σ2

[
n

∑
zi∑

zi
∑
z2
i

]−1

=
σ2

n
∑
z2
i − (

∑
zi)

2

[ ∑
z2
i −

∑
zi

−
∑
zi n

]
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Yet since
∑
zi = nz = 0 we have:

V (γ) =

[
σ2

n 0

0 σ2∑
z2i

]

This shows that Cov (γ̂0, γ̂1) = 0.

3. Verify that Cov (ei, γ̂0) = 0.

Cov (ei, γ̂0) = E [(yi − γ̂0 − γ̂1zi) (γ̂0 − γ0)]

= E [(ui − (γ̂0 − γ0)− (γ̂1 − γ1) zi) (γ̂0 − γ0)]

= E [ui (γ̂0 − γ0)]− E
[
(γ̂0 − γ0)

2
]
− E [(γ̂1 − γ1) (γ̂0 − γ0)] zi

= E [uiγ̂0]− σ2

n
− 0

= E [ui (γ0 + γ1z + u)]− σ2

n

= E [uiu]− σ2

n

=
σ2

n
− σ2

n
= 0

Note: E [uiγ̂0] = σ2

n .

4. Verify that Cov (ei, γ̂1) = 0.

Cov (ei, γ̂1) = E [(yi − γ̂0 − γ̂1zi) (γ̂1 − γ1)]

= E [(ui − (γ̂0 − γ0)− (γ̂1 − γ1) zi) (γ̂1 − γ1)]

= E [ui (γ̂1 − γ1)]− E [(γ̂1 − γ1) (γ̂0 − γ0)]− E
[
(γ̂1 − γ1)

2
]
zi

= E [uiγ̂1]− 0− σ2∑
z2
i

zi

= E

[
ui

(∑
yjzj∑
z2
j

)]
− σ2∑

z2
i

zi

=
1∑
z2
i

[∑
(E [uiyj ] zj)

]
− σ2∑

z2
i

zi

=
σ2∑
z2
i

zi −
σ2∑
z2
i

zi = 0

Note: E [uiγ̂1] = σ2zi∑
z2i
.

5. Verify that Cov (ei, u) = 0
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Cov (ei, u) = E [(ui − (γ̂0 − γ0)− (γ̂1 − γ1) zi)u]

= E [uiu]− E [(γ̂0 − γ0)u]− E [(γ̂1 − γ1)u] zi

=
σ2

n
− E [γ̂0u]− E [γ̂1u] zi

=
σ2

n
− 1

n2

∑
i

∑
j

E [yjui]

− 1

n

∑
i

∑
j

E [yjui] zj

 zi∑
z2
j

=
σ2

n
− σ2

n
− 1

n

σ2
∑
j

zj

 zi∑
z2
j

= 0

Recall that
∑
zj = 0.

6. Verify that Cov (ei,
∑
uizi) = 0

Cov
(
ei,
∑

ujzj

)
= E

[
(ui − (γ̂0 − γ0)− (γ̂1 − γ1) zi)

(∑
ujzj

)]
=

∑
j

E [uiuj ] zj

− E [(γ̂0 − γ0)
(∑

ujzj

)]
− E

(γ̂1 − γ1)

∑
j

ujzj

 zi
= σ2zi − E

[
γ̂0

(∑
ujzj

)]
− E

γ̂1

∑
j

ujzj

 zi
= σ2zi −

∑
j

E [γ̂0uj ] zj

−
∑

j

E [γ̂1uj ] zj

 zi

= σ2zi −

σ2

n

∑
j

zj

−
∑

j

(
σ2∑
z2
k

zj

)
zj

 zi

= σ2zi −

 σ2∑
z2
k

∑
j

z2
j

 zi

= 0

7. Verify that Cov (u,
∑
uizi) = 0.

Cov
(
u,
∑

uizi

)
=

1

n
E

∑
j

uj

(∑
i

uizi

) =
1

n

∑
j

∑
i

E [ujui] zi

 =
σ2

n

∑
i

zi = 0

7.5 Binary explanatory variable
Consider the following model: yi = β0 + β1xi + εi where yi measures the income of individuals and
xi is a dummy variable indicating whether the individual is above average in height (xi = 1) or below
average in height (xi = 0).
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The OLS estimation solves:

min
β0,β1

n∑
i=1

(yi − β0 − β1xi) = min
β0,β1

[∑
xi=0

(yi − β0) +
∑
xi=1

(yi − β0 − β1)

]

The first order conditions are:∑
xi=0

(
yi − β̂0

)
+
∑
xi=1

(
yi − β̂0 − β̂1

)
= 0

∑
xi=1

(
yi − β̂0 − β̂1

)
= 0

Using the second condition in the first:

∑
xi=0

(
yi − β̂0

)
= 0 → β̂0 =

∑
xi=0

yi

n0

Then the estimator for β0 is the average income given xi = 0, that is the average income for individuals
below average height.

Replacing on the second equation:

β̂1 =

∑
xi=1

yi

n1
− β̂0

So that the estimator for β1 is the difference between the average income of agents above average
height and agents below average height.

As in the regression with only intercept the best prediction of the model is the mean of the variable,
in this case average income. OLS separates the sample and gives as fitted value the average income of
the type of agent.
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8 OLS and GLS
Consider a model given by:

Y = Xβ + ε

where E [ε|X] = 0 and V [ε|X] = Σ.

• The OLS estimator is given by:

βols =
(
X
′
X
)−1

X
′
Y = β +

(
X
′
X
)−1

X
′
ε

Its expected value is given by:

E [βols|X] = β +
(
X
′
X
)−1

X
′
E [ε|X] = β

Then its variance is:

V [βols|X] = V

[
β +

(
X
′
X
)−1

X
′
ε|X

]
=
(
X
′
X
)−1

X
′
ΣX

(
X
′
X
)−1

• The GLS estimator is given by:

βgls =
(
X
′
Σ−1X

)−1

X
′
Σ−1Y = β +

(
X
′
Σ−1X

)−1

X
′
Σ−1ε

Its expected value is given by:

E [βgls|X] = β +
(
X
′
Σ−1X

)−1

X
′
Σ−1E [ε|X] = β

Then its variance is:

V [βgls|X] = V

[
β +

(
X
′
Σ−1X

)−1

X
′
Σ−1ε|X

]
=

(
X
′
Σ−1X

)−1

X
′
Σ−1ΣΣ−1X

(
X
′
Σ−1X

)−1

=
(
X
′
Σ−1X

)−1

Both estimators are unbiased. It can be shown that βgls is more efficient than βols in the sense that:
V [βols|X]− V [βgls|X] is a positive definite matrix.

Note that if A and B are positive semi definite and invertible matrices then the following implication
holds:

• If A − B is positive semi definite then B−1 − A−1 is also positive semi definite. That is, for all
c 6= 0

c
′
(A−B) c ≥ 0 −→ c

′ (
B−1 −A−1

)
c ≥ 0

Set A = V [βgls|X]
−1 and B = V [βols|X]

−1, then we want to show:

c
′
(
V [βgls|X]

−1 − V [βols|X]
−1
)
c ≥ 0

Which implies the desired result:

c
′
(V [βols|X]− V [βgls|X]) c ≥ 0
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• Since Σ is positive definite there exists P such that Σ = PP
′
and Σ−1 = P−1

′

P−1 with P and
P full ranked.

• Then:

V [βgls|X]
−1 − V [βols|X]

−1
= X

′
Σ−1X −

(
X
′
X
)(

X
′
ΣX

)−1 (
X
′
X
)

= X
′
[
Σ−1 −X

(
X
′
ΣX

)−1

X
′
]
X

= X
′
[
P−1

′

P−1 −X
(
X
′
PP

′
X
)−1

X
′
]
X

= X
′
P−1

′
[
I − P

′
X
(
X
′
PP

′
X
)−1

X
′
P

]
P−1X

= X
′
P−1

′
[
I −

(
P
′
X
)((

P
′
X
)′ (

P
′
X
))−1 (

P
′
X
)′]

P−1X

= X
′
P−1

′

MP ′XP
−1X

=
(
MP ′XP

−1X
)′ (

MP ′XP
−1X

)
• Let c ∈ Rk\ {0} then:

c
′
(
V [βgls|X]

−1 − V [βols|X]
−1
)
c = c

′ (
MP ′XP

−1X
)′ (

MP ′XP
−1X

)
c

=
((
MP ′XP

−1X
)
c
)′ (

MP ′XP
−1X

)
c > 0

• The above is the desired result.

• Note that this was obtained also from the expression X
′
P−1

′

MP ′XP
−1X

– Since MP ′X is idempotent then it is positive definite.

– Since X and P have full rank (k) then P−1X has also rank k.

– Then P−1Xc 6= 0 for c 6= 0 which give
(
P−1X

)′
MP ′X

(
P−1X

)
.

– (In general if B is full ranked and A is positive definite then B
′
AB is positive definite).
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9 Feasible GLS

9.1 General setting
Consider a model given by:

Y = Xβ + ε

where E [ε|X] = 0 and V [ε|X] = Σ. Matrix Σ can have an arbitrary form and can in general be a
function of X.

If Σ is known then the GLS estimator can be implemented as:

βgls =
(
X
′
Σ−1X

)−1

X
′
Σ−1Y

If Σ is not known then GLS is not feasible, for it to be implemented an estimator of Σ has to
be constructed. Provided a random sample {yi, xi}ni=1 = {Y,X} and since the OLS estimator is still
unbiased (and consistent) the residuals it generates are good approximations for ε. Then the residuals
e (of size n× 1) can be used to construct an estimator Σ̂.

A first approximation for Σ̂ is a method of moments estimator, if one had access to N independent
samples {Yj , Xj}Nj=1 one could obtain N residuals ej and create the estimator:

Σ̂ =
1

N

N∑
j=1

eje
′

j −→ E
[
εε
′
]

= Σ

the convergence to the variance of the disturbances ε is obtained by the law of large numbers and the
fact that βols is still a good estimator for β.

When there is only one sample available the method of moments estimators cannot be constructed.
There is an additional problem in this case, matrix Σ is an n × n symmetric matrix, hence it has
n(n−1)/2 different elements, yet the OLS regression only generates n observations for the residuals.
Then, in order to obtain Σ̂ one needs to impose restrictions over Σ so that it can be estimated. Once
one imposes enough restrictions it is possible to use ei as a “sample estimator” of εi and compute Σ̂.

Note that the problem of estimating Σ̂ with only one sample does not go away when the sample
size increases since the number of parameters to estimate increases with the sample. An alternative
is to impose further restrictions, a leading example, explored below, is to assume that residuals are
uncorrelated and that the variance follows a parametric form, so σ2

i = f (γ, zi) for a common parameter
vector γ and a (potentially) observation specific set of variables zi, doing this reduces the dimensionality
of the problem from an estimation of the n σ2

i to the estimation of the parameter γ with the n
observations of e in the sample.

Finally note that imposing too many restrictions is potentially hazardous for the estimation, if the
restrictions don’t hold in the DGP then the F-GLS estimator computed from Σ̂ does not generate
reliable results, in particular the estimator fails to be consistent for β.
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9.2 Parametric assumption example

In order to identify all the elements in Σ one has to impose at least n(n−1)
2 − n = n(n−3)

2 restrictions.
Assume that:

E [εiεj ] =

{
σ2
i if i = j

0 if i 6= j

so that the model is heteroskedastic but has zero correlation between errors. Then there are n param-
eters to estimate

{
σ2
i

}n
i=1

. In order to determine what σ2
i is (for each i) a parametric assumption is

placed over the form of the variance, in particular assume that σ2
i = f (xi), so that all variances follow

the same common function evaluated at the given characteristics of the individual.
One common specification for fi is for it to be linear it (some of) the explanatory variables, it can

also be that it depends on the square of the variables. For the example in this section consider:

f (zi) = z
′

iγ

Since γ is an unknown parameter it has to be inferred from the sample. The following regression
provides a (consistent) estimator of γ - provided that the assumptions over E [εiεj ] and f are correct:

e2 = Zγ + ξ −→ γ̂ =
(
Z
′
Z
)−1

Z
′
e2

Where e2 =
(
e2

1, . . . , e
2
n

)′
and e is the vector of OLS residuals from the regression of Y onto X. Since

the OLS estimates are still unbiased (and consistent) ei is a point estimator of εi and e2
i a point

estimator of σ2
i .

Then σ̂2
i = z

′

i γ̂ and:

Σ̂ =

 σ̂2
1 0

. . .
0 σ̂2

n


With the above results the F-GLS estimator can be computed as:

βfgls =
(
X
′
Σ̂−1X

)−1

X
′
Σ̂−1Y

9.2.1 Monte Carlo simulation

Consider the following DGP:

yi = β0 + β1xi + εi xi ∼ U (a, b) εi ∼ N
(
0, σ2

i

)
σ2
i = γ0 + γ1xi + γ2x

2
i

This model exhibits heteroskedasticity if γ1, γ2 6= 0. Set the following parameter values:

a = 0 b = 15 β0 = −5 β1 = 1.5 γ0 = 0.05 γ1 = 0.1 γ2 = 0.05

N independent samples of n independent observations are generated where N = 10000 and n = 300.
Since observations in a sample are independent of one another it follows that for ε = (ε1, . . . , εn)

′
one

has:

Σ = E
[
εε
′
]

=

 σ2
1 0

. . .
0 σ2

n


The following graph presents the relation between y and x in a given sample and the standard

deviation of the disturbances of that sample. It is evident that for higher values of x the standard
deviation of the error term is larger and the dispersion of y around the fitted line (black line in the
top panel) increases for larger values of x.
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Four different estimator of β = (β0, β1)
′
are considered, the OLS estimator (βols), the GLS estimator

(βgls) that uses the true specification of σ2
i and the true parameter values, a F-GLS estimator (βfgls)

that uses the true specification of the error variance but has to estimate the parameters, and a F-GLS
estimator

(
β̃
)
that has a wrong specification for the error variance. The formulas for the estimators

are:

βols =
(
X
′
X
)−1

X
′
Y

βgls =
(
X
′
Σ−1X

)−1

X
′
Σ−1Y

βfgls =
(
X
′
Σ̂−1X

)−1

X
′
Σ̂−1Y

β̃ =
(
X
′
Σ̃−1X

)−1

X
′
Σ̃−1

0 Y

Where Σ was already defined, Σ̂ = diag
(
σ̂2

1 , . . . , σ̂
2
n

)
with σ̂2

i = γ̂0+γ̂1xi+γ̂2x
2
i and Σ̃ = diag

(
σ̃2

1 , . . . , σ̃
2
n

)
with σ̃2

i = γ̃0 + γ̃1xi. Provided e, the vector of OLS residuals, (γ̂0, γ̂1, γ̂2) is computed from the regres-
sion of e2 on a constant, x and x2, and (γ̃0, γ̃1) is computed from the regression of e2 on a constant
and x.

Note that all the estimator are unbiased for the true β since it is always true that E [ε|X] = 0 (by
construction of the data). This can be verified with the mean of the estimators across the N samples:

Mean β βols βgls βfgls β̃

β0 -5 -4.9975 -4.9995 -4.9239 -4.8764
β1 1.5 1.4997 1.5 1.4934 1.4838

Yet the accuracy of the estimation, measured by the variance of the estimator across samples varies
dramatically between estimators:

Std. Dev. βols βgls βfgls β̃

β0 0.2099 0.0724 19.9983 129.8905
β1 0.0302 0.0181 2.2529 13.2272
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Note that the GLS estimator is by far the most efficient, but that the OLS estimator is (up to
two orders of magnitude) more efficient than the F-GLS estimator under the true specification of the
error. On the other hand the F-GLS estimator that omits x2 from the error variance has the highest
variance.

The results of this Monte Carlo simulation are in line with the theory referenced above by which
F-GLS is only asymptotically efficient, its small sample properties are not determined and hence it
might fail to be more efficient than OLS in a given sample. Also note that under a misspecification of
the error variance the F-GLS fails to even be consistent, this is represented in the above statics by the
large variance of the estimator.

The figure below presents the histograms for β0 (in its different estimators). The left panel presents
the histograms of the whole sample and the right panel censors the sample to consider only realizations
of the estimators in the interval [−10, 0]. Note that in the left panel the scale of the F-GLS estimators
is in the thousands and tens of thousands for the two lower panels.
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The following figure presents a joint plot of the histograms of the right hand panel. Its clear how
the more precise estimator is the GLS estimator (blue line), and even though the mass of estimators of
the OLS and F-GLS estimators in the area between -6 and -4 is similar the distribution of the F-GLS
estimator presents much heavier tails, that is, it is much more likely to face a sample for which the
estimator of β0 lies far away from the true value. Finally note that the specification error in β̃ (green
line) makes its distribution flatter and with heavy and long tails, this is how inconsistency looks like,
adding more observations to the sample doesn’t collapse the distribution on the true value.
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Similar results are obtained for β1. Note that the tails of the F-GLS estimators are more extended
than the OLS ones.
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The reason OLS outperforms F-GLS in a given (small) sample is that the task of correctly estimating
γ using the residuals from the OLS regression is a difficult one. Yet the estimates for γ are not (on
average) far from the truth, the problem consists rather in the lack of precision with which γ can be
estimated.

Mean γ γ̂ γ̃

γ0 0.05 0.0551 -3.23
γ1 0.1 0.1052 1.0896
γ2 0.05 0.0492

The following figure presents the histograms for γ̂. Note that the estimates are skewed and are
sometimes negative.

38



−6 −4 −2 0 2 4 6 8
0

100

200

300

400

γ
0
 F−GLS

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

100

200

300

400

γ
1
 F−GLS

−0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
0

100

200

300

400

γ
2
 F−GLS

The estimates for γ̃ move in a similar way, but due to the misspecification they are biased and also
present a higher variance.
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9.3 The linear probability model

Consider now a variable yi ∈ {0, 1} such that P (y = 1|x) = x
′
β. In this model βj = ∂P (y=1|x)

∂xj

measures the change in the probability of y = 1 given a change in a given variable xj .
The following regression model can be used to estimate (consistently) β, provided a random sample

{yi, xi}ni=1

yi = x
′

iβ + εi

Since y is only 0 or 1 ε is then given by:

ε =

{
−x′β if y = 0

1− x′β if y = 1

Then ε = −x′β with probability 1− x′β and ε = 1− x′β with probability x
′
β. This implies that the

strict exogeneity assumption holds:

E [ε|x] = −x
′
β
(

1− x
′
β
)

+
(

1− x
′
β
)
x
′
β = 0

It also implies that

V [ε|x] = E
[
ε2
]

=
(
x
′
β
)2 (

1− x
′
β
)

+
(

1− x
′
β
)2 (

x
′
β
)

=
(
x
′
β
)(

1− x
′
β
)

which indicates that the model presents heteroskedasticity. Note that in an iid sample E [εiεj ] = 0
since xi and xj are independent. This gives:

Σ =


(
x
′

1β
)(

1− x′1β
)

0

. . .

0
(
x
′

nβ
)(

1− x′nβ
)


Note: This same result can be obtained by noting that y|x ∼ Bernoulli
(
x
′
β
)

thus V [y|x] =(
x
′
β
)(

1− x′β
)
also, since y = x

′
β + ε it follows that V [y|x] = V

[
x
′
β + ε|x

]
= V [ε|x].

Since the form of the heteroskedasticity is known F-GLS can be implemented provided a estimator
for P (yi = 1|x), the estimator is given by the OLS fitted value ŷi = x

′

iβ̂. Then:

Σ̂ =


(
x
′

1β̂
)(

1− x′1β̂
)

0

. . .

0
(
x
′

nβ̂
)(

1− x′nβ̂
)

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9.4 Robust standard errors
An alternative to GLS when the homoskedasticity assumption fails and E

[
εε
′
]

= Σ is to use the

OLS estimator for β, while providing a correct estimate of the variance of the estimator V
[
β̂
]
. When

homoskedasticity fails the usual formula for the variance and its estimator fail to be true:

V [βols|X] = σ2
(
X
′
X
)−1 ̂V [βols|X] = s2

(
X
′
X
)−1

Instead the variance of the estimator is given by:

V [βols|X] =
(
X
′
X
)−1 (

X
′
ΣX

)(
X
′
X
)−1

There is however a problem in obtaining an estimate for V [βols|X] since from a given sample X is
available, but, as before, one cannot get an estimate of Σ without extra assumptions (restrictions on
the form of Σ), and in almost all cases the true form of Σ is unknown.

With genera homoskedasticity (different variances but zero correlation), matrix Σ has the form

Σ =

 σ2
1 0

. . .
0 σ2

n


Even in this case there are only n observations available to estimate n unknowns. As before increasing
n doesn’t solve the problem since the number of parameters to be estimated increases with n.

White (1980) proposes an alternative, it consists on estimating the matrix V = 1
nX

′
ΣX =

E
[

1
nX

′
εε
′
X|X

]
, note the following:

X
′
εε
′
X =

[
x1 · · · xn

]  ε1
...
εn

 [ ε1 · · · εn
]  x

′

1
...
x
′

n


=

(
n∑
i=1

xiεi

) n∑
j=1

x
′

jεj


=

n∑
i=1

n∑
j=1

εiεjxix
′

j

Since it is assumed that the ε are uncorrelated:

E

[
1

n
X
′
εε
′
X

]
=

1

n

n∑
i=1

E
[
ε2ixix

′

i

]
So matrix V is an average of expectations, in order to estimate it it is not needed to estimate each
expectation separately, instead the average can be estimated as a whole by: 1

n

∑n
i=1 ε

2
ixix

′

i, yet, since
εi is not observed it can be estimated by:

V̂ =
1

n

n∑
i=1

e2
ixix

′

i =
1

n
X
′
diag

(
e2
)
X

This can be computed from any sample and the precision increases as more data becomes available (ei
is a better estimator εi the more data is available since β̂ becomes a better estimator of β). Then the
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variance of the OLS estimator can be estimated in-sample as:

̂V [βols|X] =
1

n

(
1

n
X
′
X

)−1

V̂

(
1

n
X
′
X

)−1

=
(
X
′
X
)−1

X
′
diag

(
e2
)
X
(
X
′
X
)−1

White shows that under standard conditions:

̂V [βols|X]→ V [βols|X]

This variance can be used to construct the usual Wald statistic (and hence the F and t statics) for
hypothesis testing.

9.4.1 Algebra with two regressors

Let yi = x
′

iβ + εi with xi = (wi, zi)
′
, then:

X
′
X =

[
w1 · · · wn
z1 · · · zn

] w1 z1

...
...

wn zn

 =

[ ∑
z2
i

∑
wizi∑

ziwi
∑
zi

]
=

n∑
i=1

[
z2
i wizi

ziwi zi

]
=

n∑
i=1

xix
′

i

X
′
εε
′
X =

[
w1 · · · wn
z1 · · · zn

] ε1
...
εn

 [ ε1 · · · εn
]  w1 z1

...
...

wn zn


=

[ ∑
wiεi∑
ziεi

] [ ∑
wjεj

∑
zjεj

]
=

[ ∑∑
wiwjεiεj

∑∑
wizjεiεj∑∑

ziwjεiεj
∑∑

zizjεiεj

]
=

n∑
i=1

n∑
j=1

εiεj

[
wiwj wizj
ziwj zizj

]

=

n∑
i=1

n∑
j=1

εiεjxix
′

j
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10 Selected Exercises - 8205 Final 2012

10.1 Mean square forecast error
Given n observations generated under the OLS ideal conditions we want to forecast y fora given value
of x. I f we refer to this as a forecast of yn+1 on xn+1, then given OLS regression coefficient β̂, a
natural point estimate for E [yn+1|xn+1] = x

′

n+1β̂ = ŷ. The forecast error is ên+1 = yn+1 − ŷn+1.
Calculate the mean square forecast error defines as:

E
[
ê2
n+1|xn+1

]
= E

[
(yn+1 − ŷn+1)

2
]

= E

[(
x
′

n+1

(
β − β̂

)
+ εn+1

)2
]

= E

[
x
′

n+1

(
β − β̂

)(
β − β̂

)′
xn+1 + x

′

n+1

(
β − β̂

)
εn+1 + ε2n+1

]
= x

′

n+1V
[
β̂
]
xn+1 + x

′

n+1E
[(
β − β̂

)
εn+1

]
+ σ2

ε

= x
′

n+1V
[
β̂
]
xn+1 + x

′

n+1E

[(
X
′
X
)−1

X
′
εεn+1

]
+ σ2

ε

= x
′

n+1V
[
β̂
]
xn+1 + x

′

n+1EX

[(
X
′
X
)−1

X
′
E [εεn+1|X]

]
+ σ2

ε

= x
′

n+1V
[
β̂
]
xn+1 + σ2

ε

10.2 Consistency and asymptotic bias
Consider an estimator β̂n that for any n is equal to β with probability 1 − 1/n and equal to n with
probability 1/n.

1. Is this estimator asymptotically unbiased
(
E
[
β̂n

]
→ β

)
:

E
[
β̂n

]
= β

(
1− 1

n

)
+ n

(
1

n

)
= β

(
1− 1

n

)
+ 1

E
[
β̂n

]
→ β + 1

The estimator is asymptotically biased. The bias is one.

2. What is the limiting value of the variance of β̂n?

V
[
β̂n

]
= E

[(
β̂n − E

[
β̂n

])2
]

=

(
1− 1

n

)(
β −

(
β

(
1− 1

n

)
+ 1

))2

+
1

n

(
n−

(
β

(
1− 1

n

)
+ 1

))2

=

(
1− 1

n

)(
β

1

n
− 1

)2

+
1

n

(
n+ β

1

n
− (β + 1)

)2

=

(
β

1

n
− 1

)2

−
(
β

1

n3/2
− 1√

n

)2

+

(√
n+ β

1

n3/2
− β + 1√

n

)2

V
[
β̂n

]
→ ∞
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3. Is β̂n consistent?

∀ε<1 Pr
{∣∣∣β̂n − β∣∣∣ > ε

}
=

1

n

lim
n→∞

Pr
{∣∣∣β̂n − β∣∣∣ > ε

}
= 0

Then the estimator is consistent.

10.3 Gauss-Markov for residuals
Under the assumptions of the Gauss-Markov theorem show that the residual vector e = MXY is a
BLUE estimator of the stochastic disturbance vector ε.

Since the objective is the disturbance vector ε associated with data Y and X, the data is taken as
given, a known non-stochastic quantity.

• First note that e is linear in Y .

• For unbiasedness e = MXY = Y − Xβ̂. Then E [e] = Y − XE
[
β̂
]

= Y − Xβ = ε. Thus e is
unbiased.

• V [e] = E
[
(e− ε)2

]
= E

[(
Y −Xβ̂ − ε

)2
]

= E

[(
X
(
β − β̂

)(
β − β̂

)′
X
′
)]

= XV
[
β̂
]
X
′

• Let β̃ be a linear unbiased estimator of β. Then β̃ = C
′
Y where C

′
X = I. Let ẽ = Y − Xβ̃.

Since β̃ is unbiased for β, so is ẽ for ε.

• V [ẽ] = E
[
(ẽ− ε)2

]
= E

[(
Y −Xβ̃ − ε

)2
]

= E

[(
X
(
β − β̃

)(
β − β̃

)′
X
′
)]

= XV
[
β̃
]
X
′

• Consider:
V [ẽ]− V [e] = X

(
V
[
β̃
]
− V

[
β̂
])
X
′

Since β̂ is BLUE the above expression is positive definite, then e is BLUE.
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11 Selected Exercises - 8205 Final 2013

11.1 True, partly true or false
E [εi] = 0 ⇐⇒ E [εi|Xi] = 0

The expression is partly true since E [εi|Xi] = 0→ E [εi] = 0 but the implication does not hold in the
other direction.

• Let E [εi|Xi] = 0, then: E [εi] = EXi [E [εi|Xi]] = EX [0] = 0.

• Consider Xi such that Xi = 1 with probability 1/2 and Xi = −1 with probability 1/2 so that
E [Xi] = 0. Let εi = Xi, then E [εi] = 0 but E [εi|Xi] is either 1 or −1, never equal to zero.

11.2 Time trend in errors
Suppose yt = x

′

tβ+εt and the ideal OLS assumptions hold except that εt = δt+ut with ut ∼ iid
(
0, σ2

)
.

Suppose the data is first differentiated.

1. What is the mean and variance of the new error.

∆yt = ∆xtβ + vt where vt = εt − εt−1 = δ + ut − ut−1. Then E [vt] = δ + E [ut]− E [ut−1] = δ

and V [vt] = E
[
(ut − ut−1)

2
]

= E
[
u2
t

]
− 2E [utut−1] + E

[
u2
t−1

]
= 2σ2

2. Is OLS in this transformed form the BLUE estimator?

Assumption A1.4 fails to hold then OLS is no longer BLUE. Conditional homoskedasticity im-
plies E

[
(v − δ) (v − δ)

′]
= kI for some positive constant k.

E
[
(v − δ) (v − δ)

′]
=



2σ2 −σ2 0 . . . 0

−σ2 2σ2 −σ2
...

0 −σ2 2σ2 0
...

. . . −σ2

0 . . . 0 −σ2 2σ2

 = σ2



2 −1 0 . . . 0

−1 2 −1
...

0 −1 2 0
...

. . . −1
0 . . . 0 −1 2


11.3 FWL
Suppose y = x1β1 + x2β2 + u where y is n × 1, x1 is n × k1, x2 is n × k2. Let β̂1, β̂2 be the OLS
estimates from running this regression. Now consider the following regressions to be estimated by
OLS, for which are the estimates of β2 the same as for the original regression?

1. y = x2β2 + u

(a) Only if x2 is orthogonal to x1 the two estimates are equal, in that case M1x2 = x2 and by
FWL the OLS estimate is the same.

2. Pxy = x1β1 + x2β2 + u

(a) The OLS estimate is the same for y or for its projection onto the column space of X. Note
the following:

β̂ =
(
X
′
X
)−1

X
′
(PXY ) =

(
X
′
X
)−1

X
′
(
X
(
X
′
X
)−1

X
′
Y

)
=
(
X
′
X
)−1

X
′
Y = β̂OLS

3. M1y = x2β2 + u
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(a) Again, only if x2 is orthogonal to x1 will the two estimates be the same. Otherwise M1x2 6=
x2.

4. M1y = x1β1 +M1x2β2 + u

(a) Using FWL the estimate for β2 doesn’t change when estimating M1y on M1x2, in this case
x1 is an irrelevant variable (note thatM1x1 = 0) and including it doesn’t change the results.
Moreover Cov (x1,M1x2) = 0.

(b) Alternatively by FWL this regression has the same estimates for β2 as:

M1M1y = M1 (x1β1 +M1x2β2 + u) −→M1y = M1x2β2 + v

noting that M1 is idempotent. The second expression gives the same estimate for β2 as the
original regression by FWL.

5. Pxy = M1x2β2 + u

(a) As before the estimates from this regression and the regression y = M1x2β2 + u are the
same. By FWL the estimate from the second expression is the same as the original estimate
for β2.
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12 8205 Final 2014

12.1 (10 points). Collinearity and r2

Collinearity between the regressors leads to a biased estimate of r2 in the OLS setting.

Answer: Collinearity doesn’t bias the r2. The r2 is defined in sample for any set of regressors,
including collinear ones. Note that the r2 only depends on the fitted values (or residuals) and those
are always well defined, even in the presence of perfect collinearity, since they are determined by the
projection of Y onto the column space of X.
The r2 is then not biased in any sense since it is always defined for the sample (more collinearity
doesn’t affect the column space unless it goes to perfect collinearity).

12.2 (20 points). Strict Exogeneity

True, Partly True or False: OLS is BLUE if and only if the kx1 set of regressors Xi satisfies
Corr(Xi, εi) = 0 ∀i. (That is Corr

(
Xj
i , εi

)
= 0 for j = 1, . . . k).

Answer: Let β̂ be BLUE under the Gauss Markov assumption. Under the assumption strict exo-
geneity of the residuals hold, E [ε|X] = 0, this is used for unbiasedness. Note that Corr(Xi, εi) = 0 iff
Cov(Xi, εi) = 0. and that

Cov(Xi, εi) = E [(Xi − E [X]) εi] = EX [(Xi − E [X])E [εi|X]] = 0

where the last equality follows from strict exogeneity. Since Cov(Xi, εi) = 0 one gets Corr(Xi, εi) = 0
as desired.
Let Corr(Xi, εi) = 0 for all i ∈ {1, . . . , n}. Note that in general this doesn’t imply any of the conditions
stated in the Gauss Markov theorem. In particular it might be that all but the homoskedasticity
assumption hold, but then OLS is not BLUE, it is less efficient than GLS (as shown in class GLS is
BLUE).
Moreover one can show that Corr(Xi, εi) = 0 doesn’t imply strict exogeneity E [ε|X] = 0. Consider
for example Xi ∼ iid

(
0, σ2

)
and εi = Xi+1 for i ∈ {1, . . . , n− 1} and εn = X1. Since X is iid

Corr (Xi, εi) = Corr (Xi, Xi+1) = 0 but E [ε|X] = [X2, X3, . . . , Xn, X1]
′
. This proves that OLS is

not BLUE since strict exogeneity is a necessary condition for OLS to be BLUE and is not implied by
Corr(Xi, εi) = 0.
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12.3 (20 points). Column Spaces

Prove that dim(col(X)) = k if and only if rank(X ′X) = k.

Answer: In order to prove this I will establish two results: rank (X) = dim (col (X)) and rank (X) =

k ⇐⇒ rank
(
X
′
X
)

= k.
The first result follows from the definition of col (X) = {Z ∈ Rn|∃α∈RkZ = Xα}, it is clear that the
columns of X form a basis for the space. The dimension of the space is defined as the number of
linearly independent vectors in a basis of the space2 and hence by definition the dimension is equal to
the number of linearly independent columns of X, that is the rank of X.
The second result can be established as follows:

• Let rank (X) = k then for all α ∈ Rk\ {0} one has Xα 6= 0n. To show that X
′
X is of full rank I

show that it is a positive definite matrix. Let α ∈ Rk\ {0}, consider α′X ′Xα = (Xα)
′
(Xα) > 0

where the inequality follows from Xα 6= 0n. All positive definite matrix are of full rank.

• Let rank
(
X
′
X
)

= k then for all α ∈ Rk\ {0} one has X
′
Xα 6= 0k, also since X

′
X is of full

rank it is invertible, then this implies:
(
X
′
X
)−1

X
′
Xα 6= 0 which is α 6= 0. Alternatively one

can argue for a contradiction that there exists α̂ 6= 0 for which Xα̂ = 0n, that implies that
0k 6= X

′
Xα = X

′
0n = 0k which is a contradiction of X

′
X being full ranked.

2Usually the dimension is defined as the number of vectors in a basis of the space, since vectors in a basis are required
to be linearly independent. The definition above is equivalent since one can always add a vector to a basis that is a
linear combination of the other vectors without changing the space that the basis spans.
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12.4 (4 points each for 20 total). Interpreting Coefficients

Consider a set of data where an observation is an individual’s writing, math, and reading score on a
standardized test, and a dummy variable equal to one when the individual is a female.
A researcher regresses the natural log of the writing score on the other variables and a constant. The
writing and math score variables enter the regression in their natural log form and the reading score
enters in its level (1-60). The results of the regression are in the table below.
Interpret the coefficient of every variable (including the intercept) and the 95% confidence interval for
ln (math) in the following table. Each interpretation should be one complete sentence that states the
exact interpretation of the coefficient and nothing more.

ln (write) Coefficient Std. Err. t P > |t| [95% Conf. Interval]
female 0.1142399 0.0194712 5.87 0 0.07584 0.1526399

ln (math) 0.4085369 0.0720791 5.67 0 0.2663866 0.5506872
read 0.0066086 0.0012561 5.26 0 0.0041313 0.0090859

intercept 1.928101 0.2469391 7.81 0 1.441102 2.415099

Answer: First note that from the FOC of the OLS problem:

[β0]0 =
∑

female

(
y − β̂0 − β̂f − β̂m ln (math)− β̂rread

)
+
∑
male

(
y − β̂0 − β̂m ln (math)− β̂rread

)
[βf ]0 =

∑
female

(
y − β̂0 − β̂f − β̂m ln (math)− β̂rread

)
Joining:

β̂0 = ym − β̂mln (math)m − β̂rreadm

β̂f =
(
yf − β̂mln (math)f − β̂rreadf

)
− β̂0

Thus, unlike when variables are demeaned, or there are no other explanatory variables besides the
dummy, β̂0 and β̂f are not by themselves the average score of a male and the difference between the
score of a men and women.

• Female: In average a female has a 11.42% higher in score in writing than a male, all the rest
equal, that is given a common value for ln (math) and read. (note that I use in average and not
in expectation, since β̂ gives sample instead of population values).

• ln (math): In average a 1% increase in the math score gives 0.4% more writing score, the effect
doesn’t distinguish gender.

• Read: In average one extra unit of reading score gives 0.66% more writing score, the effect doesn’t
distinguish gender.

• Intercept: There is no direct interpretation for the value of the intercept, unless the explanatory
variables are demeaned or only the gender dummy is being used. Note that the intercept makes
sure that the point formed by the average male is part of the regression. OLS always includes
the average in the regression line.

• Confidence Interval: If one had a large number of samples of {(x, y)}(each of the same size), all
drawn from the same population (following the same DGP), and if for each sample one computed
β̂m and its confidence interval, 95% of those confidence intervals would contain the true value of
βm. Note that the true value βm is either inside this particular confidence interval or it isn’t,
generating more samples without changing the interval won’t change this fact since βm is not
changing. Moreover there is no guarantee that the true parameter is in a particular confidence
interval. Statements as “the true β is in the interval with 95% probability” are wrong, since the
probability that the true β is in the interval is either 0 or 1.
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12.5 (30 points). GLS and WLS

Suppose that the Data Generating Process (DGP) is that of standard OLS except that the variance
of ε is equal to 1 for every odd observation and equal to 5 for every even observation. Otherwise all
observations are independent of one another.

a) What is the objective function for the BLUE estimator for a fixed sample size of N equal to an
even number? Write out explicitly GN (β) for β̂ = argminβ∈RkGN (β).

Answer: Let E
[
εε
′
]

= Σ. The BLUE estimator is the GLS estimator, β̂ =
(
X
′
Σ−1X

)−1

X
′
Σ−1Y .

This estimator solves:

GN (β) =
(
P−1Y − P−1Xβ

)′ (
P−1Y − P−1Xβ

)
= (Y −Xβ)

′
P−1′P−1 (Y −Xβ)

= (Y −Xβ)
′
Σ−1 (Y −Xβ)

where Σ = PP
′
and Σ−1 = P−1′P−1. In this case we have:

Σ =



1 0 . . . 0

0 5
...

...
. . .

1 0
0 . . . 0 5

 P =



1 0 . . . 0

0
√

5
...

...
. . .

1 0

0 . . . 0
√

5



P−1 =



1 0 . . . 0

0 1/
√

5
...

...
. . .

1 0
0 . . . 0 1/

√
5

 Σ−1 =



1 0 . . . 0

0 1/5
...

...
. . .

1 0
0 . . . 0 1/5


b) What does the optimal Weighted Least Squares (WLS) estimator solve in this setting? Write

down an expression for the estimator that solves the objective function.

Answer: The WLS estimator solves:

GN (β) =

n∑
i=1

wie
2
i = e

′
We

where W = diag ([w1, . . . , wn]). From above we know that W = Σ−1 and thus

wi =

{
1 if iis odd
1
5 if iis even

The WLS estimator is equal to the GLS estimator. Note that they solve the same objective function.

β̂WLS =
(
X
′
WX

)−1

X
′
WY =

(
X
′
Σ−1X

)−1

X
′
Σ−1Y

Now suppose that every two adjacent observations have correlation equal to 0.8944 but otherwise
all observations are independent of one another (that is, n=1,2 has the same variance as above, but
now they are correlated, and similarly for n=3,4, n=5,6,..., In this setting observations 2 and 3 are not
correlated, nor are observations 4 and 5 and so on).

c) Write down the variance covariance matrix E[εε′|X] = Ω for N=10.
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Answer: First one needs to establish the covariance between two “adjacent” observations, Cov (εi, εi+1) =
ρi,i+1

√
V (εi)V (εi+1) = 0.8944

√
5 = 2. Then:

Ω =



1 2 0 . . . 0

2 5
...

0
. . . 0

... 1 2
0 . . . 0 2 5


10×10

d) Consider N=2. For Ω = PP ′ one can show in this case that P−1 - the square root of Ω−1 - is
given by

P−1 =

[
1 0
−2 1

]
(1)

What is the exact form of the objective function in this case? What is it for a sample of size N,
with N even? Intuitively why does the weighting take this form?

Answer: From before the objective function (for two observations) is:

GN (β) = e
′
P−1′P−1e = e

′
[

1 −2
0 1

] [
1 0
−2 1

]
e = e

′
[

5 −2
−2 1

]
e = 5e2

1 − 4e1e2 + e2

When there are N observations, since there is no covariance between observations that are not “adja-
cent” the weighted sum of squares is:

GN (β) = e
′



5 −2 0 . . . 0

−2 1
...

0
. . . 0

... 5 −2
0 . . . 0 −2 1


e = 5e2

1 − 4e1e2 + e2 + . . .+ 5e2
n−1 − 4en−1en + en

As in WLS the residuals of observations with less variance are weighted more than the residuals with
more variance (odd observations have a direct weight of 5 and even observations of 1). Since “adjacent”
observations are positively correlated it is expected that they co-move so that eiei+1 > 0, these co-
movements are thus weighted less since they are, in a way, expected to happen. Notice that without
the cross term a correlated movement of ei and ei+1 will be counted “twice” while it arises from a
single movement of the underlying errors.

e) Consider N=2. Now suppose every two adjacent observations have a negative correlation of
-0.8994 but otherwise all observations are independent of one another. In this case

P−1 =

[
1 0
2 1

]
(2)

What is the exact form of the objective function in this case? What is it for a sample of size N,
with N even? Intuitively why does the weighting take this form?

Answer: From before the objective function (for two observations) is:

GN (β) = 5e2
1 + 4e1e2 + e2

When there are N observations, since there is no covariance between observations that are not “adja-
cent” the weighted sum of squares is:

GN (β) = 5e2
1 + 4e1e2 + e2 + . . .+ 5e2

n−1 + 4en−1en + en

The intuition is the same as before.
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13 GMM

13.1 Theory
13.1.1 Assumptions

1. The setup is the following: there is a linear relation between a dependent variable y and a set of
L explanatory variables z the relation is given by:

yi = z
′

iδ + εi

The interest of the econometrician is to find an estimate for the true value of δ a L× 1 vector of
parameters. As opposed to the usual linear regression it is not assumed that E [εizi] = 0 (that
is the predetermined regressors assumption). Some regressors can then be endogenous if it holds
that E [εizl,i] 6= 0.

2. There is also a set of K variables xi which are referred to as instruments. It is assumed that
the process {wi} where wi = (yi, zi, xi) is jointly stationary. This allows to make inference from
continuous functions of the sample that use y, z and x simultaneously.

3. The set of instruments xi is assumed to be orthogonal to the errors, this is equivalent to the
predetermined regressors assumptions, but applied to the instruments and the residuals. Then,
defining gi = xi · εi

∀k E [εixk,i] = 0

E
[
xi ·

(
yi − z

′

iδ
)]

= 0

E [gi] = 0

4. There is nothing preventing xi and zi from sharing variables. If an explanatory variable zl,i
already satisfies E [εizl,i] = 0 then it can be used as an instrument, then xl,i = zl,i. There is
however a restriction on how many instruments are needed. The K × L matrix E

[
xiz

′

i

]
= Σxz

must be of full column rank, a necessary condition for that is to have K ≥ L.

(a) Calling σxy = E [xi · yi] one can express the orthogonality condition as:

E
[
xi ·

(
yi − z

′

iδ
)]

= 0 −→ E [xi · yi] = E
[
xiz

′

i

]
δ −→ σxy

K×1

= Σxz
K×L

δ
L×1

It turns out that there is a unique value of δ0 that satisfies this equation if and only if Σxy
is of full column rank.

5. For further results one can assume some structure over the random variable gi. It is assumed that
gi is a martingale difference sequence with finite second moments, so that E

[
gig
′

i

]
= E

[
ε2ixix

′

i

]
=

S is finite.

13.1.2 Estimation

Let {yi, zi, xi}ni=1 be a random sample of the variable described above. One can approximate σxy and
Σxz by their sample counterparts and try to use the orthogonality condition to obtain δ̂. Defining
sxy =

∑
xi·yi/n and Sxz =

∑
xiz
′
i/n the equation is:

Sxzδ = sxy
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If K = L then by the full column rank condition Sxz is invertible (for sufficiently large n) and
δ̂ = S−1

xz sxy. If K > L there might not be a solution for the equation above. GMM doesn’t look for
an exact match (a δ̂ that solves the equation) but instead for an estimate that makes the expression
gn (δ) = Sxzδ − sxy as close as possible to zero.

Let W be a positive definite K×K matrix, a positive definite matrix defines an square form. Then
gn (δ)

′
Wgn (δ) ≥ 0 and its equal to zero only if gn (δ) = 0. So minimizing gn (δ)

′
Wgn (δ) over δ gives

a value for δ̂ that brings gn (δ) as close as possible to zero.
Consider the objective function:

J (δ,W ) = ngn (δ)
′
Wgn (δ) = n (sxy − Sxzδ)

′
W (sxy − Sxzδ)

The objective function is convex since W is positive definite, then the first order conditions are neces-
sary and sufficient for a solution:

∂J (δ,W )

∂δ′
=

(
∂gn (δ)

∂δ′

)(
∂J (δ,W )

∂g′n

)
=
(
−S

′

xz

)(
2nW

(
sxy − Sxz δ̂

))
= 0

S
′

xzWsxy = S
′

xzWSxz δ̂

δ̂ =
(
S
′

xzWSxz

)−1 (
S
′

xzWsxy

)
Alternatively one can expand the objective function as:

J (δ,W ) = n
(
s
′

xy − δ
′
S
′

xz

)
W (sxy − Sxzδ)

= n
(
s
′

xyW (sxy − Sxzδ)− δ
′
S
′

xzW (sxy − Sxzδ)
)

= n
(
s
′

xyWsxy − s
′

xyWSxzδ − δ
′
S
′

xzWsxy + δ
′
S
′

xzWSxzδ
)

= n
(
s
′

xyWsxy − 2δ
′
S
′

xzWsxy + δ
′
S
′

xzWSxzδ
)

Then one gets the FOC as:

∂J (δ,W )

∂δ′
= 2n

(
−S

′

xzWsxy + S
′

xzWSxzδ
)

The estimate of the GMM procedure can be obtained from the data as:

δ̂ =
(
S
′

xzWSxz

)−1 (
S
′

xzWsxy

)
=

(
1

n

(
Z
′
X
)
W

1

n

(
X
′
Z
))−1(

1

n

(
Z
′
X
)
W

1

n

(
X
′
y
))

=
((
Z
′
X
)
W
(
X
′
Z
))−1 ((

Z
′
X
)
W
(
X
′
y
))

Where X is n×K, Z is n× L and y is n× 1.
Also note that:

sxy =
1

n
X
′
y =

1

n
X
′
(Zδ + ε) =

1

n
X
′
Zδ +

1

n
X
′
ε = Sxzδ + g

Where g = 1
n

∑
xi · εi, so that:

δ̂ =
(
S
′

xzWSxz

)−1 (
S
′

xzWsxy

)
=

(
S
′

xzWSxz

)−1

S
′

xzW (Sxzδ + g)

= δ +
(
S
′

xzWSxz

)−1

S
′

xzWg
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13.1.3 Two stage least squares

The two stage least square estimator follows the following algorithm:

1. Regress (or project) z onto x:

Ẑ = PXZ = X
(
X
′
X
)−1

X
′
Z = Xβ̂xz

2. Regress (or project) y onto Ẑ to obtain δ̂:

δ̂ =
(
Ẑ
′
Ẑ
)−1

Ẑ
′
y

=
(
Z
′
PXPXZ

)−1

Z
′
PXy

=
(
Z
′
PXZ

)−1

Z
′
PXy

=

(
Z
′
X
(
X
′
X
)−1

X
′
Z

)−1

Z
′
X
(
X
′
X
)−1

X
′
y

=

(
S
′

xz

(
X
′
X
)−1

Sxz

)−1

S
′

xz

(
X
′
X
)−1

sxy

=
(
S
′

xzS
−1
xx Sxz

)−1

S
′

xzS
−1
xx sxy

There are two things to point out about this procedure. The first one is that all variables in z are
being projected onto all variables of x, as opposed to saying that there are some instruments assigned
to a particular regressor, that do not affect other regressors. The second one is that this estimator can

be obtained in one step as the GMM estimator when W = S−1
xx = 1

n

(
X
′
X
)−1

:

δ̂ =
(
Ẑ
′
Ẑ
)−1

Ẑ
′
y

=
(
Z
′
PXPXZ

)−1

Z
′
PXy

=
(
Z
′
PXZ

)−1

Z
′
PXy

=

(
Z
′
X
(
X
′
X
)−1

X
′
Z

)−1

Z
′
X
(
X
′
X
)−1

X
′
y

=

(
S
′

xz

(
X
′
X
)−1

Sxz

)−1

S
′

xz

(
X
′
X
)−1

sxy

=
(
S
′

xzS
−1
xx Sxz

)−1

S
′

xzS
−1
xx sxy
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13.2 Simulations (Measurement Error)
Consider the following situation: there is a variable y that follows the process:

yi = βxi + εi

Yet the variable x is not observable, instead one observes x̂ which is defined as:

x̂i = xi + νi

There is another variable z that is related to x. It follows the process

zi = γxi + ηi

In the above x, ε, ν and η are all mean zero independent variables. Independence implies that zi is
correlated with x but not with ν.

An econometrician has access to a sample of size n of {yi, x̂i, zi}. The OLS estimator for β is:

βols =
(
x̂
′
x̂
)−1

x̂
′
y =

∑
x̂iyi∑
x̂2
i

Note that if one replaces for the DGP:

βols =
1
n

∑
x̂i (xiβ + εi)
1
n

∑
x̂2
i

=
1
n

∑
x̂ixi

1
n

∑
x̂2
i

β +
1
n

∑
x̂iεi

1
n

∑
x̂2
i

The p-lim of βols is:

plimβols =
E [x̂ixi]

E [x̂2
i ]
β +

E [x̂iεi]

E [x̂2
i ]

=
E
[
x2
i

]
+ E [νixi]

E [x2
i + 2xiνi + ν2

i ]
β +

E [xiεi] + E [νiεi]

E [x2
i + 2xiνi + ν2

i ]

=
σ2
x

σ2
x + σ2

ν

β

So that βols is biased. The bias is given by:

plimβols − β = −β σ2
ν

σ2
x + σ2

ν

Note that the bias is also present in small samples:

E [βols] = E

[ 1
n

∑
x̂ixi

1
n

∑
x̂2
i

β +
1
n

∑
x̂iεi

1
n

∑
x̂2
i

]
= E

[ 1
n

∑
x̂ixi

1
n

∑
x̂2
i

]
β + E

[ 1
n

∑
x̂iεi

1
n

∑
x̂2
i

]
= E

[ 1
n

∑
x̂ixi

1
n

∑
x̂2
i

]
β + Ex̂

[ 1
n

∑
x̂iE [εi|x̂]

1
n

∑
x̂2
i

]
= E

[ 1
n

∑
x̂ixi

1
n

∑
x̂2
i

]
β
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An alternative to this is to use the variable z to instrument for x̂. z is a good instrument because
its independent of ε and ν but its related to x. The instrumental variable estimator is:

βiv = S−1
zx̂ szy =

(
z
′
x̂
)−1

z
′
y =

∑
ziyi∑
zix̂i

βiv =

∑
zixi∑
zix̂i

β +

∑
ziεi∑
zix̂i

This estimator is biased in small samples:

E [βiv] = E

[∑
zixi∑
zix̂i

]
β + Ez,x̂

[∑
ziE [εi|z, x̂]∑

zix̂i

]
= E

[∑
zixi∑
zix̂i

]
β

But its consistent:

plimβiv =
E [zixi]

E [zix̂i]
β +

E [ziεi]

E [zix̂i]
=

E [zixi]

E [zixi] + E [ziνi]
β =

E [zixi]

E [zixi]
β = β

A simulation of the model described was carried out with the following parameters:

β = 2 γ = 0.01 σx = 0.2 σε = 0.2 σν = 0.15 ση = 0.01

First 1000 samples of 100 observations where simulated and then 1000 samples of 10000 observations
where simulated. The table below shows the mean of the estimators for the small and large samples
using OLS and IV. The bias in the small sample is evident. Also the bias in the large sample is
contrasted with the theoretical value of the value obtained above.

β Small Sample Large Sample Bias T. Bias
OLS 2 1.2802 1.2803 -0.7197 -0.7200
IV 2 2.6278 2.0056 0.0056 -0.7200

The figure below shows the histograms for the simulation. The first row has the results for OLS
estimation in the small sample and the large sample, its clear that βols is converging to the wrong
value. The second row presents the results for the IV estimation. The small sample IV has a huge
variance, so that the estimator takes on some very extreme values, although most of the values are
concentrated in the proximities of the true parameter. The large sample properties are much better
and one can see that the estimator is consistent for β.
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The code below was used to generate the simulation.
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% Econometrics 8206
% Monte Carlo to assess Measurement Error
% Sergio Ocampo Diaz

%% Parameter Values

bet = 2 ; % Parameter for regression
gam = 0.01 ; % Parameter for Instrument

s_x = 0.2 ; % Sigma X
s_eps = 0.2 ; % Sigma epsilon
s_v = 0.15 ; % Sigma V
s_eta = 0.01 ; % Sigma eta

N = 1000 ; % Number of samples
n_vec = [100,10000]; % Sample sizes

%% Small and large Sample Properties

beta_ols = NaN(N,2) ;
beta_iv = NaN(N,2);

for j=1:2
n=n_vec(j); % Sample Size
x_tot = s_x * randn(n,N) ; % Matrix of real x
eps_tot = s_eps * randn(n,N) ; % Matrix of epsilon
v_tot = s_v * randn(n,N) ; % Matrix of v
eta_tot = s_eta * randn(n,N) ; % Matrix of eta

y_tot = bet * x_tot + eps_tot ; % Dependent variable
x_obs = x_tot + v_tot ; % Observerd x with measurement error
z_tot = gam * x_tot + eta_tot ; % Instrument

for i=1:N
beta_ols(i,j) = (x_obs(:,i)’*x_obs(:,i))\x_obs(:,i)’*y_tot(:,i);
beta_iv(i,j) = (z_tot(:,i)’*x_obs(:,i))\z_tot(:,i)’*y_tot(:,i);

end
end

%% Moments and Distribution

% Mean of OLS estimator (small sample)
mean_beta_ols_ss = mean(beta_ols(:,1)) ;

% Mean of OLS estimator (large sample)
mean_beta_ols_ls = mean(beta_ols(:,2)) ;

% Mean of IV estimator (small sample)
mean_beta_iv_ss = mean(beta_iv(:,1)) ;

% Mean of IV estimator (large sample)
mean_beta_iv_ls = mean(beta_iv(:,2)) ;

% Asympthotic bias of OLS
bias_ols = mean_beta_ols_ls - bet ;
bias_iv = mean_beta_iv_ls - bet ;
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% Attenuation bias
attenaution_bias = -bet*s_vˆ2/(s_xˆ2+s_vˆ2) ;

% Reporting
b_mat = [ bet mean_beta_ols_ss mean_beta_ols_ls bias_ols attenaution_bias ;

bet mean_beta_iv_ss mean_beta_iv_ls bias_iv attenaution_bias ];
col={’’,’True’,’Small Sample’,’Large Sample’,’Bias’,’Bias Formula’};
row={’OLS’;’IV’};
D=[col; [row , num2cell(b_mat)]];
disp(’Parameters Mean’)
disp(D)

%% Plotting

figure;
subplot(2,2,1); hold on;

[a,b] = hist(beta_ols(:,1)) ;
line([bet bet],[0 max(a/N/diff(b(1:2)))],’color’,[0 0 0])
line([mean_beta_ols_ss mean_beta_ols_ss],[0 max(a/N/diff(b(1:2)))],’color’,[0.6 0.6 0.6])
plot(b,a/N/diff(b(1:2)),’color’,[0.3 0.3 0.3],’linewidth’,1.5) ;
title(’Small Sample \beta_{ols} - Base’)
hold off;

subplot(2,2,2); hold on;
[a,b] = hist(beta_ols(:,2)) ;
line([bet bet],[0 max(a/N/diff(b(1:2)))],’color’,[0 0 0])
line([mean_beta_ols_ls mean_beta_ols_ls],[0 max(a/N/diff(b(1:2)))],’color’,[0.6 0.6 0.6])
plot(b,a/N/diff(b(1:2)),’color’,[0.3 0.3 0.3],’linewidth’,1.5) ;
title(’Large Sample \beta_{ols} - Base’)
hold off;

subplot(2,2,3); hold on;
[a,b] = hist(beta_iv(:,1)) ;
line([bet bet],[0 max(a/N/diff(b(1:2)))],’color’,[0 0 0])
line([mean_beta_iv_ss mean_beta_iv_ss],[0 max(a/N/diff(b(1:2)))],’color’,[0.6 0.6 0.6])
plot(b,a/N/diff(b(1:2)),’color’,[0.3 0.3 0.3],’linewidth’,1.5) ;
title(’Small Sample \beta_{IV} - Base’)
hold off;

subplot(2,2,4); hold on;
[a,b] = hist(beta_iv(:,2)) ;
line([bet bet],[0 max(a/N/diff(b(1:2)))],’color’,[0 0 0])
line([mean_beta_iv_ls mean_beta_iv_ls],[0 max(a/N/diff(b(1:2)))],’color’,[0.6 0.6 0.6])
plot(b,a/N/diff(b(1:2)),’color’,[0.4 0.4 0.4],’linewidth’,1.5) ;
title(’Large Sample \beta_{IV} - Base’)
hold off;

figurename=’Beta_Base.pdf’; print(’-dpdf’,figurename)
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14 ME-GMM and Homoskedasticity

14.1 ME-GMM Assumptions

Consider a set of variables y = [y1, . . . , yM ]
′
, each of those variables, say ym, relates to some explanatory

variables zm =
[
z

(1)
m , . . . , z

(Lm)
m

]′
in a linear fashion, so that:

ym,i = z
′

m,iδm + εm,i

where εi is a scalar.
Note that each variable ym has its own vector of parameters, explanatory variables and error term,

so that in principle there are no restrictions on each zm being different, and even if there are common
variables there are no restrictions on the parameters δm that relate them with ym.

As in the GMM framework there are no restrictions over the relation between zm and εm.

Each variable ym also has associated a set of “instruments” xm =
[
x

(1)
m , . . . , x

(Km)
m

]′
, it is assumed

that the whole set {ym, zm, xm}Mm=1 is jointly ergodic stationary. This is a much stronger assumption
than that of asking each {ym, zm, xm} to be individually ergodic stationary, the strengthening of the
condition is needed since in ME-GMM there will be interactions of variables across equations, inference
has to be made over those interactions.

As in GMM the instruments are assumed to be orthogonal to the errors, so that for each m ∈
{1, . . . ,M} E [xm,i · εm,i] = 0 instruments only have to be valid for their own equation, an instrument
of one equation is allowed to have correlation with the error of another equation. Then there are as
many orthogonality conditions as there are instruments, a total of

∑
m
Km. Define

gi =

 x1,i · ε1,i
...

xM,i · εM,i


Then the moment conditions are E [gi] = 0∑Km×1. As before one can use the linearity of the model to
get a better expression for E

[
gi
(
wi, δ

)]
where wi = {ym,i, zm,i, xm,i}Mm=1 is the collection of all data

(for the ith observation) and δ =
[
δ
′

1, . . . , δ
′

M

]′
is a vector with all the individual parameter vectors

stacked. The expression is:

E
[
gi
(
wi, δ

)]
= E


x1,i ·

(
y1,i − z

′

1,iδ1

)
...

xM,i ·
(
yM,i − z

′

M,iδM

)
 =

 E [x1,i · y1,i]
...

E [xM,i · yM,i]

−


E
[
x1,iz

′

1,i

]
δ1

...
E
[
xM,iz

′

M,i

]
δM



=

 E [x1,i · y1,i]
...

E [xM,i · yM,i]

−

E
[
x1,iz

′

1,i

]
· · · 0

...
. . .

...
0 · · · E

[
xM,iz

′

M,i

]

 δ1

...
δM



=


σ

(1)
xy

...
σ

(M)
xy

−


Σ
(1)
xz · · · 0
...

. . .
...

0 · · · Σ
(M)
xz


 δ1

...
δM


= σxy − Σxzδ
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Just as before it is needed t hat Σxz has full column rank, this holds if and only Σ
(m)
xz is of full column

rank for all m. Note that this is the same as having each individual equation satisfy the full rank
condition. In order to compute ME-GMM its necessary to be able to compute GMM in each equation
separately.

Conditions over gi can be imposed to be able to conduct inference and get large sample properties.

14.2 Estimation
As before the objective is to find a δ̂ such that σxy − Σxz δ̂ = 0. In a given sample σxy and Σxz are
replaced by their sample counterparts, given a sample of size n:

sxy =


s

(1)
xy

...
s

(M)
xy

 Sxz =


S

(1)
xz · · · 0
...

. . .
...

0 · · · S
(M)
xz


where s(m)

xy = 1
nX

′

mym and S(m)
xz = 1

nX
′

mZm. As before for a given sample there might not be a δ̂ such
that Sxy − Sxz δ̂ = 0 so instead one looks for

δ̂ = argmin
δ

J
(
δ,W

)
= argmin

δ̂

1

n

(
Sxy − Sxzδ

)′
W
(
Sxy − Sxzδ

)
There are only two differences between this and the usual GMM, first the dimension of the parameter
vector is not L (as before) but

∑
Lm, second the dimension (and composition) of the weighting matrix

W has changed, now:

W =

 W11 · · · W1M

...
. . .

...
WM1 · · · WMM


The estimator is then analogous to that of GMM:

δ̂ =
(
S
′

xzWSxz

)−1

S
′

xzWsxy

Equations are only related to each other throughW , so ifW is a block diagonal matrix the estimator
for each δ̂m boils down to:

δ̂m =
(
S(m)′

xz WmmS
(m)
xz

)−1

S(m)′

xz Wmms
(m)
xy

the same expression as in the equation by equation GMM.
Generally one would want to use the efficient ME-GMM estimator, as before its given by W = S−1

where

S =


E
[
ε21,ix1,ix

′

1,i

]
· · · E

[
ε1,iεM,ix1,ix

′

M,i

]
...

. . .
...

E
[
εM,iε1,ixM,ix

′

1,i

]
· · · E

[
ε2M,ixM,ix

′

M,i

]


For a given sample one can use the estimator of S given by Ŝ, where

Ŝ =
1

n

∑ ε̂21,ix1,ix
′

1,i · · · ε̂1,iε̂M,ix1,ix
′

M,i
...

. . .
...

ε̂M,iε̂1,ixM,ix
′

1,i · · · ε̂2M,ixM,ix
′

M,i


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A consistent estimate of ε̂m,i can be obtained from ε̂m,i = ym,i − z
′

m,iδ̃m where δ̃ is a consistent
estimator of δm, a candidate for δ̃ is the (single equation) GMM estimator (2SLS or efficient GMM).

Note that single equation GMM was already consistent, what is to gain by ME-GMM is to make
the estimator more efficient by using the information in cross moments across equations. If S is block
diagonal there are no efficiency gains.

14.3 Conditional Homoskedasticity
Since the efficient ME-GMM estimator depends on the structure of S the form of the variance of the
errors across equations is relevant for the method. In the (very) special case of conditional homoskedas-
ticity the formulas given above simplify and allow for an easier computation of the results and, more
importantly, they allow to estimate less parameters.

Conditional homoskedasticity in this environment is:

E [εm,iεh,i|xm,i, xh,i] = σmh m,h ∈ {1, . . . ,M}

This implies that :

S =


σ2

11E
[
x1,ix

′

1,i

]
· · · σ2

1ME
[
x1,ix

′

M,i

]
...

. . .
...

σ2
M1E

[
xM,ix

′

1,i

]
· · · σ2

MME
[
xM,ix

′

M,i

]


14.3.1 FIVE - Full information instrumental variable efficient (estimator)

The FIVE estimator takes advantage of the form of S under conditional homoskedasticity to get:

ŜFIV E =
1

n

∑ σ̂2
11x1,ix

′

1,i · · · σ̂2
1Mx1,ix

′

M,i
...

. . .
...

σ̂2
M1xM,ix

′

1,i · · · σ̂2
MMxM,ix

′

M,i


Where σ̂mh = 1

n

∑
ε̂m,iε̂h,i and, as before, ε̂m,i can be obtained from ε̂m,i = ym,i− z

′

m,iδ̃m where δ̃ is a
consistent estimator of δm, a candidate for δ̃ is the (single equation) GMM estimator (2SLS or efficient
GMM).

The FIVE estimator is the ME-GMM estimator using W = Ŝ−1
FIV E . It inherits all the asymptotic

properties of the ME-GMM estimator and is asymptotically efficient under conditional homoskedas-
ticity.

14.3.2 3SLS - Three stage least squares (estimator)

Now suppose that besides conditional homoskedasticity the set of instruments across equations is the
same, so that xm = xh = x for all m and h. In this case E

[
xm,ix

′

h,i

]
= E

[
xix

′

i

]
and:

S =


σ2

11E
[
xix

′

i

]
· · · σ2

1ME
[
xix

′

i

]
...

. . .
...

σ2
M1E

[
xix

′

i

]
· · · σ2

MME
[
xix

′

i

]
 =

 σ2
11 · · · σ2

1M
...

. . .
...

σ2
M1 · · · σ2

MM

⊗ E [xix′i] = Σ⊗ E
[
xix

′

i

]

The 3SLS estimator takes advantage of this by computing:

Ŝ3SLS = Σ̂⊗
(

1

n

∑
xix

′

i

)
= Σ̂⊗

(
1

n
X
′
X

)
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where

Σ̂ =

 σ̂2
11 · · · σ̂2

1M
...

. . .
...

σ̂2
M1 · · · σ̂2

MM


and σ̂mh = 1

n

∑
ε̂m,iε̂h,i is computed as before. The 3SLS estimator is the ME-GMM estimator using

W = Ŝ−1
3SLS . It inherits all the asymptotic properties of the ME-GMM estimator and is asymptotically

efficient under conditional homoskedasticity. The term 3SLS follows from using the 2SLS estimator to
obtain Σ̂.

14.3.3 SUR - Seemingly unrelated equations (estimator)

If all regressors are exogenous one can make use the z variables as instruments, then x = ∪zm. The
SUR estimator is an alternative to OLS that aims to gain in efficiency by using the relation between
equations. Note that for this its necessary not only that E [zm,iεim] = 0 but also that E [zm,iεh,i] = 0
for all m and h, this follows since all z variables are going to be used as instruments for all equations.

This is just a special case of the 3SLS estimator, the formulas for the asymptotic variance and for
the estimator are somewhat simplified.

62



15 Maximum Likelihood (Davidson & MacKinnon)
An alternative estimation method (to GMM) is maximum likelihood (ML), provided a complete char-
acterization of the DGP of the data ML estimation provides consistent and asymptotically normal
(CAN) estimators under few additional conditions, it also provides non-linear estimators and their
properties in a unified manner.

The main drawback of ML estimation is that it requires a complete specification of the data through
a parametric model. This means that given some set of parameters the probability distribution of the
data is known. This distribution is represented in the likelihood function:

L (θ|y) = f (y/θ)

where f (·|θ) is the PDF of y given θ. Note that one θ is known the PDF of y is known too, and that
the PDF completely characterizes the behavior of y as a random variable, also note that y can be a
vector valued random variable. When the PDF is evaluated at a certain y (say y = [y1, . . . , yn]

′
a

random sample) it can no longer be interpreted as a PDF, instead it gives the probability of observing
the given data for any value of θ (the parameters). The ML procedure seeks to find a value for θ that
maximizes the probability of observing the observed sample.

The maximum likelihood estimator (MLE) of theta, θ̂, is the value of θ for which L (θ|y) is maxi-
mized. for θ̂ to be the MLE it must be the unique (global) maximizer of L. Note that this is equivalent
to ask θ̂ to be the maximizer of l (θ|y) = lnL (θ|y) since the logarithm is a monotone increasing
function. All the results for ML estimation are obtained with the log-likelihood function.

Note that in general the random variable of interest is a vector (since there are several observations
of the realization of y), the likelihood is given by the joint probability of y which is in general a
complicated object. In many cases if the realizations of y are independent (although perhaps not
identically distributed) and then the joint distribution of y is given by:

f (y|θ) =

n∏
i=1

fi (yi|θ)

In this case the likelihood of the sample is obtained as the product of the likelihood of each observation.
The log-likelihood is then:

l (y|θ) =

n∑
i=1

li (yi|θ)

There is another special case that arises frequently in ML estimation, variables with serial corre-
lation (for example if y follows an AR(p) process), in this case one can use the fact that the joint
distribution of two variables can be written as:

f (y1, y2) = f (y1) f (y2|y1)

Using this equality successively one gets:

f (y|θ) = f (y1, . . . , yn|θ) =

n∏
i=1

f
(
yi|yi−1, θ

)
Note that this requires conditioning in an initial history y0. The log-likelihood is:

l (θ|y) =

n∑
i=1

li
(
θ|yi

)
where li

(
yi|θ

)
= f

(
yi|yi−1, θ

)
. Note that this generalizes the case above allowing each term in the

sum of likehoods to depend on the history up that observation and not only on the current realization
of y.
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15.1 Types of maximum likelihood estimators
Since there are two ways of characterizing the maximizer of a function there are two types of MLE. A
maximizer can be defined either directly as:

θ̂ = argmax
θ∈Θ

l (y|θ)

or by means of the first order conditions of the problem, when the objective function differentiable and
satisfies the second order conditions for FOC to be sufficient, in this case θ̂ ∈ Θ is such that:

∂l
(
θ̂|y
)

∂θ
= 0

For most cases an MLE is of both types. A type 2 MLE also requires that as n→∞ l
(
θ̂|y
)
> l (θ|y)

for all θ ∈ Θ.

15.1.1 Score vector

The score vector plays an important role in ML theory, it is defined as the gradient of the likelihood
function with respect to the parameters, that is, as the vector of first order conditions:

g (θ, y) =
∂l (θ|y)

∂θ

This vector has the same dimension as θ, the if there are K parameters g : RK → R.
Let l (θ|y) =

∑n
i=1 li

(
θ|yi

)
and define a K × n matrix G such that:

Gk,i
(
θ, yi

)
=
∂li
(
θ|yi

)
∂θk

It follows that:

gk (θ, y) =

n∑
i=1

Gk,i
(
θ, yi

)
Under the true GDP, that is, if y was actually generated by a GDP characterized by f (y|θ), the

expectations of all the elements of G are zero at the true parameter θ0. This is used to establish
properties of the score vector.

To see this note that ˆ
eli(θ0|y

i)dyi =

ˆ
f
(
yi|yi−1, θ0

)
dyi = 1

then differentiating both sides with respect to θk one gets:

∂
´
eli(θ0|y

i)dyi
∂θk

= 0

ˆ
∂eli(θ0|y

i)

∂θk
dyi = 0

ˆ
eli(θ0|y

i) ∂li
(
θ0|yi

)
∂θk

dyi = 0

ˆ
f
(
yi|yi−1, θ0

) ∂li (θ0|yi
)

∂θk
dyi = 0

Eyi

[
∂li
(
θ0|yi

)
∂θk

]
= 0

Eyi
[
Gk,i

(
θ0, y

i
)
|yi−1

]
= 0
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Taking expectations over this with respect to yi−1 gives:

E
[
Gk,i

(
θ0, y

i
)]

= 0

Then:
E [g (θ0, y)] = 0

The covariance of the elements of the matrix G can also be computed. Consider Gik
(
θ0, y

i
)
and

Gjl
(
θ0, y

j
)
, wlog let i < j (note i 6= j), then the covariance between the two terms is:

E
[
Gik

(
θ0, y

i
)
Gjl

(
θ0, y

j
)]

= E
[
E
[
Gik

(
θ0, y

i
)
Gjl

(
θ0, y

j
)
|yi
]]

= E
[
Gik

(
θ0, y

i
)
E
[
Gjl

(
θ0, y

j
)
|yi
]]

= E
[
Gik

(
θ0, y

i
)
E
[
E
[
Gjl

(
θ0, y

j
)
|yj−1

]]]
= 0

Note that conditional on yi the first term Gik
(
θ0, y

i
)
is known, and that E

[
Gjl

(
θ0, y

j
)
|yj−1

]
= 0

from above, and so it is also 0 conditional on the subset of observations yi. Knowing the covariance
of the terms of G allows to compute the covariance matrix of the score vector. That is given by the
information matrix.

15.1.2 Information matrix

Let Ii be the K × K covariance matrix of the elements of the ith column of G (it has already been
shown that there is no covariance between columns):

Ii (θ0) = E
[
Gi
(
θ0, y

i
)
Gi
(
θ0, y

i
)′]

The kth lth element of the matrix is given by: E
[
Gki

(
θ0, y

i
)
Gli
(
θ0, y

i
)]

and is a measure, for history
up to i, of how much information is about parameters k and l. The information matrix of a sample is:

I (θ0) =

n∑
i=1

Ii (θ0) =

n∑
i=1

E
[
Gi
(
θ0, y

i
)
Gi
(
θ0, y

i
)′]

Because of the zero covariance between columns of G this is equivalent to:

I (θ0) = E
[
g (θ, y) g (θ, y)

′]
The covariance matrix of the score vector. This matrix must be positive definite to have a strong
identification of the parameters.

The asymptotic information matrix is I (θ) = plim 1
nI (θ).

Closely related to the information matrix is the hessian of the likelihood function, a K ×K matrix
H (θ) obtained from the second derivatives of the log-likelihood with respect to the parameters. The
relation is named information matrix equality:

I (θ) = −H (θ)

where H (θ) = plim 1
nH (θ).

15.2 Consistency (for type 1 MLE)
Several conditions are needed for consistency of the MLE estimator.

1. Small sample identification: for any given sample y and parameter vectors θ1, θ2, l (θ1, y) 6=
l (θ2, y) so that the parameters can always be told apart.
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2. Asymptotic identification: for all θ ∈ Θ we have plim 1
n l (θ) 6= plim 1

n l (θ0) so that the true
parameter can be told apart from any other parameter as the sample goes to infinity.

3. Regularity conditions: the function l (θ, y) is, for any given sample, continuous and (its expecta-
tion) converges uniformly to the true population function.

Let L (θ) be the likelihood function (without logs), and θ0 be the true parameter vector. By Jensen’s
inequality (using the concaveness of the log function):

E

[
log

(
L (θ)

L (θ0)

)]
< logE

[
L (θ)

L (θ0)

]
with strict inequality for all θ 6= θ0. Note that:

E

[
L (θ)

L (θ0)

]
=

ˆ
L (θ)

L (θ0)
L (θ0) dy =

ˆ
L (θ) dy = 1

Then:
E [logL (θ)] < E [logL (θ0)]

The expectation of the log-likelihood at the true parameter is strictly greater than the expectation at
any other parameter. Under the regularity conditions it follows, applying the LLN to the elements of
the log-likelihood, that:

plim
1

n
l (θ) = lim

1

n
E [l (θ)]

Then the inequality above implies:

plim
1

n
l (θ) ≤ plim

1

n
l (θ0)

Since the MLE estimator θ̂ maximizes the log-likelihood it must be that:

plim
1

n
l
(
θ̂
)
≥ plim

1

n
l (θ0)

Then it must be that:
plim

1

n
l
(
θ̂
)

= plim
1

n
l (θ0)

The asymptotic identification assumption gives consistency since the only way the above condition
holds is if:

plimθ̂ = θ0

The proof is not as rigorous as it can be made but it shows the main elements of the process.

15.3 Asymptotic Normality -and efficiency- (for type 2 MLE)
For obtaining the asymptotic distribution of the MLE one uses the score vector, note that by definition:

g
(
θ̂
)

= 0

Using a first order Taylor expansion of this expression around the true parameter one gets:

g
(
θ̂
)

= g (θ0) +H
(
θ
) (
θ̂ − θ0

)
= 0
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Where the relation is exact by evaluating matrix H at θ ∈
[
θ0, θ̂

]
where the value of θ is given by the

intermediate value theorem. Note that
∥∥θ̄ − θ0

∥∥ ≤ ∥∥∥θ̂ − θ0

∥∥∥, then since θ̂ is consistent for θ0 so is θ.
The above condition gives:

√
n
(
θ̂ − θ0

)
= −

(
1

n
H
(
θ
))−1√

ng (θ0)

Then one gets: √
n
(
θ̂ − θ0

)
a→ − (H (θ0))

−1√
ng (θ0)

If the model is correctly specified then the information identity holds and − (H (θ0))
−1

= I−1 (θ0)
holds, in general the condition above holds and the one below only holds if the model is correctly
specified. √

n
(
θ̂ − θ0

)
a→ I−1 (θ0)

√
ng (θ0)

Under regularity conditions for g, and recalling that it has expected value 0, the CLT applies and:

√
ng (θ0)

a∼ N
(

0, E
[
g (θ0) g (θ0)

′])
Where, from before, E

[
g (θ0) g (θ0)

′]
= I (θ0). This gives the result:

√
n
(
θ̂ − θ0

)
a∼ N

(
0, I−1 (θ0)

)
if the model is misspecified the asymptotic variance is given by:

Avar
(
θ̂
)

= H−1 (θ0) I (θ0)H−1 (θ0)

One can further show that if the model is correctly specified then the MLE is efficient with respect
to any other

√
n consistent estimator that is asymptotically unbiased. This is a very general result

since it encompasses a wide variety of alternative estimators.
Let θ̃ be a competing estimator, it can be shown that:

√
n
(
θ̃ − θ0

)
=
√
n
(
θ̂ − θ0

)
+ v

where v is a random variable with zero expectation and that is uncorrelated with the term
√
n
(
θ̂ − θ0

)
.

Is the no-correlation result what gives the efficiency of θ̂ since then:

Avar
(
θ̃
)

= Avar
(
θ̂
)

+ var (v)

and var (v) is positive definite. Moreover it can be shown that θ̂ attains (asymptotically) the Cramer-
Rao lower bound. This is what makes MLE so attractive, although for a finite sample there is no
guarantee that the MLE performs better than any other parameter.

15.4 Example: Exponential distribution
Suppose that each observation of y is generated according with PDF:

f (y|θ) = θe−θy
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There are n independent observations of y. The log-likelihood is then:

l (θ|y) =

n∑
i=1

(log θ − θyi) = n log θ − θ
n∑
i=1

yi

Note that this function is globally concave in θ and then the FOC are necessary and sufficient for a
global optimum:

n

θ̂
−

n∑
i=1

yi = 0 −→ θ̂ =
1

y

This solution is unique and is the same as the solution to the method of moments estimator:

E [yt] = θ−1 −→ θ̂ =
1

y

15.5 Example: Normal linear regression model
Consider the linear regression model:

y = Xβ + u u ∼ N
(
0, σ2I

)
where the explanatory variablesX are considered exogenous and taken as given. Then y ∼ N

(
Xβ, σ2I

)
and:

f
(
y|β, σ2

)
=
(
2πσ2

)−n
2 e−

1
2 (y−Xβ)

′
(σ2I)

−1
(y−Xβ)

And the log-likelihood is:

l
(
β, σ2|y

)
= −n

2
log (2π)− n

2
log
(
σ2
)
− 1

2σ2
(y −Xβ)

′
(y −Xβ)

One can solve jointly for β and σ2 or solve for one of them and then replace in the objective function
to solve for the other one, this is called concentrating the likelihood.

Solving jointly the FOC are:

− 1

σ̂2
X
′
(
y −Xβ̂

)
= 0

−n
2σ̂2

+
1

2 (σ̂2)
2

(
y −Xβ̂

)′ (
y −Xβ̂

)
= 0

From the first equation:

β̂ =
(
X
′
X
)−1

X
′
y

From the second equation:

σ̂2 =
1

n

(
y −Xβ̂

)′ (
y −Xβ̂

)
=

1

n
û
′
û

Under normal residuals the OLS estimator for β̂ coincides with the MLE and shares all its proper-
ties.

The only thing that is left to establish is the asymptotic distribution of the ML estimates.
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