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Part I

Mas-Colell, Whinston & Green
1 Preference and Choice

1.1 Preference Relations

Let � be a preference relation on alternative consumption bundles of consumption set X.
From � the following relations are defined:

i. Strict preference relation �: x � y ⇐⇒ [(x � y) ∧ ¬ (y � x)]

ii. Indifference relation ∼: x ∼ y ⇐⇒ [(x � y) ∧ (y � x)]

Definition 1.B.1 (Rational preference - complete and transitive) The preference
relation � on X is rational if it satisfies:

i. Completeness: ∀x,y∈X [(x � y) ∨ (y � x)]

ii. Transitivity: ∀x,y,z∈X [(x � y) ∧ (y � z)→ (x � z)]

Note: Completeness implies reflexiveness (defines as ∀x∈Xx � x).

Proposition 1.B.1 (Properties of � and ∼) If � is rational then:

i. � is both irreflexive (x � x never holds) and transitive ((x � y) ∧ (y � z)→ (x � z)).

ii. ∼ is reflexive (∀x∈Xx ∼ x), transitive ((x ∼ y) ∧ (y ∼ z) → (x ∼ z)) and symmetric
((x ∼ y)→ (y ∼ x)).

iii. (x � y) ∧ (y � z)→ (x � y)

Definition 1.B.2 (Representation of preferences) A function u : X → R is a utility
function representing � if ∀x,y∈X (x � y) ⇐⇒ (u (x) ≥ u (y)).

Note: Let u represent � and f : R→ R be an strictly increasing function, then v (x) =
f (u (x)) represents �.

Proposition 1.B.2 (Necessity of rationality) If u (x) represents a preference relation
� then � is rational. (Proof uses completeness and transitivity of ≥ relation in R).

1.2 Choice Rules

Define a choice structure (B, C (·)) is formed by a family of non-empty subsets of the choice
X (B) and a correspondence from B to X (C (·)).
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Definition 1.C.1 (Weak axiom of revealed preferences) The choice structure (B, C (·))
satisfies theWARP if ∀B∈B (x, y ∈ B)∧(x ∈ C (B))→ ∀B′∈B [(x, y ∈ B′) ∧ (y ∈ C (B′))→ (x ∈ C (B′))].

Definition 1-C.2 (Revealed preference relation) Given a choice structure (B, C (·))
the revealed preference relation �? is defined by: x �? y ⇐⇒ ∃B∈Bx, y ∈ B ∧ x ∈ C (B).

1.3 The Relationship between Preference Relations and Choice Rules

Let B ⊆ 2X , and� a rational preference relation. � generates the choice structure (B, C? (.,�))
where C? (B,�) = {x ∈ B|∀y∈Bx � y}. It is assumed that B is such that ∀B∈BC? (B,�) 6= ∅.

Proposition 1.D.1 (Rational preferences to WARP) Suppose � is rational, then the
choice structure (B, C (·)) satisfies the WARP.

Definition 1.D.1 (Rationalization of C (·)) Given (B, C (·)) � rationalizes C (·) relative
to B if ∀B∈BC (B) = C? (B,�). That is if � generates the choice structure (B, C (·)).

Note: If a preference relation exists that rationalizes C (·) it need not be unique.

Proposition 1.D.2 (Choice structure to rational preferences) If (B, C (·)) is a choice
structure such that satisfies WARP and B contains all subsets of X with up to three ele-
ments, then there is a rational preference relation � that rationalizes C (·) relative to B
(∀B∈BC (B) = C? (B,�)). Furthermore � is unique. (Proof uses the revealed preference
relation �?)
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2 Consumer Choice
The choice setX will be a commodity spaceX ⊆ RL, an x ∈ X is called a consumption vector
or consumption bundle. For simplicity the consumption set will be restricted to X = RL

+.
This set is convex.

2.1 Competitive Budgets

Consumers are assumed to be price takers and prices p ∈ RL are restricted so that p � 0.
Also to have an amount of wealth given by w.

Definition 2.D.1 (Walrasian budget set) Given prices p and wealth w the set of
consumption bundles affordable to the consumer are defined by the Walrasian budget set:
Bp,w =

{
x ∈ RL

+| 〈p, x〉 ≤ w
}
.

Note: The set
{
x ∈ RL

+| 〈p, x〉 = w
}

is called budget hyperplane. Also both sets are
convex, this property depends on the convexity of X.

2.2 Demand Functions and Comparative Statics

A demand correspondence x (p, w) is the set of chosen consumption bundles for each (p, w)
pair.

Definition 2.E.1 (Homogeneity of degree zero) The Walrasian demand correspon-
dence x (p, w) is homogenous of degree zero (∀α>0x (αp, αw) = x (p, w)).

Note: TheWalrasian budget set does not change when p and w are scaled: Bp,w = Bαp,αw.

Definition 2.E.2 (Walras’ Law) The Walrasian demand correspondence x (p, w) satisfies
Walras’ law: ∀x∈x(p,w) 〈p, x〉 = w.

Wealth Effects (under x (p, w) singled valued, continuous and differentiable)

Definition (Engle function and wealth expansion path) For a fixed p = p̄ the
demand correspondence x (p̄, w) as a function of wealth is called the Engle function, and
Ep̄ = {x (p̄, w) |w > 0} is the wealth expansion path.

Definition (Wealth effect, normal and inferior goods) For good l in x (p, w)
the wealth effect is ∂xl(p,w)/∂w. A good is called normal if ∂xl(p,w)/∂w ≥ 0 and inferior if
∂xl(p,w)/∂w < 0. The vector of wealth effects is Dwx (p, w) ∈ RL.

Price Effects (under x (p, w) singled valued, continuous and differentiable)

Definition (Price effect and Giffen goods) For good l in x (p, w) the price effect of
pk on the demand for xl is ∂xl(p,w)/∂pk. A good is called Giffen if ∂xl(p,w)/∂pl > 0. The matrix
of price effects is Dpx (p, w).
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Definition 2.E.1 (Implication of homogeneity) If the Walrasian demand function is

homogeneous of degree 0, then ∀l
L∑
k=1

∂xl(p,w)
∂pk

pk+
∂xl(p,w)
∂w

w = 0. In matrix notationDpx (p, w) p+

Dwx (p, w)w = 0. (Proof uses Euler’s formula or x (αp, αw) − x (p, w) = 0 differentiating
against α and evaluating α = 1.

Definition (Elasticities) Elasticities of demand with respect to prices and wealth are
defined as: εlk (p, w) = ∂xl(p,w)

∂pk

pk
xl(p,w)

εlw (p, w) = ∂xl(p,w)
∂w

w
xl(p,w)

. Note that the last definition

can be expressed as: ∀l
L∑
k=1

εlk (p, w) + εlw (p, w) = 0.

Definition 2.E.2 (Implication of Walras’ law 1) If the Walrasian demand function

satisfies Walras’ law, then ∀k
L∑
l=1

pl
∂xl(p,w)
∂pk

+ xk (p, w) = 0 or in matrix notation pDpx (p, w) +

x (p, w)′ = 0′. (Proof by differentiating Walras’ law against prices).
Note: Total expenditure cannot change in response to a change in prices.

Definition 2.E.3 (Implication of Walras’ law 2) If the Walrasian demand function

satisfies Walras’ law, then
L∑
l=1

pl
∂xl(p,w)
∂w

= 1 or in matrix notation pDwx (p, w) = 1. (Proof by

differentiating Walras’ law against wealth).
Note: Total expenditure mush change by an amount equal to any wealth change.

2.3 The Weak Axiom of Revealed Preference and the Law of De-
mand

Let the demand correspondence x (p, w) be single valued, homogenous of degree 0 and satisfy
Walras’ law.

Definition 2.F.1 (WARP for demand function) The demand function x (p, w) satisfies
WARP if for any two pairs (p, w) and (p′, w′) we have:

〈p, x (p′, w′)〉 ≤ w ∧ x (p′, w′) 6= x (p, w)→ 〈p′, x (p, w)〉 > w′

this means that both x (p, w) and x (p′, w′) are affordable at (p, w) but x (p, w) is revealed as
preferred, then since x (p′, w′) 6= x (p, w) it must be that x (p, w) is not affordable at (p′, w′).

Definition (Slutsky wealth compensation) If a consumer faces prices p, wealth w
and chooses x (p, w), the Slutsky wealth compensation is defined as the change in wealth
necessary to make x (p, w) affordable at any new price vector p′: ∆w = 〈∆p, x (p, w)〉 =
〈p′, x (p, w)〉 − 〈p, x (p, w)〉.

Definition (Slutsky compensated price changes) A change in price (p to p′) is called
Slutsky compensated if it is accompanied by a change in wealth equal to the Slutsky wealth
compensation.

7



Proposition 2.F.1 (Compensated law of demand) The Walrasian demand x (p, w)
satisfies WARP if and only if for any compensated price change from (p, w) to (p′, w′) =
(p′, 〈p′, x (p, w)〉) we have 〈(p′ − p) , (x (p′, w′)− x (p, w))〉 ≤ 0 (with strict inequality when
x (p, w) 6= x (p′, w′).

Definition (Substitution effect and Slutsky matrix) The substitution effect (when
x (p, w) is differentiable) between commodities l and k is defined as:

slk (p, w) =
∂xl (p, w)

∂pk
+
∂xl (p, w)

∂w
xk (p, w)

The effect on xl due to a change in pk compensating wealth to be able to afford the original
bundle, this is the effect due only to changes in relative prices. The matrix

S (p, w) = Dpx (p, w) +Dwx (p, w)x (p, w)′

is called the Slutsky matrix

Proposition 2.F.2 (Slutsky matrix I) If x (p, w) is differentiable, homogenous of degree
0 and satisfies Walras’ law andWARP then S (p, w) is negative semidefinite (∀v∈<Lv′S (p, w) v ≤ 0).

Note: This implies that sll (p, w) ≤ 0, the substitution effect of a good to a change in its
own price is always non-positive. This does not imply that matrix S (p, w) is symmetric.

Note: Satisfying WARP is necessary for S being negative semidefinite but having x (p, w)
with a negative semidefinite substitution matrix does not imply that x (p, w) satisfies WARP.
The sufficient condition is vS (p, w) < 0 for v 6= αp.

Proposition 2.F.3 (Slutsky matrix II) The Slutsky matrix satisfies: pS (p, w) = 0,
S (p, w) p = 0. (Proof using definition and Walras’ law Def 2.E.1).

Note: It follows that S (p, w) is always singular and cannot be negative definite.
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3 Classical Demand Theory

3.1 Preference Relations: Basic Properties

Definition 3.B.1 (Rational preferences) The preference relation � on X is rational if
it satisfies:

i. Completeness: ∀x,y∈X [(x � y) ∨ (y � x)]

ii. Transitivity: ∀x,y,z∈X [(x � y) ∧ (y � z)→ (x � z)]

Definition 3.B.2 (Monotonicity and strong monotonicity) The preference relation
� on X is monotone if ∀x,y∈Xx� y → x � y. It is strongly monotone if ∀x,y∈Xx ≥ y ∧ x 6=
y → x � y.

Note: If � is strongly monotone then it is monotone

Definition 3.B.3 (Local non-satiation) The preference relation � on X is locally non-
satiated if ∀x∈X∀ε>0∃y∈X ‖y − x‖ < ε ∧ y � x.

Note: If � is monotone then it is locally non-satiated. Non-satiated preferences rule out
thick indifference curves.

Definition 3.B.4 (Convexity) The preference relation � on X is convex if for every
x ∈ X the upper contour set U (x) = {y ∈ X|y � x} is convex.

Note: Convexity is interpreted as diminishing marginal rates of substitution (it takes
larger amounts of a commodity to compensate for successive unit losses in other). It also
expresses inclination for diversification. This property depends on the convexity of the choice
set X.

Definition 3.B.5 (Strict Convexity) The preference relation � on X is strictly convex
if

∀x,y,z∈Xy � x ∧ z � x ∧ y 6= z → ∀α∈(0,1)αy + (1− α) z � x

Definition 3.B.6 (Homothetic preferences) The preference relation � on X is homo-
thetic if x ∼ y → ∀α≥0αx ∼ αy. All indifference sets are related by proportional expansion
along rays.

Definition 3.B.6 (Quasilinear preferences) The preference relation � on (−∞,∞) ×
<L−1

+ is quasilinear with respect to commodity 1 if:

i. All indifference sets are parallel displacements of each other along the axis of commodity
1:

x ∼ y → ∀α∈< (x+ αe1) ∼ (y + αe1)

ii. Good 1 is desirable: ∀α>0∀x (x+ αe1) � x

Note: One can deduce the consumer’s entire preference relation from a single indifference
set if preferences are homothetic or quasilinear.
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3.2 Preference and Utility

Definition 3.C.1 (Continuity of Preferences)

Sequential Definition The preference relation � on X is continuous if for any se-
quences of pairs {(xn, yn)} with ∀nxn � yn , xn → x and yn → y we have x � y.

Set Definition The preference relation � on X is continuous if for all x ∈ X the upper
contour (U (x) = {y ∈ X|y � x}) and lower contour (L (x) = {y ∈ X|x � y}) are closed.

Proposition (Equivalence of Continuity Definitions) Preferences � are continuous
in the sequential sense if and only if they are continuous in the set sense.

Proof

i. Sequential definition implies set definition:

(a) Let y ∈ X and xn be a sequence in U (y) for all n and yn be defined as the constant
sequence equal to y. This implies xn � yn for all n. Then if xn → x then x � y
which means x ∈ U (y), then U (y) is closed for all y.

(b) Similarly, for L (y) let y ∈ X and xn be in L (y) for all n. Then define yn as the
constant sequence equal to y. This implies xn � yn for all n. Then if xn → x one
gets x � y which means x ∈ L (y), then L (y) is closed for all y.

ii. Set definition implies sequential definition:

Let xn → x and yn → y such that xn � yn for all n. Suppose for contradiction that
y � x.

(a) Since L (x) and U (y) are closed it follows that Lc (x) and U c (y) are open. Note
that y ∈ Lc (x) and x ∈ U c (y). Then there exists ε such that ∀x′∈Bε(x)x

′ ∈ Lc (y)

and ∀y′∈Bε(y)y
′ ∈ U c (x). Then there exists N such that for n ≥ N xn ∈ Lc (y)

and yn ∈ U c (x) which is xn ≺ y and yn � x.

(b) Fix n ≥ N . Using the relations, since y ∈ Lc (xn) and x ∈ U c (y) it follows, as
before, that there exits M such that for m ≥M xn ≺ ym and yn � xm.

(c) Joining xn ≺ ym � xm ≺ yn which implies by transitivity xn ≺ yn. This is a
contradiction.

Proposition 3.C.1 (Utility function) Suppose that the rational relation � on X is
continuous, then there is a continuous utility function u (x) that represents �. (The proof
below uses also strong monotonicity of preferences).

Note: There is not a unique utility function that represents � and not all the functions
that represent it are continuous.
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Further assumptions

i. If preference relation � is also assumed to be monotone then the utility that represents
it is also increasing. x� y → u (x) > u (y).

ii. If the preference relation � is also assumed to be convex then the utility that repre-
sents it is also quasi-concave. The set

{
y ∈ RL

+|u (y) ≥ u (x)
}

is convex for all x, or
equivalently ∀α∈(0,1)u (αx+ (1− α) y) ≥ min {u (x) , u (y)}.

iii. A continuous preference relation � is homothetic if and only if it admits a utility
function u (x) that is homogenous of degree one.

iv. A continuous preference relation � is quasi-linear if and only if it admits a utility
function u (x) of the form u (x) = x1 + φ (x2, . . . , xL).

Proof:

i. Let� be a continuous, monotone and complete preorder on Rl
+, and Z =

{
x ∈ Rl

+|∃λ≥0x = λe
}

with e = (1, . . . , 1).

ii. Let x ∈ Rl
+, there exists a unique value α (x) ≥ 0 such that x ∼ α (x) e:

(a) Existence is given in the following way: let U (x) =
{
x
′ ∈ Rl

+|x
′ � x

}
and L (x) ={

x
′ ∈ Rl

+|x � x
′} and define A1 = Z ∩ U (x) and A2 = Z ∩ L (x).

i. Since Z is closed and, by continuity, U (x) and L (x) are closed, it follows that
A1 and A2 are closed.

ii. Note that A1 ∪A2 = Z, which is a connected set. A connected set cannot be
“separated” into two closed sets.

iii. A1 ∩ A2 = {α ≥ 0|αe ∼ x} 6= ∅ because of the two last points.

(b) Uniqueness is given since α > α′ imply αe � α′e and then by monotonicity
αe � α′e.

iii. Define the utility function u (x) = α (x). This utility function represents the prefer-
ences.

(a) Let x, y ∈ Rl
+ such that x � y, then by construction and transitivity α (x) e �

α (y) e, by monotonicity of � it must be that α (x) ≥ α (y) (otherwise α (y) e �
α (x) e).

(b) Let x, y ∈ Rl
+ such that α (x) ≥ α (y), then by monotonicity α (x) e � α (y) e, by

construction and transitivity x � y.

iv. The function u (x) is continuous. For proving this is enough to show that for any x and
sequence {xn} such that xn → x then α (xn)→ α (x). Suppose it does not.

(a) First note that, wlog, {α (xn)} is bounded, since {xn} can always be taken to be
bounded (if it is not, and since it converges to x, take a subsequence such that
‖xn − x‖ ≤ 1).
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(b) Since {α (xn)} is bounded it has a convergent subsequence, since it doesn’t con-
verge to α we can take the subsequence such that αnk → α′ 6= α (x). Wlog assume
that α′ > α (x).

(c) Choose α̂ ∈ (α (x) , α′), since αnk → α′ there is a high enough k̂ for which ∀k>k̂α̂ <
α (xnk), then ∀k>k̂α̂e ≺ xnk .

(d) By continuity of preferences (and since xnk → x) it follows that α̂e ≺ x ∼ α (x) e
which contradicts monotonicity since α̂ > α (x). Then it must be that α (xn) →
α (x)

v. Alternatively a function u : Rl
+ → R is continuous if the pre-images of closed sets are

closed. WLOG let [α1, α2] ⊂ R be a closed set, its pre-image is:

u−1 ([α1, α2]) = u−1 ([α1,∞]) ∩ u−1 ([0, α2])

where:

u−1 ([α1,∞]) =
{
x ∈ R+

l : u (x) ≥ α1

}
=
{
x ∈ R+

l : x ≥ α1e
}

= U (α1e)

u−1 ([0, α2]) =
{
x ∈ R+

l : u (x) ≤ α2

}
=
{
x ∈ R+

l : x ≤ α2e
}

= L (α2e)

Both sets are closed by continuity of preferences and hence their intersection is also
closed. The closed sets in R are constructed from this.

3.3 The Utility Maximization Problem

The consumer’s problem to choose the most preferred bundle given prices p� 0 and wealth
w > 0 is states as the utility maximization problem (UMP):

max
x≥0

u (x) st. 〈p, x〉 ≤ w

Proposition 3.D.1 (Existence of a solution) If p� 0 and u (·) is continuous, then the
UMP has a solution since the budget set Bp,w =

{
x ∈ RL

+| 〈p, x〉 ≤ w
}
is compact.

Proposition 3.D.2 (Properties of demand correspondence) Suppose u (·) is a con-
tinuous utility function representing a locally non-satiated preference relation �. Then the
Walrasian demand correspondence x (p, w) possesses the following properties:

i. Homogeneity of degree 0 in (p, w): x (αp, αw) = x (p, w).

ii. Walras’ law: ∀x∈x(p,w) 〈p, x〉 = w.

iii. Convexity/Uniqueness: If � is convex (so that u (·) is quasi-concave) then x (p, w) is
convex valued. Moreover if � is strictly convex (so that u (·) is strictly quasi-concave)
then x (p, w) is single valued.

Definition (Indirect utility function) For each (p, w)� 0 the utility value of the UMP
(the indirect utility function) is denoted v (p, w) ∈ R, and is equal to u (x?) with x? ∈ x (p, w).
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Proposition 3.D.3 (Properties of the indirect utility function)

i. Homogenous of degree zero.

ii. Strictly increasing in w and non-increasing in pl for l ∈ {1, . . . , L}.

iii. Quasi-convex: for all v̄ the set {(p, w) |v (p, w) ≤ v̄} is convex.

iv. Continuous in p and w.

Note: The third property doesn’t require u (·) to be quasi-concave. Also, if v (p, w) is the
indirect utility function associated to utility function u (·), then ṽ (p, w) = f (v (p, w)) is the
indirect utility function associated to utility function ũ (x) = f (u (x)).

3.4 The Expenditure Minimization Problem

The expenditure minimization problem (EMP) is defines for p� 0 and u > u (0) as:

min
x≥0
〈p, x〉 s.t. u (x) ≥ u

u (·) is assumed to be a continuous function that represents a locally non-satiated preference
relation �.

Note: For the solution of this problem to exist suffices that the constraint set is non-
empty.

Proposition 3.E.1 (Equivalence between UMP and EMP)

i. If x? is optimal in the UMP when wealth is w > 0, then x? is optimal in the EMP when
the required utility level is u (x?). Moreover the minimized expenditure level is exactly
w.

ii. If x? is optimal in the EMP when the required utility is u > u (0), then x? is optimal
in the UMP when wealth is 〈p, x?〉. Moreover the maximized utility level is exactly u.

Definition (Expenditure function) For each p� 0 and u > u (0) the value of the EMP
is denoted e (p, u), and is equal to 〈p, x?〉 with x? is any solution to the EMP.

Proposition 3.E.2 (Properties of the expenditure function) Suppose u (·) is a con-
tinuous utility function representing a locally non-satiated preference relation �. Then the
expenditure function e (p, u) is:

i. Homogenous of degree 1 in p.

ii. Strictly increasing in u and non-decreasing in pl for l ∈ {1, . . . , L}.

iii. Concave in p.

iv. Continuous in p and u.
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Definition (Hicksian or compensated demand correspondence) The set of optimal
commodity vectors in the EMP is denoted h (p, u) ⊆ RL

+ is known as the Hicksian demand
correspondence.

Proposition 3.E.3 (Properties of the Hicksian demand correspondence)

i. Homogeneity of degree 0 in p: h (αp, u) = h (p, u).

ii. No excess utility: x ∈ h (p, u)→ u (x) = u.

iii. Convexity/Uniqueness: if � is convex, then h (p, u) is convex valued, and if � is strictly
convex, then h (p, u) is also single valued.

Proposition (Equivalence UMP and EMP) For any p � 0, w > 0 and u > u (0) we
have by proposition 3.E.1:

e (p, v (p, w)) = w and v (p, e (p, u)) = u

h (p, u) = x (p, e (p, u)) and x (p, w) = h (p, v (p, w))

note that the first equality defines the Hicksian demand as the level of demand that would
arise if consumer’s wealth were simultaneously adjusted to keep her utility level at u. Hence
the term compensated.

Proposition 3.E.4 (Compensated law of demand) Suppose u (·) is a continuous utility
function representing a locally non-satiated preference relation �, and that h (p, u) is single
valued for p � 0. Then the Hicksian demand function satisfies the compensated law of
demand:

〈(p′ − p) , (h (p′, u)− h (p, u))〉 ≤ 0

Note: For compensated demand own-price effects are non-positive. If pl changes it
implies

(
p
′

l − pl
)

[hl (p
′, u)− hl (p, u)] ≤ 0. Also Walrasian demand need not satisfy the law

of demand.

3.5 Duality: A Mathematical Introduction

Definition (Half-space and Hyperplane) A half-space is a set of the form
{
x ∈ RL| 〈p, x〉 ≥ c

}
for some p ∈ RL\{0} and some c ∈ R. Its boundary is called a hyperplane

{
x ∈ RL| 〈p, x〉 = c

}
.

Both half-spaces and hyperplanes are convex sets.
Note: The separating hyperplane theorem establishes that for a convex and closed set

K ⊂ RL and a point x /∈ K there exists a half-space containing K and excluding x.
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Definition 3.F.1 (Support function) For any non-empty closed setK ⊂ RL, the support
function of K is defined for any p ∈ RL as:

µK (p) = inf {〈p, x〉 |x ∈ K}

This function is homogenous of degree one and concave.
Note: When K is convex µK provides a dual representation of K since for every p the

set
{
x ∈ RL| 〈p, x〉 ≥ µK (p)

}
is a half space containing K, and for any x /∈ K there exists a

p such that 〈p, x〉 < µK (p). Then K =
{
x ∈ RL|∀p∈RL 〈p, x〉 ≥ µK (p)

}
.

Proposition 3.F.1 (Duality theorem) Let K be non-empty closed set and µK (·) its
support function. Then there is a unique x̄ ∈ K such that 〈p̄, x̄〉 = µK (p̄) if and only if
µK (·) is differentiable at p̄. Moreover, in this case, ∇µK (p̄) = x̄.

3.6 Relationships between Demand, Indirect Utility and Expendi-
ture Functions

It is assumed that u (·) is a continuous utility function representing the locally non-satiated
preferences � and that p � 0. For simplicity it is also assumed that � is convex so that
x (p, w) and h (p, u) are single valued.

Proposition 3.G.1 (Hicksian demands from expenditure function) The hicksian
demands h (p, u) can be obtained as h (p, u) = ∇pe (p, u), this is hl (p, u) = ∂e(p,u)/∂pl.

Proposition 3.G.2 (Properties of Hicksian demands) Suppose that h (., u) is contin-
uously differentiable at (p, u), and denote its derivate matrix by Dph (p, u). Then:

i. Dph (p, u) = D2
pe (p, u).

ii. Dph (p, u) is negative semidefinite (since e is concave).

iii. Dph (p, u) is symmetric (since e is concave).

iv. Dph (p, u) p = 0 since h (p, u) is homogenous of degree 0 in p.

Note: Since ∂hl(p,u)/∂pl ≤ 0 the last property implies that every good needs to have at least
one substitute.

Proposition 3.G.3 (Slutsky equation) For all (p, w) and u = v (p, w) we have:

∂hl (p, u)

∂pk
=
∂xl (p, w)

∂pk
+
∂xl (p, w)

∂w
xl (p, w) Dph (p, u) = Dpx (p, w) +Dwx (p, w)x (p, w)′

Note: This proposition implies that Dph (p, u) = S (p, w) the Slutsky substitution ma-
trix. This matrix is then symmetric and negative semidefinite.
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Proposition 3.G.4 (Roy’s identity) Suppose that the indirect utility function is differ-
entiable at (p̄, w̄)� 0. Then

x (p̄, w̄) = − 1

∇wv (p̄, w̄)
∇pv (p̄, w̄) xl (p̄, w̄) = −

∂v(p̄,w̄)/∂pl
∂v(p̄,w̄)/∂w

3.7 Integrability

Proposition (Implication of classical demand theory) If a continuously differentiable
demand function x (p, w) is generated by rational preferences then it must be homogenous of
degree 0, satisfy Walras’ law, and have a substitution matrix S (p, w) symmetric and negative
semidefinite.

Proposition 3.H.1 (Rationalization of expenditure function) Suppose e (p, u) is
strictly increasing in u and is continuous, increasing , homogenous of degree 1, concave
and differentiable in p. Then for every utility level u, e (p, u) is the expenditure function
associated with the at-least-as-good set

Vu =
{
x ∈ RL

+|∀p�0 〈p, x〉 ≥ e (p, u)
}

With Vu for several values of u one can define a preference relation � that has e (p, u) as its
expenditure function.

Note: The differentiability assumption on p is not necessary.

Proposition (Conditions for integrability) The necessary and sufficient conditions for
recovering the expenditure function from the walrasian demands is the symmetry and nega-
tive semi-definiteness of the Slutsky matrix.

3.8 The Strong Axiom of Revealed Preference

Definition 3.J.1 (Strong axiom of revealed preference) A market demand func-
tion x (p, w) satisfies the SARP if for any list {(p1, w1) , . . . , (pN , wN)} with x (pn, wn) 6=
x (pn+1, wn+1) we have 〈pN , x (p1, w1)〉 > wN whenever 〈pn, x (pn+1, wn+1)〉 ≤ wn for n ≤
N − 1.
This means that if x (p1, w1) is directly or indirectly revealed preferred to x (pN , wN), then
x (pN , wN) cannot be directly revealed preferred to x (p1, w1). (x (p1, w1) cannot be affordable
at (pn, wN)).

Proposition 3.J.1 (Rationalization of preferences) If the Walrasian demand function
x (p, w) satisfies SARP then there is a rational preference relation � that rationalizes x (p, w).
This a preference such that for all (p, w), x (p, w) � y for y 6= x (p, w) and y ∈ Bp,w.
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5 Production

5.1 Production Sets

Definition (Production plans, production sets and transformation function) A
production vector or production plan is a vector y ∈ RL that describes the net outputs of
the L commodities. Positive numbers denote outputs and negative numbers denote inputs.
The production set is denoted as Y ⊂ RL. Any possible production plan satisfies y ∈ Y .
The transformation property F (y) has the property that: Y =

{
y ∈ RL|F (y) ≤ 0

}
and

F (y) = 0 if and only if y is in the boundary of Y .
{
y ∈ RL|F (y) ≤ 0

}
is known as the

transformation frontier.

Definition (Properties of production sets)

i. Y 6= ∅

ii. Y is closed: ∀{yn}⊂Y (yn → y)→ y ∈ Y

iii. No free lunch: y ∈ Y ∧ y ≥ 0→ y = 0

iv. Possibility of inaction: 0 ∈ Y

v. Free disposal: Y − RL
+ ⊂ Y

vi. Irreversibility: y ∈ Y ∧ y 6= 0→ −y /∈ Y

vii. Non-increasing returns to scale: ∀y∈Y ∀α∈[0,1]αy ∈ Y

viii. Non-decreasing returns to scale:∀y∈Y ∀α≥1αy ∈ Y

ix. Constant returns to scale: ∀y∈Y ∀α≥0αy ∈ Y (Y is a cone)

x. Additivity (or free entry): Y + Y ⊂ Y or ∀y,y′∈Y y + y′ ∈ Y

xi. Y is convex

xii. Y is a convex cone: ∀y,y′∈Y ∀α,β≥0αy + βy′ ∈ Y

Proposition 5.B.1 (Property of production set) If Y is additive and has constant
returns to scale if and only if it is a convex cone.

Proposition 5.B.2 (Entrepreneurial factor) For any convex set Y ⊂ RL with 0 ∈ Y
there is a constant returns, convex production set Y ′ ⊂ RL+1 such that Y =

{
y ∈ RL| (y,−1) ∈ Y ′

}
.

(This set is Y =
{
y′ ∈ RL+1|y′ = α (y,−1) for some y ∈ Y and α ≥ 0

}
).
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5.2 Profit Maximization and Cost Minimization

It is assumed that p � 0 and that production set Y is non-empty, close and
satisfies free disposal.
Definition (Profit Maximization Problem) The profit maximization problem PMP is
defined as:

π (p) = max
y
〈p, y〉 s.t. y ∈ Y

The supply correspondence is defined as y (p) = {y ∈ Y | 〈p, y〉 = π (p)}.
Note: The profit function can be seen as π (p) = −µ−Y (p) where µ−Y (·) is the support

function of −Y .
Note: For a single output technology first order conditions are necessary and sufficient

for profit maximization if the production set Y is convex.

Proposition 5.C.1 (Properties of PMP) For Y closed that satisfies free disposal:

i. π (·) is homogenous of degree 1.

ii. π (·) is convex.

iii. If Y is convex, then Y =
{
y ∈ RL|∀p�0 〈p, y〉 ≤ π (p)

}
.

iv. y (p) is homogenous of degree 0.

v. If Y is convex, then y (·) is convex valued. Moreover if Y is strictly convex, then y (·)
is single valued (if non-empty).

vi. (Hotteling’s Lemma) if y (p̄) is single valued, then π (p̄) is differentiable at p̄ and
∇π (p̄) = y (p̄).

vii. If y (p̄) is differentiable then Dy (p) = D2π (p) is a symmetric and positive semidefinite
matrix with Dy (p) p = 0.

Note: If there is a single output technology, and the production function is homogenous of
degree 1 then y (p) is not single valued at any p, thus Hotteling’s Lemma is inapplicable.

Definition (Law of supply) If the price of an output rises the supply of the output also
rises. If the price of an input increases the demand for that input decreases. This law holds
for any change since there is no need for compensation.
In general the law of supply can be viewed as: 〈(p− p′) , (y (p)− y (p′))〉 ≥ 0.
If differentiable, Property vii establishes the law of supply through the positive semi-definiteness
of Dy (p).
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Definition (Cost Minimization Problem) For a single output technology where z is a
non-negative vector of inputs, f (z) is the production function, q the amount of output and
w � 0 the vector of input prices. The CMP is defined as:

c (w, q) = min
z≥0
〈w, z〉 s.t. f (z) ≥ q

where c (w, q) is the cost function and the conditional factor demand correspondence is
z (w, q).

Note: Cost minimization is a necessary condition for profit maximization.

Proposition 5.C.2 (Properties of CMP) For Y closed that satisfies free disposal:

i. c (·) is homogeneous of degree 1 in w and nondecreasing in q.

ii. c (·) is concave in w.

iii. If the sets {z ≥ 0|f (z) ≥ q} are convex for every q, then Y = {(−z, q) |∀w�0 〈w, z〉 ≥ c (w, q)}.

iv. z (·) is homogenous of degree zero in w.

v. If the sets {z ≥ 0|f (z) ≥ q} are convex, then z (w, q) is convex valued. Moreover if If
the sets {z ≥ 0|f (z) ≥ q} are strictly convex, then z (w, q) is single valued.

vi. (Shepard’s Lemma) if z (w̄, q) is single valued, then c (·) is differentiable with respect
to w at w̄ and z (w̄, q) = ∇wc (w̄, q).

vii. If z (w, q) is differentiable at w, then Dwz (w, q) = D2
wc (w, q) is a symmetric and

negative semi-definite matrix with Dwz (w, q)w = 0.

viii. If f (·) is homogenous of degree 1, then c (w, q) and z (w, q) are homogenous of degree
one in q.

ix. If f (·) is concave, then c (w, q) is convex in q.

Note: If there is a single output technology, and the production function is homogenous of
degree 1 then z (p, q) can still be single valued, unlike y (p).

Note: Under convexity there is a one-to-one correspondence between profit and cost
function, since the production set can be obtained from both.

Definition (Profit Maximization Problem II) Using the cost function the PMP be-
comes:

π (p) = max
q≥0

pq − c (w, q)

5.3 Efficient Production

Definition 5.F.1 (Efficient production plan) A production vector y ∈ Y is efficient if
there is no y′ ∈ Y such that y′ ≥ y and y 6= y.

Note: All efficient production plans are in the boundary of Y but not all boundary points
are efficient.
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Proposition 5.F.1 (Efficiency and PMP) If y is profit maximizing for some p � 0,
then y is efficient.

Note: This is true even for non-convex Y . Prices must be strictly positive.

Proposition 5.F.1 (Efficiency and PMP II) Suppose Y is convex. If y ∈ Y is efficient
then there exists p ≥ 0 for which y is profit maximizing. (Proof with separating hyperplane
theorem).

Note: This proposition cannot be strengthened so that p� 0.
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Part II

Jan Werner
6 Rationalizability in Production
Definition (Profit Rationalization) Let π : RL → R be a profit function such that
π (p) indicates the maximum profit achieved under prices p ∈ RL. A production set Y profit
rationalizes π if π (p) = max {p · y|y ∈ Y }.

Proposition (Rationalizability of Profit Function) If π is homogeneous of degree 1,
convex, and lower semi-continuous, then there exists a closed and convex set Y that profit-
rationalizes π. The set is: Y =

{
y ∈ RL|∀p p · y ≤ π (p)

}
. π is lower semi-continuous if for

pn → p it holds that π (p) ≤ limπ (pn).

Definition (Weak Axiom of Profit Maximization) Consider a set of observations
(yt, pt)

T
t=1, it satisfies the WAPM if pt · ys ≤ pt · yt for all t, s. (at prices t it must be that yt

is profit maximizing, other production can’t give higher profits).

Proposition (Rationalizability of Profits andWAPM) Observations (yt, pt)
T
t=1 satisfy

WAPM if and only if there exists a closed, convex production set Y that profit-rationalizes
these observations.

Proposition (Law of Supply) If observations (yt, pt)
T
t=1 satisfy WAPM they also satisfy

the law of supply:
[pt − ps] · [yt − ys] ≥ 0

(if the price of a good increases its supply increases as well).
Note: Add pt · ys ≤ pt · yt and ps · yt ≤ ps · ys to obtain (pt − ps) · ys ≤ (pt − ps) · yt , the

result follows.

Definition (Weak Axiom of Cost Minimization) Let (xt, wt, zt)
T
t=1 be observations on

input choices, input prices and output quantities. It must be that:

∀t,s∈{1,...,T}zs ≥ zt → wt · xs ≥ wt · xt

Definition (Rationalizability of Production Function) Observations (xt, wt, zt)
T
t=1

are rationalized by production function f : Rn
+ → R+ if for all t ∈ {1, . . . , T} xt ∈

argmin {wt · x s.t. f (x) ≥ zt}.

Proposition (Rationalizability and WACM) If a production function rationalizes ob-
servations (xt, wt, zt)

T
t=1 then the observations satisfy the WACM.

21



7 Rationalizability in Consumer Choice
Definition (Rationalization - by a utility function) Consider a set of observations
(xt, pt)

T
t=1, utility function u : Rn

+ → R rationalizes the observations if for every t and x ∈ Rn
+:

pt · x ≤ pt · xt → u (x) ≤ u (xt)

If there exists u that rationalizes the observations and that is lns it must be that:

i. Income of the agent at t is pt · xt.

ii. pt · x ≤ pt · xt → u (x) ≤ u (xt)

iii. pt · x < pt · xt → u (x) < u (xt)

Definition (Revealed Preferences) Consider an observation (x, p):

Weakly revealed preferred (xRy) x is weakly revealed preferred to y if p · y ≤ p · x.

Strictly revealed preferred (xPy) x is strictly revealed preferred to y if p · y < p · x.

Definition (Generalized Weak Axiom of Revealed Preferences) Consider a set of
observations (xt, pt)

T
t=1, if pt · xs ≤ pt · xt then ps · xt ≥ ps · xs. (if xt is revealed preferred to

xs -since xs was affordable at price pt- then xt cannot be strictly affordable under ps -or else
there would be an affordable x′ preferred to xs-).

GWARP If xtRxs then ¬xsPxt.

WARP If xtRxs and xt 6= xs then ¬xsRxt.

Definition (Generalized Axiom of Revealed Preferences) Consider a set of observa-
tions (xt, pt)

T
t=1, for any subset of observations (xti , pti)i∈I if

xt1Rxt2 ∧ . . . ∧ xtn−1Rxtn → ¬xtnPxt1

(If an observation is (indirectly) revealed weakly preferred to another then the second cannot
be strictly preferred to the first).

Axiom of Revealed Preferences If for any subset of observations

xt1Rxt2 ∧ . . . ∧ xtn−1Rxtn ∧ xt1 6= xtn → ¬xtnRxt1

Proposition (Necessity of GWARP) If u rationalizes (xt, pt)
T
t=1 and is lns then (xt, pt)

T
t=1

satisfy GWARP.

Theorem (Afriat) Observations (xt, pt)
T
t=1 satisfy GARP if and only if there exists a lns

utility functionu that rationalizes these observations.
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8 Monotone Comparative Statics
Definition (Lattice operators) Let x, y ∈ Rn. Lattice operators ∧ and ∨ are defined as:

x ∧ y =

 min [x1, y1]
...

min [xn, yn]

 and x ∨ y =

 max [x1, y1]
...

max [xn, yn]


Definition (Lattice) A set X ⊆ Rn is a lattice is ∀x,y∈Xx ∧ y ∈ X and x ∨ y ∈ X.

Definition (Supermodular function) A function f : X → R on a lattice X is super-
modular on X if:

∀x,y∈Xf (x ∨ y)− f (x) ≥ f (y)− f (x ∧ y)

Definition (Strong set order) Let A,B ⊆ Rn.

A ≤sso B ⇐⇒ ∀x∈A∀y∈Bx ∧ y ∈ A and x ∨ y ∈ B

Note: If A and B are singletons the strong set order is the usual inequality between
vectors.

Definition (Monotone non-decreasing or non-increasing sets) Let t ∈ Rm and ϕ (t) :
Rm → Rn a correspondence. ϕ is monotone non-decreasing in t if:

∀t,t′ t ≤ t
′ −→ ϕ (t) ≤sso ϕ

(
t
′
)

it is monotone non-increasing if instead ϕ
(
t
′) ≤sso ϕ (t).

Definition (Non-decreasing (non-increasing) differences) Let X ⊆ Rn, T ⊆ Rm and
f : X × T → R. f (x, t) has non-decreasing differences in (x, t) if for x′ ≥ x the difference
f
(
x
′
, t
)
− f (x, t) is non-decreasing in t. It has non-increasing differences if f

(
x
′
, t
)
− f (x, t)

is non-increasing in t.
Note: These conditions are equivalent to:

∀x≥x′∀t′≥tf
(
x
′
, t
′
)
− f

(
x, t

′
)
≥ (≤) f

(
x
′
, t
)
− f (x, t)

Proposition (Supermodularity in R and R2)

i. A function f : R→ R is always supermodular.

ii. A function f : R2 → R is supermodular if and only if it has non-decreasing differences.

Proposition (Supermodularity and differentiability) Let f : Rn
+ → R be twice con-

tinuously differentiable. f is supermodular in Rn
+ if and only if

∀x∈Rn+∀i 6=j
∂2f

∂xi∂xj
(x) ≥ 0
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Proposition (Non-decreasing differences and differentiability) Let f : Rn×Rm → R
be twice differentiable on X ⊆ Rn × Rm. f has non-decreasing (non-increasing) differences
in (x, t) on the X if and only if

∀(x,t)∈X∀i∀j
∂2f

∂xi∂tj
(x, t) ≥ (≤) 0

Proposition (Maximizer properties - Topkis) Let S ⊆ X ⊆ Rn, T ⊆ Rm and f :
X × T → R. Consider the problem of maximizing f over S and its set of solutions ϕ:

max
x∈S

f (x, t) ϕ (t) = {x ∈ S|∀yf (x, t) ≥ f (y, t)}

i. If f is supermodular in x and S is a lattice then ϕ (t) is a lattice.

ii. (Topkis) ϕ (t) is monotone non-decreasing (non-increasing) in t if:

(a) S is a lattice.

(b) f is supermodular in x.

(c) f has non-decreasing (non-increasing) differences in (x, t).

Note: If in addition ϕ (t) is a continuous correspondence then the supremum (ϕ̄ (t)) and
infimum (ϕ (t)) of the set belong to ϕ (t) and are non-decreasing (non-increasing) functions.
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9 Choice Under Uncertainty
Let there be S states of nature s ∈ {1, . . . , S}. There is a single commodity. A state
contingent consumption plan c ∈ RS

+ indicates the agent’s consumption in each state of
nature. Let � be a preference relation on the set RS

+ of consumption plans. � is assumed
rational, strictly increasing and continuous.

Definition (State-separable utility representation) � has a state-separable utility
representation if there exist functions vs : R+ → R for s ∈ {1, . . . , S} such that:

∀c,c′∈RS+c � c
′ ⇐⇒

S∑
s=1

vs (cs) ≥
S∑
s=1

vs

(
c
′

s

)
Definition (VNM - Expected utility representation (with respect to π)) � has an
expected utility representation with respect to π ∈ ∆S if there exist a function v : R+ → R
such that:

∀c,c′∈RS+c � c
′ ⇐⇒ Eπ [v (c)] =

S∑
s=1

πsv (cs) ≥
S∑
s=1

πsv
(
c
′

s

)
= Eπ

[
v
(
c
′
)]

Axiom (Independence - Sure thing) Let c ∈ RS
+ and y ∈ R+. The consumption plan

c−sy = [c1, . . . , cs−1, y, cs+1, . . . , cS]
′
is defined by replacing consumption contingent on state

s with y.
∀c,d∈RS+∀y,w∈R+∀s c−sy � d−sy ⇐⇒ c−sw � d−sw

Definition (Risk Aversion)

i. Preference relation � is risk averse (with respect to π ∈ ∆S) if:

∀c Eπ [c] � c

If � has an expected utility (VNM) representation this condition is:

∀c v (Eπ [c]) ≥ Eπ [v (c)]

ii. Preference relation � is risk neutral (with respect to π ∈ ∆S) if:

∀c Eπ [c] ∼ c

If � has an expected utility (VNM) representation this condition is:

∀c v (Eπ [c]) = Eπ [v (c)]
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Definition (Risk Compensation) Let x ∈ R+ and z̃ ∈ RS such that for π ∈ ∆S Eπ [z̃] =
0. Risk compensation with respect to z̃ is ρ (x, z) ∈ R such that:

x+ z̃ ∼ x− ρ (x, z̃)

If � has an expected utility (VNM) representation this condition is:

Eπ [v (x+ z̃)] = v (x− ρ (x, z̃))

Definition (Arrow-Pratt measures of risk aversion) Let � be a strictly increasing
preference relation with expected utility representation v. If v is twice differentiable, the
Arrow-Pratt absolute and relative risk aversion are defined as:

A (x) = −v
′′

(x)

v′ (x)
and R (x) = −v

′′
(x)

v′ (x)
x

Proposition (State-separable representation - Debreu (1959)) Let S ≥ 3 and � a
rational, strictly increasing and continuous preference relation. Then � has a state-separable
utility representation if and only if it obeys the independence axiom.

Note: With S = 2 the independence axiom is satisfies immediately by all strictly in-
creasing preferences.

Proposition (Expected utility representation) Let S ≥ 3 and � a rational, strictly
increasing and continuous preference relation. Then � satisfies the independence axiom and
is risk averse, with respect to π ∈ ∆S, if and only if it has a concave expected utility
representation with respect to π ∈ ∆S.

Proposition (State separable and expected utility representation) Let preferences

be represented by U =
S∑
s=1

us (cs) if the agent is risk averse with respect to probability measure

π, then utility function U must have an expected utility representation under π. Moreover
the expected utility is concave.

Proof (Differentiable case)

• An agent is risk averse if U (c) ≤ U (E [c]) ∀c.

• Consider the following problem:

max
c∈RS+

U (c) =
S∑
s=1

us (cs) s.t. E [c] = c

• By risk aversion it must be that c = (c, . . . , c) is a solution to the problem, then it has
to satisfy the FOC for all s:

u
′

s (c) = πsλ
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• Taking the ration of any two: u
′
s (c) = πs

πŝ
u
′

ŝ (c) which implies for all s: us (x) =
πs
πŝ
uŝ (x) + ks (by integration).

• Defining v (x) = uŝ (x) one can write the utility function as:

U (c) =
S∑
s=1

us (cs) =
S∑
s=1

πs
πŝ
v (cs) +

S∑
s=1

ks

• Note that if U represents some preference relation � then aU+b for a ∈ R++ and b ∈ R
also represents the same preferences

(
U (c) ≥ U

(
c
′) ⇐⇒ aU (c) + b ≥ aU

(
c
′)

+ b
)
,

then the function V :

V (c) = πŝU (c)− πŝ
S∑
s=1

ks =
S∑
s=1

πsv (cs) = Eπ [v]

represents the same preferences than U . V is of the expected utility form. Note that v
is increasing.

Proposition (Risk aversion and risk compensation) Let � be a rational, strictly
increasing and continuous preference relation. Then

i. � is risk averse if and only if ∀x∈R+∀z̃∈RS ,E[z̃]=0 ρ (x, z̃) ≥ 0.

ii. � is risk neutral if and only if ∀x∈R+∀z̃∈RS ,E[z̃]=0 ρ (x, z̃) = 0.

Proposition (Theorem of Pratt) Let v1, v2 ∈ C2 strictly increasing VNM utility func-
tions (with respect to π ∈ ∆S), with risk compensations ρ1 and ρ2, and Arrow-Pratt absolute
risk aversion measures A1 and A2 respectively. The following conditions are equivalent:

i. ∀x∈RA1 (x) ≥ A2 (x)

ii. ∀x∈R∀z̃∈RS ,E[z̃]=0ρ1 (x, z̃) ≥ ρ2 (x, z̃)

iii. v1 is a concave transformation of v2. For some f be concave and strictly increasing,
∀x∈Rv1 (x) = f (v2 (x))

Note: If ∀x∈R∀z̃∈RS ,E[z̃]=0ρ1 (x, z̃) ≥ ρ2 (x, z̃) we say that v1 is more risk averse than v2. From
the theorem we know that this is equivalent to ∀x∈RA1 (x) ≥ A2 (x).

Corollary 1 (Theorem of Pratt)

i. A consumer is risk averse if and only if his VNM utility function is concave.

ii. A consumer is risk neutral if and only if his VNM utility function is linear.

iii. A consumer is strictly risk averse if and only if his VNM utility function is strictly
concave.

Note: This also works without the differentiability assumption.
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Corollary 2 (Theorem of Pratt)

i. ρ (x, z̃) is increasing in x for every z̃ with Eπ [z̃] = 0 if and only if A (x) is increasing in
x.

ii. ρ (x, z̃) is constant in x for every z̃ with Eπ [z̃] = 0 if and only if A (x) is constant in x.

iii. ρ (x, z̃) is decreasing in x for every z̃ with Eπ [z̃] = 0 if and only if A (x) is decreasing
in x.

Note: For the proof let v be a VNM utility function and and define v1 (y) ≡ v (y + ∆y) for
∆y ≥ 0. Note that A1 (y) = A (y + ∆y) and ρ1 (y, z̃) = ρ (y + ∆y, z̃).
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9.1 Ellsberg Paradox

Consider an urn with a fixed number of balls. There are three possible colors, say red, blue
and green. The proportion of red balls is known and is noted as πr < 1/2.

Now consider bets of $1 on a ball of a certain color (or colors) being drawn from the urn.
The payoff is $1 if right and $0 if wrong.

The paradox consists in the agent having a VNM utility and observed preferences over
bets being: 1r � 1b and 1b∨g � 1r∨g. This implies for the utility that (denoting v (1) = v1

and v (0) = v0:

E [v (1r)] > E [v (1b)] E [v (1b∨g)] > E [v (1r∨g)]

πrv1 + (πb + πg) v0 > πbv (1) + (πr + πg) v0 πrv0 + (πb + πg) v1 > πbv0 + (πr + πg) v1

πr (v1 − v0) > πb (v1 − v0) πb (v1 − v0) > πr (v1 − v0)

Since v (·) is increasing v1− v0 ≥ 0, the inequalities would imply πr > πb and πb > πr, which
is a contradiction.

Multiple prior expected utility If the agent has a different utility function the paradox
can be avoided. Let P be the set of all possible probability distributions over the distributions
of the balls subject to the known information (Pr {r} = π < 1/2 and Pr {b}+Pr {g} = 1−π).

The agent’s utility is defined as: u (B) = minp∈P Ep [v (B)], where v (B) is the VNM
utility function evaluated at the bet’s payoffs.

In this case preference 1r � 1b implies:

min
p∈P
{πr (p) v1 + (πb (p) + πg (p)) v0} > min

p∈P
{πb (p) v1 + (πr (p) + πg (p)) v0}

min
p∈P
{πv1 + (1− π) v0} > min

p∈P
{πb (p) v1 + (π + πg (p)) v0}

πv1 + (1− π) v0 > 0v1 + (π + (1− π)) v0

π (v1 − v0) > 0

Since there is no uncertainty over the expected payoff of the bet 1r and the expected minimum
payoff of the bet 1b occurs when the probability of a blue ball is zero. The last inequality
holds since π > 0 and v (·) is increasing.

In this case preference 1b∨g � 1r∨g implies:

min
p∈P
{πr (p) v0 + (πb (p) + πg (p)) v1} > min

p∈P
{πb (p) v0 + (πr (p) + πg (p)) v1}

min
p∈P
{πv0 + (1− π) v1} > min

p∈P
{πb (p) v0 + (π + πg (p)) v1}

πv0 + (1− π) v1 > (1− π) v0 + (π + 0) v1

(1− π) (v1 − v0) > π (v1 − v0)

Since there is no uncertainty over the expected payoff of the bet 1b∨g and the expected
minimum payoff of the bet 1r∨g occurs when the probability of a blue ball is 1− π. The last
inequality holds since π < 1/2 and v (·) is increasing.
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9.2 Stochastic Dominance and Risk

Let z̃ and ỹ be random variables that take values on the interval [a, b]. Let Fz̃ (x) = Pr {z̃ ≤ x}
the Cumulative Distribution Function (CDF).

Definition (First order stochastic dominance) z̃ first order stochastically dominates
(FSD) ỹ if:

∀t∈[a,b]Fz̃ (t) ≤ Fỹ (t)

Definition (Second order stochastic dominance) z̃ second order stochastically domi-
nates (SSD) ỹ if:

∀t∈[a,b]

ˆ t

a

Fz̃ (x) dx ≤
ˆ t

a

Fỹ (x) dx

Note: Since E [z̃] = b−
´ b
a
Fz̃ (x) dx this implies E [z̃] ≥ E [ỹ].

Note: If z̃ FSD ỹ then z̃ SSD ỹ .

Definition (Riskiness) ỹ is more risky than z̃ if z̃ SSD ỹ and E [z̃] = E [ỹ].

Proposition (FSD and non-decreasing continuous functions) z̃ first order stochas-
tically dominates (FSD) ỹ if and only if for every function v : R → R such that v is non-
decreasing and continuous:

E [v (z̃)] ≥ E [v (ỹ)]

Proposition (SSD and concave non-decreasing continuous functions) z̃ second
order stochastically dominates (SSD) ỹ if and only if for every function v : R→ R such that
v is non-decreasing, continuous and concave:

E [v (z̃)] ≥ E [v (ỹ)]

Proposition (Scalar product and riskiness) Let z̃ be such that E [z̃] = 0 and k1 ≥ k2

then k1z̃ is more risky that k2z̃.
Note: Use E [v (z̃)] ≥ E [v (ỹ)] with concave v and note k2z̃ = k2

k1
(k1z̃)+

(
1− k2

k1

)
E [k1z̃].

Proposition (Riskiness and variance) If ỹ is more risky than z̃ then V [ỹ] ≥ V [z̃] where
V [z̃] = E

[
(z̃ − E [z̃])2].

Note: The converse is not true when ỹ and z̃ can take more than two values.
Note: Use v (x) = − (α− x)2 with α ≥ x and E [v (z̃)] ≥ E [v (ỹ)] to prove E [ỹ2] ≥

E [z̃2]. Note they have the same mean.

Proposition (Riskiness and increasing affine transformations)

z̃SSDỹ → ∀a≥0∀b∈R (aỹ + b) SSD (az̃ + b)
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Proposition (Riskiness with several variables) Let z̃ and ỹ be nondeterministic ran-
dom variables such that ỹ has mean zero, and is mean independent of z̃, that is, E [ỹ|z] =
E [ỹ] = 0. Then z̃ + ỹ is more risky than z̃, z̃SSD (z̃ + ỹ).

Proof: Let v be a concave and non-decreasing function, then:

E [v (z̃ + ỹ)] = Ez [Ey [v (z̃ + ỹ) |z]] ≤ Ez [v (Ey [z̃ + ỹ|z])] = Ez [v (z̃ + Ey [ỹ|z])]

= Ez [v (z̃ + E [ỹ])] = E [v (z̃)]

where the inequality follows from Jensen’s inequality (Ey [v (z̃ + ỹ) |z] ≤ v (Ey [z̃ + ỹ|z])) and
the first step form the law of iterated expectations.

Note: The requirement of mean independence is stronger than that of no correlation
between z̃ and ỹ, but weaker than that of independence.
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Part III

Beth Allen
10 Preferences
In what follows � is a (preference) relation on a (consumption) set X. It is assumed to be a
complete preorder (complete, transitive and reflexive). The definitions (including continuity)
follow Debreu (1987).

Continuity

Sequential Definition For any sequence {(xn, yn)} with ∀nxn � yn , xn → x and
yn → y we have x � y.

Set Definition For all x ∈ X the upper contour (U (x) = {y ∈ X|y � x}) and lower
contour (L (x) = {y ∈ X|x � y}) are closed.

Monotonicity

Definition (Weakly monotone) A preorder � is weakly monotone on a set X if:

∀x,y∈Xx ≥ y → x � y

Definition (Monotone) A preorder � is monotone on a set X if:

∀x,y∈Xx� y → x � y

Definition (Strongly monotone) A preorder � is strongly monotone on a set X if:

∀x,y∈Xx ≥ y ∧ x 6= y → x � y

Convexity

Definition (Weakly convex) A preorder � is weakly convex on a set X if:

∀x,y∈X∀λ∈(0,1)x � y → λx+ (1− λ) y � y

Definition (Convex) A preorder � is convex on a set X if:

∀x,y∈X∀λ∈(0,1)x � y → λx+ (1− λ) y � y

Definition (Strongly -Strictly- convex) A preference relation � is strongly convex
on a set X if:

∀x,y∈X∀λ∈(0,1)x ∼ y ∧ x 6= y → λx+ (1− λ) y � y
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Proposition If � is a convex and continuous, then it is weakly convex.

Proposition If � is a strongly convex and continuous, then it is convex.

Proposition If � is a weakly convex, continuous and locally non-satiated, then it is
convex.

Proof:

• Suppose for contradiction that � is not convex. Then there exists x, y ∈ Rl
+ and

λ
′ ∈ (0, 1) such that x � y and y � λ

′
x+

(
1− λ′

)
y = z.

• By weak convexity z � y, then z ∼ y.

• Let εn = 1
n
by l.n.s. there exists yn ∈ Bεn (y) such that yn � y. Let

An =
{
q ∈ Rl

+|∃α>0q = α (z − yn) + yn
}

and define xn = argmin
q∈An

‖x− q‖. Note that by construction yn → y and then xn → x,

also that for all n, there exists αn ∈ (0, 1) such that z = αnxn + (1− αn) yn.

• It is the case that there exists N such that xn � y. Suppose for a contradiction that
for all n y � xn. Then by continuity y � limxn = x which contradicts x � y.

• If xN � yN we have by weak convexity z � yN � y which is a contradiction with z ∼ y.

• If yN � xN we have by weak convexity z � xN � y which is a contradiction with z ∼ y.

• Then � is convex.

Proposition � is weakly convex if and only if the (open) upper contours are convex
({y ∈ X|y � x} is convex).

Proposition � is convex if and only if the upper contours are convex ({y ∈ X|y � x} is
convex).

Corollary If � is convex it can only be represented by a quasi-concave utility function.
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11 Auxiliary Theorems and Definitions
Definition (Upper semi-continuous function - u.s.c.) A function f : Rn → R is u.s.c.
if ∀y∈R {x ∈ Rn|f (x) < y} is open in Rn.

Definition (Lower semi-continuous function - l.s.c.) A function f : Rn → R is l.s.c.
if ∀y∈R {x ∈ Rn|f (x) > y} is open in Rn.

Definition (Upper hemi-continuous correspondence - u.h.c.) A compact valued cor-
respondence Γ : X ⇒ Y is u.h.c. at x ∈ X if for every {xn} ⊂ X such that xn → x and
every {yn} ⊂ Y such that yn ∈ Γ (xn) there exits a convergent subsequence {ynk} such that
ynk → y ∈ Γ (x).

∀xn→x∀yn∈Γ(xn)∃{ynk}ynk → y ∈ Γ (x)

Definition (Lower hemi-continuous correspondence - l.h.c.) A correspondence Γ :
X ⇒ Y is l.h.c. at x ∈ X if for all y ∈ Γ (x) and all sequences {xn} ⊂ X such that xn → x
there exits a sequence {yn} ⊂ Y such that yn ∈ Γ (xn) and yn → y.

∀xn→x∀y∈Γ(x)∃yn∈Γ(xn)yn → y

Definition (Closed correspondence or Closed graph property) A correspondence
Γ : X ⇒ Y is closed if Gr (Γ) = {(x, y) |x ∈ X ∧ y ∈ Γ (x)} is a closed subset of X × Y .
This is, if for every x ∈ X and {xn} ⊂ X such that xn → x and every {yn} ⊂ Y such that
yn ∈ Γ (xn) and yn → y we have y ∈ Γ (x).

∀x∀xn→x∀yn∈Γ(xn)yn → y =⇒ y ∈ Γ (x)

Note: If Γ has a closed graph then it is closed valued. Moreover, if Y is compact, Γ is
compact valued. The converse is not true.

Proposition (u.h.c and Closed graph) Let Γ : X ⇒ Y . If Γ is u.h.c, then Γ is closed
(has a closed graph).

Proof: Let Γ be u.h.c. Take x ∈ X, xn → x and {yn} ⊂ Y such that yn ∈ Γ (xn)
and yn → y. Since Γ is u.h.c. there is a convergent subsequence {ynk} of {yn} such that
ynk → y

′ ∈ Γ (x). Since yn → y it follows that y = y
′ and then y ∈ Γ (x). Then Γ is closed.

Proposition (Closed graph and u.h.c.) Let Γ : X ⇒ Y . If Y is compact and Γ is closed
(has a closed graph), then Γ is u.h.c.

Proof: Let Y be compact and Γ closed. First note that this implies that Γ is compact
valued (since closed graph implies closed valued). Take x ∈ X, xn → x and {yn} ⊂ Y such
that yn ∈ Γ (xn). Since Y is compact {yn} has a convergent subsequence ynk → y. Since Γ
is closed it follows that y ∈ Γ (x). Then Γ is u.h.c.
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Proposition (Cartesian product of closed correspondences) Let Γ1 : X1 ⇒ Y1 and
Γ2 : X2 ⇒ Y2 be closed and define Γ : X1 × X2 ⇒ Y1 × Y1 as Γ (x1, x2) = (Γ1 (x1) ,Γ (x2)).
Then Γ is closed.

Proof: Let (x1, x2) ∈ X1×X2, (x1n, x2n)→ (x1, x2) and {(y1n, y2n)} ⊂ Y1×Y2 such that
(y1n, y2n) ∈ Γ (x1n, x2n) and (y1n, y2n) → (y1, y2). Then y1n ∈ Γ1 (x1n), y2n ∈ Γ2 (x2n) and
y1n → y1, y2n → y2. Since Γ1 and Γ2 are closed we know that y1 ∈ Γ1 (x1) and y2 ∈ Γ2 (x2).
This implies (y1, y2) ∈ Γ (x1, x2), hence Γ is closed.

Theorem (Maximum -ToM-) Let X ⊂ Rn and Y ⊂ Rm, let f : X × Y → R be a
continuous function and Γ : X ⇒ Y a nonempty, compact valued, continuous correspondence.
Define:

v (x) = max
y∈Γ(x)

f (x, y) G (x) = {y ∈ Γ (x) |f (x, y) = v (x)}

Then v : X → Y is continuous, and G : X ⇒ Y is nonempty and compact valued, and u.h.c.

Theorem (Maximum under convexity - Sundaram (1996))

i. If f (x, ·) is concave for all x and Γ is convex valued then G is convex valued. Moreover,
if f (x, ·) is strictly concave then G is single valued, hence a continuous function.

ii. If f is concave on X × Y and Γ has a convex graph then v is concave and G is convex
valued. Moreover, if f is strictly concave on X × Y then v is strictly concave and G is
single valued, hence a continuous function.

Corollary (Quasi-Concavity) If f (x, ·) is quasi-concave for all x and Γ is convex
valued then G is convex valued. Moreover, if f (x, ·) is strictly quasi-concave then G is single
valued, hence a continuous function.

Theorem (Brouwer) Let S ⊂ Rn be nonempty, compact and convex, and f : S → S be
a continuous function. Then f has a fixed point in S (∃x∈Sf (x) = x).

Theorem (Kakutani) Let S ⊂ Rn be nonempty, compact and convex, and Γ : S ⇒ S be
a nonempty valued, convex valued and u.h.c. correspondence. Then Γ has a fixed point in S
(∃x∈Sx ∈ Γ (x)).

Note: Since S is compact u.h.c is equivalent to Γ having a closed graph.
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12 Existence
Definition (Exchange Economy) An exchange economy (with n traders and l goods) is
formed by tuples of preferences, endowments and consumption sets that characterize traders
(indexed by i). An economy is E = {(�i, ei, Xi)

n
i=1}, where �i is a complete preorder that

represents trader i’s preferences on Xi, and ei ∈ Xi is the vector of initial endowments of
that trader, consumption sets are Xi ⊆ Rl

+.
Note: In most casesXi = Rl

+ and is therefore omitted from the definition of the economy.
Alternatively the economy can be defined with ui, a utility function that represents trader

i’s preferences. It is also assumed that
n∑
i=1

ei � 0, this is, that there are not irrelevant goods.

Definition (Budget correspondence) The budget correspondence Bi : ∆ ⇒ Rl
+ is:

Bi (p, ei) = {x ∈ Xi|p · x ≤ p · ei}

Definition (Demand correspondence) The demand correspondence of trader i is:

xi (p, ei) =
{
x ∈ Bi (p, ei) |∀x′∈Bi(p,ei)x �i x

′
}

Aggregate excess demand correspondence:

Z (p) =
n∑
i=1

xi (p, ei)−
n∑
i=1

ei

Definition (Competitive Equilibrium) CE = {p?, (x?i )
n
i=1} ∈ ∆ × Rln

+ is a competi-

tive equilibrium in E if ∀ix?i ∈ xi (p
?, ei) and

n∑
i=1

x?i =
n∑
i=1

ei. That is, x?i is in the demand

correspondence of each agent, given p, � and ei, and all markets clear.
Note: This conditions can be summarized as 0 ∈ Z (p?). Where Z : ∆ ⇒ Rl is the

aggregate excess correspondence. When Z (·) is a function we have Z (p?) = 0.

Definition (Boundary condition)

Function Let Z : ∆ → Rl be an excess demand function. Z satisfies the boundary
condition if ∀{pn}⊂∆pn → p ∈ ∂∆ =⇒ ‖Z (pn)‖ → ∞.

Correspondence Let ψ : ∆→ Rl be an excess demand correspondence. ψ satisfies the
boundary condition if ∀{pn}⊂∆pn → p ∈ ∂∆ =⇒

[
∀{Zn}Zn ∈ ψ (pn) =⇒ ‖Zn‖ → ∞

]
.

Note: A sufficient condition for the boundary condition to hold is strict monotonicity of
preferences. Monotonicity is not sufficient (take Leontief preferences).
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Theorem (Very easy existence theorem) Let Z : ∆ → Rl be an excess demand
function. If Z is continuous and satisfies Walras’ law

(
∀p∈∆p · Z (p) = 0

)
, then there exists

p? ∈ ∆ such that Z (p?) ≤ 0. Moreover Z (p?) = 0 if p? ∈ ∆.

Outline:

• Note that ∆ is nonempty, compact and convex.

• Define F : ∆→ ∆ such that F is continuous. By Brouwer F has a fixed point on ∆.

• Argue that the fixed point is a competitive equilibrium.

Proof:

• Let F (p) = 1
1+
∑

max(0,Zi(p))
(p1 + max (0, Zi (p)) , . . . , pl + max (0, Zl (p))).

• Since Z (·) is continuous, then Zi (·) and max (0, Zi (·)) are continuous.

• Then F (p) is continuous. Moreover ∀p∈∆∀iFi (p) ≥ 0 and
∑
Fi (p) = 1 by construction.

• Then F : ∆→ ∆ and by Brouwer there exists p? such that p? = F (p?).

• Then:
p?i =

p?i + max (0, Zi (p
?))

1 +
∑

max (0, Zj (p?))
→ p?i = λ (p?i + max (0, Zi (p

?)))

Note that λ = 1. If λ < 1 then 0 < max (0, Zi (p
?)), since this holds for all i it follows

that Z (p?) ≥ 0, this violates Walras’ law since p? � 0. Then it must be λ = 1 and
0 = max (0, Zi (p

?)).

• This gives the result Z (p?) ≤ 0. By Walras’ law one gets that if p? ∈ ∆ then Z (p?) = 0.

Theorem (-Extended- Very easy existence theorem) Let Bl ∈ Rl be compact and
convex. Let ψ : ∆ ⇒ Bl be an excess demand correspondence. If ψ is nonempty and convex
valued, u.h.c. and satisfies Walras’ law

(
∀p∈∆∀Z∈ψ(p)p · Z = 0

)
, then there exists p? ∈ ∆ and

Z? ∈ ψ (p?) such that Z? ≤ 0. Moreover Z? = 0 if p? ∈ ∆.

Outline:

• Note that ∆̄×Bl is nonempty, compact and convex.

• Define Γ : ∆ × Bl ⇒ ∆ × Bl such that Γ is nonempty , convex valued and u.h.c. By
Kakutani Γ has a fixed point on ∆×Bl.

• Argue that the fixed point is a competitive equilibrium.

37



Proof:

• Let Γ (p, Z) = (F (p, Z) , ψ (p)). With F (p, Z) defined as above.

• Since ψ is non-empty and convex valued, and F is a function (hence non-empty and
convex valued), then we have that Γ is non-empty and convex valued.

• Since F is continuous and ψ is u.h.c. and have compact range they are closed, then Γ
is closed, and since it has compact range is also u.h.c.

• By Kakutani there exists (p?, Z?) ∈ ∆×Bl such that (p?, Z?) ∈ Γ (p?, Z?).

• Then p? = F (p?, Z?) and Z? ∈ ψ (p?). This gives p? · Z? = 0.

• By the same argument of the VEET we get Z? ≤ 0 and Z? = 0 if p? ∈ ∆.

Theorem (Easy existence theorem) Let Z : ∆ → Rl be an excess demand function.
If Z is continuous, bounded from below, satisfies Walras’ law

(
∀p∈∆p · Z (p) = 0

)
, and the

boundary condition (above), then there exists p? ∈ ∆ such that Z (p?) = 0.

Outline:

• Note that Z is defined for ∆ and not for ∆̄.

• Define µ : ∆ ⇒ ∆ such that it is nonempty , convex valued and u.h.c. By Kakutani µ
has a fixed point in ∆.

• Argue that the fixed point is in ∆ and that it is a competitive equilibrium.

Proof:

• Let µ (p) =


{
q ∈ ∆|q ∈ argmax

q∈∆

q · Z (p)

}
if p ∈ ∆{

q ∈ ∆|q · p = 0
}

if p ∈ ∂∆

.

• µ is nonempty and convex valued.

– Consider p ∈ ∆.

∗ µ is given by the set of argmax of the function q·Z (p) for q ∈ ∆. The objective
function is continuous and the feasible set for q is nonempty, compact and (as
a correspondence) constant, hence continuous. Then by the theorem of the
maximum the set of argmax (as a function of p) is nonempty, compact valued
and u.h.c. (This is using the continuity assumption of Z (p)).
∗ Consider q, q′ ∈ µ (p) and λ ∈ (0, 1). Let K = q · Z (p) = q

′ · Z (p). Then(
λq + (1− λ) q

′) · Z (p) = K which implies λq + (1− λ) q
′ ∈ µ (p). This is,

µ (p) is convex valued for p ∈ ∆.
This also follows from ToM under convexity.
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– Consider p ∈ ∂∆.

∗ There exists q ∈ ∆ such that for k with pk > 0 has qk = 0. Thus q ∈ µ (p) 6= ∅.
∗ Consider q, q′ ∈ µ (p) and λ ∈ (0, 1). Then

(
λq + (1− λ) q

′) · p = 0 which
implies λq + (1− λ) q

′ ∈ µ (p). This is, µ (p) is convex valued for p ∈ ∂∆.

• In order to use Kakutani it is left to show that µ has a closed graph (or is u.h.c.). Take
p ∈ ∆, pn → p and qn ∈ µ (pn) such that qn → q.

– If p ∈ ∆.

∗ Then it must be that pn is infinitely often (i.o.) in ∆. Suppose the contrary,
then there is a subsequence of pn such that {pnk} ⊂ ∂∆, since pn converges
then pnk → p, since ∂∆ is closed then p ∈ ∂∆ which is a contradiction.
∗ Then take wlog {pn} ⊂ ∆. As noted above in this case µ is u.h.c. this implies

it has a closed graph.

– If p ∈ ∂∆ and {pn} is i.o. in ∂∆.

∗ Then consider the subsequence {pnk} ⊂ ∂∆. It holds that qnk ·pnk = 0 for all k
and qnk → q. Since the dot product is continuous we have lim qnk · lim pnk = 0
which is q · p = 0, then q ∈ µ (p). Then µ has a closed graph.

– If p ∈ ∂∆ and {pn} is i.o. in ∆ and only finitely often in ∆.

∗ Then consider the subsequence {pnk} ⊂ ∆. It holds that qnk · Z (pnk) =
max q · Z (pnk) for all k and qnk → q.
∗ Suppose for contradiction that q 6= µ (p), then q · p > 0. This is ∃jqj, pj > 0.
∗ Since qnk → q and pnk → p we have qjnk → qj and pjnk → pj. Then there exits
k such that ∀k>kqjnk > 0 ∧ pjnk > 0

∗ Since qjnk > 0 and qnk · Z (pnk) = max q · Z (pnk) it follows that Zj (pnk) ≥
Zi (pnk) for all i.
∗ Since pnk → p ∈ ∂∆ by the boundary condition ‖Z (pnk)‖ → ∞, since Z (·) is

bounded from below it follows that Zj (pnk)→∞.
∗ This violates Walras’ law since pjnk > 0 and then pnk · Z (pnk)→∞.
∗ Then it must be that q ∈ µ (p), then µ has a closed graph.

• By Kakutani µ has a fixed point in ∆. ∃p?p? ∈ µ (p?).

– p? ∈ ∆. Suppose for contradiction that p? ∈ ∂∆, then p? ·p? = 0. This contradicts
p? ∈ ∆.

– Then p? · Z (p?) = max q · Z (p?). Since ∀ip?i > 0 it follows that ∀i,jZi (p?) =
Zj (p?) = Z (p?).

– By Walras’ law 0 = p? · Z (p?) =
∑
p?iZi (p?) = Z (p?)

∑
p?i = Z (p?). Which

completes the proof (Z (p?) = 0).
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Theorem (-Extended- easy existence theorem) Let ψ : ∆ ⇒ Bl be an excess demand
correspondence. If ψ is:

• Nonempty and convex valued, and u.h.c.

• Satisfies Walras’ law
(
∀p∈∆∀Z∈ψ(p)p · Z = 0

)
.

• Satisfies boundedness from below condition: ∃B>0∀p∈∆∀Z∈ψ(p)Z ≥ (−B, . . . ,−B) ∈ Rl.

• Satisfies boundary condition (above).

Then there exists p? ∈ ∆ and Z? ∈ ψ (p?) such that Z? = 0.

Proof:

Definition: Let 0 < ε ≤ 1/l. Define a subset of the l-dimensional simplex as: ∆ε ={
p ∈ ∆|∀j∈{1,...,l}pj ≥ ε

}
Proposition: Let 0 < ε ≤ 1/l. ∆ε is nonempty, convex and compact.

Proposition: Let ε > 0. ψ (p) is bounded for any p ∈ ∆ε.

i. ψ (p) is bounded below on ∆, and ∆ε ⊂ ∆, then ∀p∈∆ε∀Z∈ψ(p)∀jZj ≥ −B.

ii. ψ (p) is satisfies Walras’ law on ∆, then ∀p∈∆ε∀Z∈ψ(p)p · Z = 0 → pjZj = −
∑
k 6=j
pkZk.

And
pjZj = −

∑
k 6=j

pkZk ≤ B
∑
k 6=j

pk ≤ B

iii. Since pj ≥ ε, then Zj ≤ B/pj ≤ B/ε.

iv. If p ∈ ∆ε then ψ (p) ⊂ [−B, B/ε]l.

Note: [−B, B/ε]l is nonempty, convex and compact for ε > 0. Moreover ∆ε × [−B, B/ε]l
is also nonempty, convex and compact for 0 < ε ≤ 1/l.

Definition: Let 0 < ε ≤ 1/l. Define a correspondence µε : [−B, B/ε]l ⇒ ∆ε as:

µε (Z) =

{
p ∈ ∆ε|p ∈ argmax

q∈∆ε

q · Z
}

Proposition: µε is u.h.c, nonempty, convex and compact valued.

i. Note that q · Z is continuous in q and that ∆ε is a continuous and compact valued
correspondence in Z, then by ToM µε is nonempty, compact valued and u.h.c.

ii. Convexity: Let p, p′ ∈ µε (Z) and λ ∈ (0, 1), since p and p
′ are both argmax of q · Z

denote M = p · Z = p
′ · Z. Note that

(
λp+ (1− λ) p

′) · Z = λp · Z + (1− λ) p
′ · Z =

λM + (1− λ)M = M , then λp + (1− λ) p
′ ∈ µε. This also follows from ToM under

convexity.
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Definition: Let 0 < ε ≤ 1/l. Define a correspondence

Γε : ∆ε × [−B, B/ε]l ⇒ ∆ε × [−B, B/ε]l Γε (p, Z) = (µε (Z) , ψ (p))

Γε is u.h.c., nonempty and convex valued. (This follows from µε and ψ being u.h.c., nonempty
and convex valued).

Fixed Point: By Kakutani’s fixed point theorem, Γε has a point in ∆ε × [−B, B/ε]l.
∃(pε,Zε)∈∆ε×[−B,B/ε]l (pε, Zε) ∈ Γε ((pε, Zε))

Boundedness of the fixed point: Since (pε, Zε) ∈ Γε ((pε, Zε)) we have: p?ε ∈ µε (Z?
ε )

and Z?
ε ∈ ψ (p?ε). The first condition implies that ∀q∈∆εpε · Zε ≥ q · Zε and the second (by

Walras’ law) pε · Zε = 0. Then ∀q∈∆ε0 ≥ q · Zε.
Consider q = (ε, . . . , 1− (l − 1) ε), q ∈ ∆ε since

∑
q = 1 and ∀jqj ≥ ε (this follows for

the last component since 1− (l − 1) ε ≥ ε ⇐⇒ ε ≤ 1/l which is always satisfied). Then:

0 ≥ q·Zε =
l−1∑
j=1

εZjε+(1− (l − 1) ε)Zlε ≥
l−1∑
j=1

ε (−B)+(1− (l − 1) ε)Zlε = − (l − 1) εB+(1− (l − 1) ε)Zlε

Zlε ≤
(l − 1) ε

1− (l − 1) ε
B

This same procedure can be done for any j ∈ {1, . . . , l} then:

∀j −B ≤ Zjε ≤
(l − 1) ε

1− (l − 1) ε
B ≤ (l − 1)B

Finally pε is bounded since pε ∈ ∆ε which is bounded.

Equilibrium prices: There exists p? ∈ ∆ and Z? ∈ ψ (p?) such that Z? = 0.
i. Let {εn} ⊂ (0, 1/l] such that εn → 0.

ii. Define two sequences {pn} ⊂ ∆ and {Zn} ⊂ [−B, B/ε]l such that pn = pεn and Zn = Zεn ,
a fixed point at the given εn. Then we know Zn ∈ ψ (pn).

iii. Since {(pn, Zn)} ⊂ ∆× [−B, (l − 1)B]l it is a bounded sequence, hence it has a conver-
gent subsequence {(pnk , Znk)} on ∆× [−B, (l − 1)B]l. pnk → p? ∈ ∆ and Znk → Z?.

iv. p? ∈ ∆. Suppose p? ∈ ∂∆, then by assumption, and since Znk ∈ ψ (pnk), it holds that
‖Znk‖ → ∞. But for all k Znk ∈ [−B, (l − 1)B]. This is a contradiction. Then p? ∈ ∆.

v. Since Znk is a fixed point as above it holds that for all k:

∀jZjnk ≤
(l − 1) εnk

1− (l − 1) εnk
B

Then, since εnk → 0 and Zjnk → Z?
j it follows that:∀jZ?

j ≤ 0.

vi. Since ψ is u.h.c. Z? ∈ ψ (p?).

vii. Since Z? ∈ ψ (p?) it follows that p? · Z? = 0. Since p? ∈ ∆ and Z? ≤ 0 it follows that
Z? = 0.
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13 Welfare
Definition (Weak Pareto dominance) An allocation x ∈ Rln

+ weakly Pareto dominates
y ∈ Rln

+ if ∀ixi �i yi and ∃jxj �j yj.

Definition (Strong Pareto dominance) An allocation x ∈ Rln
+ strongly Pareto domi-

nates y ∈ Rln
+ if ∀ixi �i yi.

Proposition (Equivalence of Pareto dominance) If �i is continuous and monotone
for all i and

∑
ei � 0 then, for x ∈ Rln

+ , ∃yw∈Rln+ ywWPDx ⇐⇒ ∃ys∈Rln+ ysSPDx.

Definition (Weak Pareto optimum) A feasible allocation x ∈ Rln
+ is weak Pareto opti-

mal if there is no other feasible allocation y ∈ Rln
+ that strongly dominates x (∀iyi �i xi).

Definition (Strong Pareto optimum) A feasible allocation x ∈ Rln
+ is strong Pareto opti-

mal if there is no other feasible allocation y ∈ Rln
+ that weakly dominates x (∀iyi �i xi, ∃jyj �j xj).

Proposition (Equivalence of Pareto optimum) If �i is continuous and strictly mono-
tone for all i and

∑
ei � 0 then x ∈ Rln

+ is WPO if and only if it is SPO.

Proof: SPO to WPO is immediate. For the other direction let x be WPO, suppose it is
not SPO then there exists y ∈ Rln

+ such that (∀iyi �i xi,∃jyj �j xj). By strict monotonicity
yj ≥ 0, let b ∈ Rl such that bk = 1 if ykj > 0 and 0 otherwise. By continuity of preferences
there exists ε > 0 such that zj = ykj − εb satisfies zj �i xj. Define zi = yi + 1

n−1
εb, by strict

monotonicity zi �i yi and then zi �i xi. Finally note that z is feasible since

n∑
i=1

zi =
n∑
i=1

yi +
∑
i 6=j

1

n− 1
εb− εb =

n∑
i=1

yi =
n∑
i=1

ei

Then z strongly Pareto dominates x contradicting that x is a WPO. Then it must be that x
is a SPO.

Note: If x ∈ Rln
++ it suffices to assume that �i is monotone for all i. If x ∈ Rln

+ with
some element in the boundary the proof for the proposition of equivalence between Pareto
dominance needs strict monotonicity to ensure feasibility.

Note: If preferences are only monotone a counterexample can be constructed with a
WPO allocation in the boundary. (x ∈ Rln

+ with xk = 0 for some k). If one agent only cares
about the consumption of one good, and the other is indifferent between consuming more or
less of the good.

(Keler) Consider u1 (x1, x2) = x1, u2 (x1, x2) = min (x1, x2) with aggregate endowments
E = (6, 3) and the allocation x = (x1, x2) = ((0, 2) , (3, 4)). x is a WPO since there is
no feasible allocation that makes trader 2 strictly better off, but it is not a SPO since the
allocation x

′
= ((0, 3) , (3, 3)) leaves trader 2 indifferent and makes trader 1 strictly better

off.
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Theorem (First welfare theorem) Let E = {(�i, ei, Xi)
n
i=1} be an exchange economy

with �i a continuous complete preorder and ei ∈ Rl
+ for all i, moreover

∑
ei � 0. Then, if

�i are locally non-satiated on Xi and (p?, x?) ∈ ∆ × Rln
+ is a competitive equilibrium, x? is

a (strong) Pareto optimum.

Proof:

• Let (p?, x?) be a competitive equilibrium for E .

• Suppose for contradiction that x? is not Pareto optimum. Then there exists y ∈ Rln

such that is feasible (
∑
yi =

∑
ei) and ∀iyi �i x?i ,∃jyj �j x?j .

• Note that ∀ip? · x?i = p? · ei. Suppose not, then ∃ip? · x?i < p? · ei (since x?i has to be
affordable), then, by l.n.s. there exists x′i such that x′i �i x?i and p? · x′i < p? · ei. This
contradicts x?i being optimal for trader i.

• Note then that ∀ip? · yi ≥ p? · ei. Suppose not, then ∃ip? · yi < p? · ei, by l.n.s. there
exits y′i such that y′i �i yi and p? · y

′
i < p? · ei. That is, y′ is affordable at prices p? for

trader i. By transitivity y′i � yi � x?i which contradicts x?i being optimal for trader i.

• Note now that p? · yj > p? · ej. Suppose not, then yj would be affordable for trader j,
since yj �j x?j this contradicts x?j being optimal for trader j.

• Then
∑
p? ·yi >

∑
p? ·ei which implies: p? · [

∑
(yi − ei)] > 0. Since p? ∈ ∆ this implies

∃k
∑(

yki − eki
)
> 0 which contradicts feasibility of y.

Theorem (Second welfare theorem) Let x ∈ Rln
++ be a (strong) Pareto optimum for

an exchange economy E = {(�i, ei)ni=1} with �i continuous, strictly monotone and strictly
convex and

∑
ei � 0. Then x is a competitive equilibrium allocation for E = {(�i, ei)ni=1}

with ei = xi. Moreover, x is the only competitive equilibrium allocation and the price vector
(p?) satisfies p? ≥ 0 and p? 6= 0.

Note: Strict monotonicity can be weakened to local non-satiation. Strict convexity is
only needed for x to be the only equilibrium allocation, it can be weakened to convexity.

Note: If E is defined with utility functions (ui) instead of preferences (�i) the strict
convexity assumption translates to strict quasi-concaveness of ui. That is, that the upper
contours are strictly convex.

Proof:

• Let Ui (xi) =
{
x ∈ Rl

+|x �i xi
}
be the (relatively) open contour of trader i at xi. Since

preferences are convex Ui is convex for all i. Define U (x) =
∑
Ui (xi). This set is open

and convex.

• Define E =
∑
xi. Since x is P.O. E equals the aggregate endowments of economy E .

– Note that E /∈ U (x). Suppose it does, then ∀i∃xixi ∈ Ui (xi) ∧
∑
xi = E. Then

∀ixi �i xi, since E is feasible, this contradicts x being P.O.

43



• Then, by the separating hyperplane theorem, there exists p ∈ Rl\ {0} such that
∀x∈U(x)p · (x− E) ≥ 0.

– Note that p ≥ 0. Denote bj the jth element of the unit basis of Rl. Take xi =
xi + 1

n
bj, since xi ≥ xi and xi 6= xi we have, by strict monotonicity xi ∈ Ui (xi).

Then x =
∑
xi = E + bj ∈ U (x). Then p · (x− E) = p · bj = pj ≥ 0. Since this is

true for all j we have p ≥ 0.

• If xi �i xi then p · xi ≥ p · xi:

– Let xi � xi. By continuity of preferences: ∃ε>0x̃i = xi − εb �i xi. x̃i ∈ Ui (xi).
– By monotonicity for j 6= i we have: x̃j = xj + ε

n−1
b �j xj. x̃j ∈ Uj (xj).

– Then,
∑
x̃i ∈ U (x) and by separating hyperplane: p · [

∑
(x̃i − xi)] ≥ 0 this is:

p · [x̃j − xj] ≥ 0 the desired result.

• Moreover, if xi �i xi then p · xi > p · xi:

– Let xi � xi and suppose for contradiction that p · xi = p · xi.
– By continuity ∃λ∈(0,1)λxi �i xi. By previous result: p · (λxi) ≥ p · xi.
– Since λ < 1 we have p · (λxi) < p · xi = p · xi. This is a contradiction.

• Then, at prices p and endowment xi, xi is in trader’s i demand (∀xp · x ≤ p · xi → xi �i x).
Then x is a competitive equilibrium allocation at price p.

– Since preferences are strictly convex demand is single valued. Then x is the only
equilibrium allocation at price p.

Definition (Economy with transfers) Let E = {(�i, ei, Xi, )
n
i=1} be an economy. An

economy with transfers ET = {(�i, ei, Xi, Ti)
n
i=1} with

n∑
i=1

Ti = 0, differs from E only in the

definition of the budget set:

Bi (p, ei, Ti) = {x ∈ Xi|p · x ≤ p · ei + Ti}

Proposition (Implementation of PO with transfers) Let x̂ ∈ PO of economy E =
{(�i, ei, Xi, )

n
i=1}, then if x̂ is implemented as a CE allocation of the economy Ê = {(�i, x̂i, Xi, )

n
i=1}

under price p̂, it is implemented as a CE allocation of the economy ET = {(�i, ei, Xi, Ti)
n
i=1}

under price p̂, where Ti = p̂ · x̂i − p̂ · ei.

Proof: First note that
∑

i Ti = p · (
∑

i xi −
∑

i ei) = 0, then transfers are balanced. At
price p̂ it follows, for all agent i and all y ∈ Xi such that p̂ · y ≤ p̂ · ei + Ti, that p̂ · y ≤ p̂ · x̂i.
Since (x̂, p̂) is a CE of Ê it follows that y �i x̂i, then (x̂, p̂) is a CE of ET .
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Proposition (SWT with non-convex consumption sets) Let E = {(�i, ei, Xi)
n
i=1} be

an economy with �i strictly monotone, strictly convex and continuous preferences defined on
co (Xi). Let Q = {x ∈ X|x is Pareto Optimal} then if E ′ = {(�i, ei, co (Xi))

n
i=1} with set of

Pareto Optimal Allocations Q′ is such that Q ⊆ Q′ then the Second Welfare Theorem holds
in E .

Proof: By construction the Second Welfare Theorem applies to E ′. Suppose it does not
apply to E , this implies ∃x ∈ Q such that it is not a CE allocation when ê = x. Then for any
p, there exists an agent j and yj ∈ Xj such that yj � xj and p · yj ≤ p · êj. Since yj ∈ Xj

it must be that yj ∈ co (Xj) meaning it was available in E ′. But x ∈ Q implies x ∈ Q′then
there exists a price p̂ such that x is a CE in E ′, by the argument above for that price there
exists an agent j and a bundle yj ∈ Xj ⊆ co (Xj) such that yj � xj and p̂ · yj ≤ p̂ · êj which
contradicts that x being a CE when ê = x in E ′ , hence contradicting the second welfare
theorem in E ′ .
This contradiction implies that the second welfare theorem applies to E .

Corollary:

i. If x ∈ Q ∩ Q′ then the same argument above applies, then it follows that any Pareto
Optimum allocation that is a PO in both economies can be implemented in the non-
convex economy, even if the inclusion condition (Q ⊆ Q′) does not hold.

ii. If x ∈ int (X) ∩Q then it follows that x ∈ Q ∩Q′ which implies that all PO allocation
in the interior of the non-convex economy are implementable as CE allocations in the
sense of the Second Welfare Theorem.

Corollary (Implementation of PO in non-convex economy) Let x̂ ∈ Q∩Q′ , then
x̂ is implemented as a CE allocation of the economy Ê = {(�i, x̂i, Xi)

n
i=1} with the same price

that implements it under Ê ′ = {(�i, x̂i, co (Xi))
n
i=1}.

Proof: Let x̂ ∈ Q ∩ Q′ then, by the SWT applied to economy E ′ there exists p̂ such
that (x̂, p̂) is a CE of Ê ′ , in particular for all agent i it holds that for all y′ ∈ co (Xi) if
p̂ · y′ ≤ p̂ · x̂i then y

′ �i x̂i. Note that for if y ∈ Xi then y ∈ co (Xi), then for all y ∈ Xi such
that p̂ · y ≤ p̂ · x̂i it follows that y �i x̂i. Then (x̂, p̂) is a CE of Ê = {(�i, x̂i, Xi)

n
i=1}.
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14 Core and Competitive Equilibrium
Definition (Individually rational allocation) An allocation x ∈ Rln

+ is individually
rational in exchange economy E if ∀ixi �i ei.

Definition (Coalition) A coalition S is a subset of the traders in exchange economy E .
Number of coalitions 2n− 1. Includes coalition of all traders and coalition of a single trader.

Definition (Blocked allocation - Debreu and Scarf (1963)) An allocation is blocked
by a coalition S with s traders if there exits y ∈ Rls

+ such that is feasible for the coalition(∑
i∈S
yi =

∑
i∈S
ei

)
and ∀i∈Syi �i xi and ∃j∈Syj �j xj.

Note: Under strict monotonicity and continuous preferences an allocation is blocked by
a coalition S if ∀i∈Syi �i xi and y is feasible for S.

Definition (Core) The core of exchange economy E is the set of allocations that cannot
be blocked by any coalition.

Proposition (Core and Pareto optimum) The core of economy E is contained in the
set of SPO allocations. Consider allocation of all traders.

Proposition (Core and Competitive Equilibrium) The set of CE allocations is con-
tained in the core. Proof is identical to FWT applied to the blocking coalition.

Note: Sufficient conditions for non-emptiness of the core are those that guarantee exis-
tence of equilibrium.

Definition (R-Replica economy) The R replica of economy E , noted ER, is an economy
with Rn traders, with n types and R identical traders of each type. ER =

{
((�ir, eir)ni=1)

R

r=1

}
with �ir=�ir′ and eir = eir′ for all r, r

′ ∈ {1, . . . R}.

Proposition (Equal treatment property) Let E be an exchange economy and ER its R
replica. If x ∈ Core

(
ER
)
then xir = xir′ for all r, r

′ ∈ {1, . . . R}.

Proof:

• Let x ∈ Core
(
ER
)
such that there exists j ∈ {1, . . . , n} and r, r′ ∈ {1, . . . R} for which

xjr 6= xjr′ .

• Consider a coalition S formed by one agent of each type.

• Let xi ∈ {xi1, . . . , xik} such that ∀kxik �i xi. Coalition S is formed by the agents with
allocations xi.

• Define an allocation xSi = 1
R

R∑
k=1

xik, by strict convexity xSi �i xi for all i and xSj �j xj.
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• If allocation xS is feasible S would then be a blocking coalition, recalling that x is
feasible:

n∑
i=1

xSi =
1

R

n∑
i=1

R∑
k=1

xik =
1

R

(
R

n∑
i=1

ei

)
=

n∑
i=1

ei

• Since there is always a blocking coalition for x it must be that the equal treatment
property holds.

Theorem (Limit of core and CE Debreu and Scarf (1963)) Let E be an exchange
economy with �i continuous, l.n.s and strictly convex, and ei � 0. and ER its R replica.
Then CE (E) =

∞
∩
R=1

Core
(
ER
)
. In other words, if an allocation is in the core of all replica

economies then it is a CE allocation.
Note: It is required in the Debreu-Scarf article that ei � 0, this is not the usual condition∑
ei � 0.
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15 Non-Convexities
Existence results, the second welfare theorem and the Debreu-Scarf theorem (core) assume
convexity of preferences and consumption sets of all traders. These assumptions imply some
“consistency” on preferences and choice sets, in the sense that they impose behavioral restric-
tions on the agents and certain “completeness”-like property in the choice sets. Intuitively
convexity allows to compare and move along the commodity space in a systematic way,
maintaining certain order in preferences. In this way convex preferences can be seen as an
strengthening of the rationality assumption.
The Theorem of Maximum is useful to understand the effect of non-convexities in prefer-
ences and choice sets on individual excess demand, these effects translate to aggregate excess
demand under a finite number of traders.

i. Non-convex choice sets:

• The budget correspondence may fail to be compact valued. Then Weierstrass
theorem does not apply and (individual) demand might fail to be non-empty.
• The budget correspondence may fail to be continuous. The ToM would not apply

to the UMP and the (individual) demand might fail to be u.h.c.
• The budget correspondence may fail to be convex valued. The ToM under con-

vexity would not apply to the UMP and the (individual) demand might fail to be
convex valued.
• The preferences may fail to be locally non-satiated in the consumption set (for

example with indivisible goods). This prevents the FWT to apply.

ii. Non-convex preferences:

• Under preferences that are not strictly convex demand might fail to be single
valued for all prices.
• Under non-convex preferences the utility function ceases to be quasi-concave. The

ToM under convexity would not apply to the UMP and the (individual) demand
might fail to be convex valued.

Upper hemi-continuity and convex valuedness of the excess demand correspondence are used
actively in the proofs of the existence theorems, second welfare theorem and Debreu-Scarf
theorem. They are needed to establish the existence trough Kakutani’s (or Brouwer’s) fixed
point theorem, that requires both properties, and trough the separating hyperplane theorem,
that requires convexity of upper contour sets. Non-emptiness of the demand correspondence
invalidates all of the results.

Under non-convex preferences it is possible to define a quasi equilibrium, provided that the
number of traders in the economy is large enough. This equilibrium is called ε-equilibrium
in Starr (1969). The idea is that individual non-convexities in demand can be dealt with
by introducing more agents to the economy, the result (for finitely many traders) is not
necessarily a CE but can be shown to be arbitrarily close to one.

When the economy is composed by a continuum of agents another answer is provided to
non-convexity issues.
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16 Continuum of Agents
An alternative framework for modeling perfectly competitive economies is to assume that
agents are atomless elements in a continuum. This approach treats directly the idea of an
individual agent having a negligible effect on the market. Results under these conditions are
less dependent on convexity assumptions.

Definition (Exchange economy with a continuum of agents) An exchange economy
(with l goods and traders in T = [0, 1]) is formed by pairs of preferences and endowments
that characterize traders (indexed by i). Then an economy is E =

{
(�i, e (i))i∈T

}
, where �i

is a relation on Rl
+ that represents trader i’s preferences, it is assumed that

´
T
e (i) di > 0.

Definition (Allocation and feasibility) An allocation is a function x : T → Rl
+ such

that each coordinate is Lebesgue integrable over T . e (i) is the function of initial endowments.
An allocation is feasible if

´
T
x =
´
T
e.

Definition (Strong Pareto Optima) A feasible allocation x is (Strong) Pareto optimum
if there does not exists a set S ⊆ T and a feasible allocation y such that µ (S) > 0, y (i) �i x (i)
for almost every i and y (j) �j x (j) for all j ∈ S.

Definition (Weak Pareto Optima) A feasible allocation is weak Pareto optimum if there
does not exists a feasible allocation y such that y (i) �i x (i) for almost all i ∈ T .

Definition (Coalition) A coalition of traders is a Lebesgue measurable subset of T. If it
is of measure 0, it is called null.

Definition (Core) The core is the set of all allocations that are not dominated via any
non-null coalition. An allocation y is dominated by x via coalition S if ∀i∈Sx (i) �i y (i) and´
S
x (i) =

´
S
e (i).

Note: Under strictly monotone and continuous preferences this definition is equivalent
to one in which a dominated coalition is such that ∀i∈Tx (i) �i y (i),

´
S
x (i) =

´
S
e (i) and

there exits S ′ ⊆ S such that µ (S) > 0 and ∀j∈S′x (j) �j y (j).

Definition (Competitive Equilibrium) A competitive equilibrium is {p, x}, a pair of a
price vector p and an allocation x, such that for almost every trader i, x (i) = xi (p,�i, e (i)).
An allocation is feasible by definition in this environment.

Proposition (Equivalence of Pareto optima) If preferences are strictly monotone and
continuous then an allocation x is a strong Pareto optimum if and only if it is a weak Pareto
optimum.

Theorem (First welfare theorem with a continuum of agents) If preferences �i are
locally non-satiated then all competitive equilibrium allocation x is Pareto optimum.
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Proof: Suppose not, and let p be a competitive equilibrium price associated with x.
Then for almost all j ∈ S it must be that p · y (j) > p · e (j) (or else x (j) wouldn’t be
maximal with respect to �j) and for almost all i ∈ T : p · y (i) ≥ p · e (i) (using local
non-satiation for obtaining z such that p · z < p · e (i) and z �i x (i)). Then integrating gives:

ˆ
S

p · y (j) dj >

ˆ
S

p · e (j) dj

ˆ
T\S

p · y (i) di ≥
ˆ
T\S

p · e (i) di

And adding: ˆ
T

p · y (i) di >

ˆ
T

p · e (i) di −→ p ·
ˆ
T

(y (i)− e (i)) di > 0

which contradicts feasibility of allocation y.

Theorem (Core and competitive equilibrium - Aumann (1964)) If preferences are
strictly monotone, continuous and measurable (open contour sets are Lebesgue measurable
in T ), then the core coincides with the set of competitive equilibrium.

Note: Aumann’s result does not require preferences to be complete transitive or, in
particular, convex.

Note: The Debreu-Scarf limiting result and Starr’s result on non-convexities are obtained
in this “large” economy. Note that preferences are not asked to be convex.

Theorem (Existence of competitive equilibrium - Aumann (1966)) If preferences
�i are complete, transitive and reflexive, and (as before) strictly monotone, continuous and
measurable (open contour sets are Lebesgue measurable in T ), then there exists a competitive
equilibrium.

Theorem (Existence of CE with non-convex consumption sets - Yamazaki
(1978)) If, moreover, endowment distribution is disperse and choice sets are non-convex,
then there exists a competitive equilibrium for economy E .

Note: The competitive equilibrium considered by Yamazaki allows for free disposal, in
the sense that the equilibrium allocation is such that

´
T
x (i) ≤

´
T
e (i).

Definition (Dispersed Endowments) The endowment distribution is said to be dis-
persed when the distribution of wealth (µp,e (B) = µ {i ∈ T |p · e (i) ∈ B} where µ is the
Lebesgue measure and B is a Borel set of R) is absolutely continuous for every price (inter-
pret this as the CDF of wealth being continuous which implies that wealth has a PDF with
no mass points). That implies that the distribution of individual agents according to the
wealth they own does not give positive weight to any particular amount (w = p · e (i)).
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17 Infinitely Many Commodities
All the economies that have been considered so far have finitely many commodities, yet there
are (interesting situations) for which the number of commodities is infinite (but countably
so). There are three main cases that give rise to infinitely many commodities:

i. Time. When trade takes place in subsequent periods infinitely far into the future. Thus
the economy includes the goods traded at each period, indexed by time.

ii. Uncertainty. When trade involves products that depend on realization of states of
nature, and there are infinitely many possible states. A single type of good, like a
“state contingent” asset, includes all the infinitely many goods that arise from state
differentiation.

iii. Product differentiation. When trade involves products that are closely related, a same
type of commodity has infinitely many products related to it.

Considering infinitely many commodities has profound effects over the mathematical results
used so far. In the space R∞ the equivalence between compact and closed and bounded
sets does not hold. This invalidates the proofs that rely on compactness and fixed points
theorems when establishing the existence of the equilibrium. It also posses questions over
the definition of the objects that define an economy.

i. What is the set of commodities?

ii. What is the consumption set?

iii. What is the commodity space?

iv. What does it mean for preferences (or utilities) to be continuous?

v. How to define monotonicity properties when there are infinitely many goods?

vi. What type of preferences can be represented by a utility function?

vii. What is the price space?

These questions had natural solutions when the number of commodities was finite, but are
harder to solve in the current setting, they also involve the selection of a proper topology and
metric for the spaces under consideration. Depending on the topology used the definition of
compact set might be easy, but the set of continuous functions very restricted. Note that
open sets are used to defined continuity while closed and compact sets for maximization.
This induces a tradeoff in the selection of the topology.

Some examples of these type of economies are:

i. OLG models. (Depending on the definition of the commodity space the prices are
different).

ii. Infinitely lived consumers.

iii. Choice under uncertainty among lotteries with infinitely many outcomes.

iv. Product Differentiation. Crowding of goods, and new goods that are closed substitutes.
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18 Properties of Excess Demand Functions
[This discussion follows closely the one presented in Kirman (1992) and Sonnenschein (1973)]

The question over the properties of excess demand is first a question over which properties
(if any) does the general equilibrium framework imply over the aggregate demand, what does
it imply for the aggregate the hypothesis of utility maximizing individuals. Second is a
question over which conditions on these individuals must be imposed to get some “desired”
properties on the aggregate, as a unique equilibrium, or a continuous (differentiable) relation
of equilibrium outcome to “parameters” in the economy.

The relevance of the question is twofold, it informs about the implications of the frame-
work at hand, making it testable (as with the characteristics of the Slutsky matrix in indi-
vidual choice theory, Mas-Colell et al. (1995, Ch. 2.3)), and determines conditions for the
use of the framework, for example, in order to answer some questions (comparative statics)
it is needed to have a unique (or at leas finite set) equilibrium.

The answer to the question on the properties of aggregate excess demand is strikingly
short, and is due (among others) to Sonnenschein, Mantel and Debreu. The latter showed
that any continuous function satisfying Walras’ law and homogeneity of degree zero can be
represented (up to a compact subset of the simplex) by the aggregate excess demand function
of an economy where agents have preferences represented by continuous complete pre-orders,
strictly convex and monotone.

Even with all these conditions over consumers only three (basic) properties translate from
individual to aggregate excess demand. Any other property cannot be expected of any given
economy, for example, to have a unique equilibrium or to satisfy the weak axiom of revealed
preferences (that is, that the aggregate behaves like a maximizer individual). Sonnenschein
(1973) points out:

“The present results point to the conclusion that Walras’ Identity and Conti-
nuity summarize all of the restrictions on the community excess demand function
which follow from the hypothesis that consumers maximize utility and producers
maximize profit.”

Kirman (1992), talking about the representative agent, stresses that there is no microfun-
dation (a general condition on maximizing individuals) that would guarantee an aggregate
excess demand that induce a unique or stable equilibrium:

“The simple answer would be to find conditions implied by assumptions on the
individuals in an economy which guarantee uniqueness and stability. However,
a series of results starting with those of Sonnenschein (1972) and Debreu (1974)
show unequivocally that no such conditions exist.”

Imposing a representative agent is too restrictive on the economy being modeled.
This fact also explains why those are the only properties over which existence and other

results are built, again Sonnenschein (1973):

“Beyond Walras’ Identity and Continuity, that literature [on the existence and
stability of competitive equilibrium] makes no use of the fact that community
demand is derived by summing the maximizing actions of agents.”
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A partial response to this problem (lack of further properties) is given by Debreu (1970,
1972, 1976) using methods of differential topology. Imposing further conditions on individ-
ual agents, aggregate excess demand can be guaranteed to be smooth (continuously differ-
entiable). The conditions needed are those of a smooth economy. Debreu shows that on a
family of smooth economies (for example indexed by endowments) the set of economies with
finitely many equilibria is of full measure (they are generic), and that the set of equilibria
depends continuously on the characteristics of the economy for these economies.

The results obtained with smooth economies make equilibrium theory useful in the sense
that its implications are testable and provide insight into the effect of changes in the envi-
ronment over the outcomes of the economy. Debreu shows that for smooth economies the set
of economies with a finite number of equilibria is of full measure, and that the equilibrium
outcome (prices and quantities) varies in a continuous (even differentiable) manner with re-
spect to changes in the economy. This property of having locally unique and stable equilibria
makes the theory useful.

Theorem (Sonnenschein, Mantel, Debreu) Let f : Rl
+ → Rl be a continuous function

satisfying Walras’ law and homogeneity of degree zero. Then for all ε > 0 there exists an
economy E = {(�i, ei)ni=1} with �i a continuous, monotone and strictly convex complete
preorder and ei ∈ Rl

+, such that its aggregate excess demand Z (p) = f (p) for p ∈ ∆ε.

Definition (Smooth economy) Let E = {(fi, ei)ni=1} with fi : ∆ × Rl
+ → Rl

+ a demand
function for each trader be an economy (that is ∀i∀p,eip ·fi (p, ei) = p ·ei and fi is homogenous
of degree zero in prices). E is smooth if, for all traders i, fi ∈ C1. The notion of smoothness
can be strengthened with the boundary condition below:

∀i∀ei∀{pn}⊂∆pn → p ∈ ∂∆ =⇒ ‖fi (pn, ei)‖ → ∞

The above conditions can be obtained if agents have preferences that can be represented
by C2 utility functions (u) that are strictly differentiable monotone (∀xD (x)� 0) and strictly
differentiable concave (∀xD2 (x) is negative definite), and satisfy the following boundary con-
dition:

∀x∈Xcl
{
y ∈ Rl

++|u (y) ≥ u (x)
}⋂

∂Rl
+ = ∅

Definition (Regular economy - Debreu (1976)) Consider a family of smooth economies
E = {Ei} where economies are indexed by some parameter (as endowments). A regular econ-
omy is such that:

i. It is generic. Its complement (the set of critical economies) is of zero (Lebesgue)
measure.

ii. Every regular economy has a discrete set of equilibria.

iii. In a neighborhood of a regular economy, the set of equilibria depends continuously on
the economy.

If the excess demand function of an economy Ei satisfy the boundary condition (unbounded-
ness when price approaches the boundary) these conditions are strengthened to:
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i. It is generic. Its complement (the set of critical economies) is of zero (Lebesgue) measure
and is closed.

ii. Every regular economy has a finite set of equilibria.

iii. In a neighborhood of a regular economy, the set of equilibria depends in a continuously
differentiable manner on the economy.

Theorem (Finite set of Equilibrium Prices - Debreu (1970)) Consider an economy
E (e) with n agents indexed by i and strictly positive endowments ei � 0.

If for al i the excess demand function Zi : ∆ → Rl
+ is continuously differentiable, and

there exists j such that Zj satisfies the boundary condition, then the set of endowments for
which the economy has infinitely many equilibrium prices is a closed set with zero measure.

Then the set of endowments for which the economy has finitely many equilibrium prices
is generic (has full measure).

Moreover, if for all i the excess demand function Zi satisfies the boundary condition the
set of equilibrium prices is non-empty.

Note: Sufficient conditions on utilities for these results are given by Katzner (1968): ui
is continuous in Rl

+ and twice continuously differentiable in Rl
++, is strictly monotone and

strictly concave. Debreu (1972) establishes sufficient conditions over preferences.

Theorem (Sard) Let U ⊂ Rn be open and F : U → Rm be C1. Let Cr be the set of
critical points of F (Cr = {x ∈ U |rankDF (x) < m}). Then the set of critical values F (Cr)
has (Lebesgue) measure zero in Rm.

Note: When n = m the condition for a critical value reduces to detDF (x) = 0.

Theorem (Regular value) Let A be an n-dimensional smooth manifold, B an m- dimen-
sional smooth manifold and F : A→ B a mapping. If y ∈ B is a regular value of F then the
pre-image F−1 (y) is a smooth manifold of dimension n−m or is empty.
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19 Production Economies
Definition (Production economy) A production economy (with n traders, J firms and
l goods) is formed by n three tuples of preferences, endowments and shares that characterize
traders (indexed by i), and J production sets that characterize the firms. Then an economy is
E =

{(
�i, ei, {θij}Jj=1

)n
i=1

, {Yj}Jj=1

}
, where �i is a complete preorder that represents trader

i’s preferences, ei ∈ Rl
+ is the vector of initial endowments of that trader, θij ∈ [0, 1] is

the share of that trader in the jth firm
(
∀j
∑
i

θij = 1

)
and Yj is a non-empty and closed

production set.
Note: More generally the choice set Xi of each trader should be included in the definition

of the economy. Since this is usually Rl
+ it is omitted. Alternatively the economy can be

defined with ui, a utility function that represents trader i’s preferences. It is also assumed

that
n∑
i=1

ei � 0, this is, that there are not irrelevant goods.

Definition (Budget correspondence) The budget correspondence Bi : ∆ ⇒ Rl
+ is:

Bi (p) =

{
x ∈ Xi|p · x ≤ p · ei +

J∑
j=1

θijπj

}
where πj represents the profits generated by firm j.

Definition (Demand correspondence) The demand correspondence of trader i is:

xi (p) =
{
xi ∈ Bi (p) |∀x′∈Bi(p)xi �i x

′
}

Definition (Feasible allocation) An allocation
{

(xi)
n
i=1 , (yi)

J
j=1

}
∈ Rln

+ ×RlJ is feasible

if ∀ixi ∈ Xi, ∀jy ∈ Yj and
n∑
i=1

xi =
n∑
i=1

ei +
J∑
j=1

yj.

Definition (Competitive equilibrium) CE =
{
p?, (x?i )

n
i=1 , (y

?
i )
J
j=1

}
∈ ∆× Rln

+ × RlJ is

a competitive equilibrium in E if ∀ix?i ∈ xi (p?), ∀jy?j ∈ argmax
y∈Yj

p · y and
n∑
i=1

x?i =
n∑
i=1

ei +
J∑
j=1

y?j .

That is, x?i is in the demand correspondence of each agent, each firm is maximizing profits
given p, and all markets clear. (clearly π?j = p? · y?j ).

Note: For many applications a quasi-equilibrium is defined where agents are require
to minimize expenditure instead of maximize utility. A quasi-equilibrium is also a CE if
consumption sets are convex and preferences continuous.

Definition (Weak Pareto optimum) A feasible allocation (x, y) ∈ Rln
+ × RlJ is weak

Pareto optimal if there is no other feasible allocation
(
x
′
, y
′) ∈ Rln

+ × RlJ that strongly
dominates (x, y)

(
∀ix

′
i �i x

′
i

)
.
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Definition (Strong Pareto optimum) A feasible allocation (x, y) ∈ Rln
+ × RlJ is strong

Pareto optimal if there is no other feasible allocation
(
x
′
, y
′) ∈ Rln

+ × RlJ that strongly
dominates (x, y)

(
∀ix

′
i �i xi,∃kx

′

k �k xk
)
.

Note: The concepts of weak and strong Pareto dominance do not change between the
pure exchange and the production economy. Then Pareto optimality only changes because
the concept of feasibility changes. The value of y in an allocation is only relevant for Pareto
optimality as it affects what is considered feasible.

Theorem (Existence of competitive equilibrium) Let Xi be closed and convex, �i a
complete preorder, continuous, l.n.s and convex for all i, and Yj closed, convex and such that
includes the origin and satisfies free disposal for all j. Then a CE exists.

Theorem (First welfare theorem) Let E =
{(
�i, ei, {θij}Jj=1

)n
i=1

, {Yj}Jj=1

}
be a pro-

duction economy with �i a continuous complete preorder and ei ∈ Rl
+ for all i, moreover∑

ei � 0. Then, if �i are locally non-satiated and
{
p?, (x?i )

n
i=1 , (y

?
i )
J
j=1

}
∈ ∆×Rln

+ ×RlJ is
a competitive equilibrium, x? is a (strong) Pareto optimum.

Proof:

• Let
{
p?, (x?i )

n
i=1 , (y

?
i )
J
j=1

}
be a competitive equilibrium for E . Define the wealth of each

trader i as wi = p? · ei +
J∑
j=1

θijπj.

• Suppose for contradiction that
{

(x?i )
n
i=1 , (y

?
i )
J
j=1

}
is not Pareto optimum. Then there

exists
(

(xi)
n
i=1 , (yi)

J
j=1

)
∈ Rln

+ × RlJ such that is feasible

(
n∑
i=1

xi =
n∑
i=1

ei +
J∑
j=1

yj

)
and

∀ixi �i x?i ,∃kxk �k x?k.

• ∀ip? · xi ≥ wi: Suppose not, then ∃ip? · xi < wi, by l.n.s. there exits x′i such that
x
′
i �i xi and p? · x′i < wi. That is, x′ is affordable at prices p? for trader i. By

transitivity x′i � xi � x?i which contradicts x?i being optimal for trader i.

• p? ·xk > wk: Suppose not, then xk would be affordable for trader k, since xk �k x?k this
contradicts x?k being optimal for trader k.

• Since firms are profit maximizing it must be that ∀jπj = p? · y?j ≥ p? · yj.

• Then
n∑
i

p? · xi >
n∑
i

wi =
n∑
i

p? · ei +
J∑
j=1

πj ≥
n∑
i

p? · ei +
J∑
j=1

p? · yj
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which implies: p?·

[
n∑
i

(xi − ei)−
J∑
j=1

yj

]
> 0. Since p? ∈ ∆ this implies ∃m

n∑
i

(xmi − emi )−

J∑
j=1

ymj > 0 which contradicts feasibility of (x, y).

Theorem (Second welfare theorem) Let (x, y) ∈ Rln
+ × RlJ be a (strong) Pareto op-

timum for a production economy E =
{(
�i, ei, {θij}Jj=1

)n
i=1

, {Yj}Jj=1

}
with �i continuous,

strictly monotone and strictly convex, and Yj closed, convex and nonempty. Then there exists
price vector p and a reallocation of endowments and firm shares

(
e
′
i,
{
θ
′
ij

}J
j=1

)n
i=1

such that

{p, x, y} is a competitive equilibrium for E ′ =
{(
�i, e

′
i,
{
θ
′
ij

}J
j=1

)n
i=1

, {Yj}Jj=1

}
. Moreover,

(x, y) is the only competitive equilibrium allocation and the price vector p satisfies p ≥ 0 and
p 6= 0.

Note: Strict monotonicity can be weakened to local non-satiation. Strict convexity is
only needed for x to be the only equilibrium allocation, it can be weakened to convexity.
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Part IV

Aldo Rustichini
20 Game Form and Preferences over Consequences
Definition (Game Form) A game form is a tuple G =

{
I, {Ai}i∈I , C, g

}
formed by:

i. A finite set of players I = {1, . . . , n}.

ii. A finite set of actions for every player Ai =
{
ai1, . . . , a

i
ki

}
, where ki is the number of

actions of player i.

iii. A finite set of consequences C = {c1, . . . , cm}.

iv. A function g : A→ C that assigns consequences to action profiles a ∈ A = ×
i∈I
Ai where

× indicates cartesian product.

Definition (Simple Lottery) Let C be the (finite) set of consequences. A simple lottery

L ∈ ∆m is a probability distribution over the space of consequences. L =

(
p1 · · · pm
c1 · · · cm

)
with pj ≥ 0 and

m∑
j=1

pj = 1. Lottery L assigns probability pj to outcome cj.

Space of Simple Lotteries The space of simple lotteries is noted G0 = ∆m. These
are gambles of order 0.

Definition (Compound Lottery) Let k ∈ N and {L1, . . . , Lk} ⊂ G0. A compound

lottery M =

(
q1 · · · qk
L1 · · · Lk

)
is a probability distribution over a subset of simple lotteries.

Compound lottery M gives lottery Lj with probability qj. These are gambles of order 1, G1.

Arbitrary Compound Lotteries An nth order compound lottery M ∈ Gn is an ele-

ment of the form M =

(
q1 · · · qk
M1 · · · Mk

)
where Mj ∈ Gn−1.

Definition (Space of Lotteries) Let G =
∞⋃
n=0

Gn be the set of all lotteries.

Definition (Reduction) Let M ∈ G \ G0. R (M) ∈ G0 is the reduction of M to a simple
lottery. Denote by R (M) (cj) the probability given by R (M) to consequence cj.

For M ∈ G1 the probability distribution that defines R̃ (M) is given by

R̃ (M) (cj) =
k∑
i=1

qip
i
j
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where µij is the probability assigned to cj by simple lottery Li. Note that R̃ (M) (cj) ≥ 0

since qi, pij ≥ 0 for all i, j and thus R̃ (M) ∈ G0:

m∑
j=1

R̃ (M) (cj) =
m∑
j=1

k∑
i=1

qip
i
j =

k∑
i=1

qi

(
m∑
j=1

pij

)
=

k∑
i=1

qi = 1

The reduction of an n order gambleM to an n−1 order gamble is noted as R̃n (M) ∈ Gn−1,

for n ≥ 2. M has the form M =

(
p1 · · · pJ
L1 · · · LJ

)
, where pj ≥ 0,

∑
pj = 1 and Lj ∈ Gn−1.

Let G1, . . . GK ∈ Gn−2 be all the lotteries that form the possible outcomes of L1, . . . , LJ .

Define Rn (M) =

(
q1 · · · qK
G1 · · · GK

)
where qk =

J∑
j=1

pjs
Lj
k and sLjk is the probability assigned

by gamble Lj to outcome Gk, if Gk is not an outcome of Lj then sLjk = 0. Note that since
Gk is an outcome for at least one gamble Lj and pj ≥ 0 for all j it follows that qk ≥ 0 for all

k. Also,
K∑
k=1

qk =
K∑
k=1

J∑
j=1

pjr
Lj
k =

J∑
j=1

pj
K∑
k=1

r
Lj
k =

J∑
j=1

pj = 1. Then Rn (M) ∈ Gn−1.

Finally the reduction of an n order gamble M to a simple gamble is defined as R (M) =
R̃ ◦ R̃2 ◦ · · · ◦ R̃n (M).

Definition (Preference Relation) � is a binary relation defined over G.

Definition (Utility Representation) The function u : G → R represents � if for all
L,M ∈ G: L �M ⇐⇒ u (L) ≥ u (M).

Expected Utility Property (EUP) Function u has the EUP if there exists v : C → R
such that for L ∈ G0: u (L) =

m∑
j=1

pjv (cj).

Properties of Preference Relation

i. Weak Order: � is a complete and transitive relation.

ii. Continuity: For all L ∈ G there exists α ∈ [0, 1] such that: M ∼ c1αcm =

(
α · · · 1− α
c1 · · · cm

)
iii. Monotonicity: For α, β ∈ [0, 1]: α ≥ β ⇐⇒ c1αcm � c1βcm.

iv. Substitution: Consider L =

(
q1 · · · qK
L1 · · · LK

)
and M =

(
q1 · · · qK
M1 · · · MK

)
. If

∀kLk ∼Mk → L ∼M .

v. Reduction: For all M ∈ G \ G0: M ∼ R (M).

Order of Consequences: Under the Weak Order property there must be a best and
worst outcome. WLOG c1 � · · · � cm.
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Theorem (VNM - Expected Utility Representation)

i. Existence: Preference relation � has a utility representation with the EUP if and only
if it satisfies the five properties above.

ii. Uniqueness: The representation is unique up to monotonic affine transformations.

(a) If u represents � and has the EUP then for A > 0 and B ∈ R v = Au + B also
represents � and has the EUP.

(b) If u and v represent � and have the EUP then there exists A > 0 and B ∈ R such
that v = Au+B.

Note: Due to the reduction property the representation we have for allM ∈ G that u (M) =∑
R (M) (cj) v (cj). All results can be then established considering only simple lotteries with

the payoffs given by the expected utility representation.
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21 Normal Form Games

21.1 Nash Equilibria

Definition (Normal Form Game) A normal form game G induced by game form G
′

={
I, {Ai}i∈I , C, g

}
and preferences {�i} over G with expected utility representation {wi}, is

a tuple G =
{
I, {Ai}i∈I , {ui}i∈I

}
formed by:

i. A finite set of players I = {1, . . . , n}.

ii. A finite set of actions for every player Ai =
{
ai1, . . . , a

i
ki

}
, where ki is the number of

actions of player i.

iii. A payoff (utility) function ui : A→ R where A = ×Ai.

Definition (Pure Strategy) A pure strategy is an object of the form a = (a1, . . . , an) ∈ A.

Definition (Mixed Strategy) A mixed strategy for player i is an object of the form
si ∈ Si = ∆ (Ai), that is, a probability distribution over the player’s actions. A mixed
strategy profile is then s ∈ S = ×

i∈I
Si.

Degenerated mixed strategies Let a ∈ Ai. Denote by sia ∈ Si the degenerated mixed
strategy over a. sia (a) = 1 and sia (b) = 0 for b ∈ Ai \ {a}.

Probability over action profiles Note that a mixed strategy s induces a probability

over the space A of action profiles: Prs (a) =
n∏
i=1

si (ai).

Utility under mixed strategies The (expected) utility of playing action a ∈ Ai for
player i given that other players are playing according to mixed strategy s−i is given by:

∀a∈Ai ui (a, s−i) =
∑

a−i∈A−i

(∏
j 6=i

sj
(
aj
))

u
(
a, a−i

)
=

∑
a−i∈A−i

Prs−i
(
a−i
)
u
(
a, a−i

)
∀t∈Si ui (t, s−i) =

∑
a∈Ai

t (a)ui
(
a, s−i

)
Definition (Best Response - Pure Strategies) A best response to other players playing
strategy profile s−i ∈ S−i is a correspondence BRi

Ai : S ⇒ Ai

BRi
Ai

(
si, s−i

)
= BRi

Ai (s) =
{
b ∈ Ai|∀c∈Aiui

(
b, s−i

)
≥ ui

(
c, s−i

)}
= argmax

b∈Ai
ui
(
b, s−i

)
Note that the best responds does not actually depend on the player’s own action. It is
included as an argument for convenience. Define BRA (s) = ×

i∈I
BRi

Ai (s).
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Definition (Best Response - Mixed Strategies) A best response to other players play-
ing mixed strategy profile s−i ∈ S−i is a correspondence BRi

Si : S ⇒ Si

BRi
Si

(
si, s−i

)
= BRi

Si (s) =
{
t ∈ Si|∀r∈Siui

(
t, s−i

)
≥ ui

(
r, s−i

)}
= argmax

t∈Si
ui
(
t, s−i

)
Note that the best responds does not actually depend on the player’s own action. It is
included as an argument for convenience. Define BRS (s) = ×

i∈I
BRi

Si (s).

Definition (Nash Equilibria) A NE is a mixed strategy profile s ∈ S such that no
player will benefit from unilaterally deviating from the strategy. That is s ∈ S is a NE if
s ∈ BRS (s), so that si is a best response for s−i for all agents. This is a fixed point of BRS.

A NE in pure strategies is a fixed point of BRA, the best responses in pure strategies.

Definition (Nash Equilibria Payoffs) NEP =

{
x ∈ Rn|xi =

∑
a∈A

ui (a) Prs (a) ∧ s ∈ NE
}
.

Proposition (Properties of BR)

i. For every i the correspondence BRi
Ai is non-empty valued, finite valued and upper

hemi-continuous.

ii. For every i it holds that: BRi
Si (s) = co

({
sa ∈ Si|a ∈ BRi

Ai (s)
})

,where co (·) is the
convex hull and sa is a degenerate mixed strategy.

iii. The correspondence BRi
Si is non-empty valued, convex valued, compact valued (since

BRi
Ai is finite valued) and upper hemi-continuous.

iv. The correspondence BRS is also non-empty valued, convex valued, compact valued
(since BRi

Ai is finite valued) and upper hemi-continuous.

Theorem (Existence of NE in Mixed Strategies) There exists a NE in mixed strate-
gies. The result is obtained by Kakutani’s fixed point theorem, applied to the correspondence
BRS.

Proposition The set of NE is closed.

Proof:

• Let {sn} ⊂ NE and sn → s.

• Since sn ∈ NE for all n sn ∈ BRS (sn), then sn is in the “image” of sn, by u.h.c the
sequence {sn} has a convergent subsequence such that snk → s

′ ∈ BRS (s).

• Since sn → s one gets s′ = s which is s ∈ BRS (s). Then s ∈ NE which proves
closedness of the set.
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21.2 Perfect Equilibria

Definition (Perturbation) A perturbation isη ∈ ×
i∈I

Rki

++, where ki = |Ai|. η = (η1, . . . , ηn).

Definition (Perturbed Strategy) The set of perturbed strategies profiles is Sη = ×Siηi ,
where Siηi = {si ∈ Si|si ≥ ηi > 0}. A perturbed strategy is siηi ≥ ηi.

Note: These sets are still convex and compact, and non-empty given η.

Definition (η-Equilibria) A perturbed strategy ŝ (η) is an η-equilibrium if for all i:

ŝ (η) ∈ BRi
Si
ηi

(ŝ (η)) = argmax
r∈Si

ηi

ui
(
r, ŝ−i (η)

)
Definition (Perfect Equilibria) A mixed strategy s ∈ S is a perfect equilibrium if there
exists a sequence {ηn} of perturbations such that ηn → 0 and a sequence of sn of mixed
strategies such that for all n sn is an ηn-equilibrium and sn → s.

Theorem (Existence of η-Equilibria) Note that for all η Sη is still compact and convex,
using ToM the constraint best responses are still non-empty, convex, compact valued and
u.h.c. Then by Kakutani’s fix point theorem an η-equilibrium exists.

Theorem (Existence of Perfect Equilibria) Note that for all ηn in the sequence there
exists a sn that is an ηn-equilibrium. Also {sn} ⊂ S which a compact set, then the sequence
{sn} has a convergent subsequence. The limit of the subsequence is a perfect equilibrium.

Proposition Every Perfect Equilibrium is a Nash Equilibrium

Proof: Let s be a perfect equilibria. Then there exists ηn → 0 and sn → s such that sn
is an ηn-equilibria of the perturbed game. Then for each n and each i:∑

a∈A

(∏
j

sjn

)
ui (a) ≥

∑
a∈A

tiη

(∏
j 6=i

sjn

)
ui (a)

for all tiη ∈ Si such that tiη ≥ ηin.
Let ti ∈ Si taken arbitrarily. Since ηin → 0 there exists a sequence {tin} such that tin ≥ ηin

and tin → ti. From above it follows that:∑
a∈A

(∏
j

sjn

)
ui (a) ≥

∑
a∈A

tin

(∏
j 6=i

sjn

)
ui (a)

for all n. Taking limits: ∑
a∈A

(∏
j

sj

)
ui (a) ≥

∑
a∈A

ti

(∏
j 6=i

sj

)
ui (a)

Since ti wash chosen arbitrarily the above holds for all ti ∈ Si. Then si is a best response to
s−i for all players, hence s is a NE of the game.
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Proposition A perfect equilibrium assigns zero probability to (pure) strategies that are
weakly dominated.

Proposition In a two player game a NE is a Perfect equilibrium if and only if it has no
strategy that is weakly dominated.

Proposition The set of perfect equilibria is closed.

Proof: Let {sn} be a sequence of perfect equilibria such that sn → s ∈ S (a mixed
strategy).

• For arbitrary m ∈ N there exists Nm such that ‖s− sN,m‖ ≤ 1
2m

.

• Since sN,m is a perfect equilibrium there exists k such that ‖sn − sNk,m‖ < 1
2m

where
sNk,m is a ηNk,m-equilibria. Then ‖s− sNk,m‖ ≤ ‖s− sN,m‖+ ‖sN,m − sNk,m‖ = 1

m
.

• For each m rename ηNk,m as ηm and sNk,m as sm. It is clear that sm is an ηm-equilibria
for all m and that sm → s.

• It must be that s is a perfect equilibrium. (it can be that ηm → 0 or not, if it converges
to zero s is automatically a perfect equilibria, if not then it must be that s is fully
mixed since sm → s and sm is a perturbed strategy, hence s is a perturbed equilibrium
itself. In this case s is a perfect equilibria since it is the limit of a constant sequence of
perturbed equilibria).

21.2.1 Proper Equilibria

Definition (η-Proper) Let G be a NFG and η > 0. A fully mixed strategy profile is
η-Proper if:

∀i∀a,b∈Ai
[
ui
(
a, s−i

)
< ui

(
b, s−i

)
−→ si (a) ≤ ηsi (b)

]
Definition (Proper Equilibria) A mixed strategy profile s is a proper equilibrium if
there exists a sequence ηn → 0 and a sequence sn → s such that sn is ηn-Proper.

Theorem (Myerson) Every finite forma game has a proper equilibrium.
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21.3 Correlated Equilibria

Definition (Correlated Strategy) A correlated strategy µ is a probability over action
profiles. µ ∈ ∆ (A).

Note: The probability over action profiles induced by a mixed strategy s, Prs, is a
correlated strategy.

Definition (Marginal Probability) Let µ ∈ ∆ (A) be a correlated strategy. µAi is the
marginal distribution of µ over actions of player i. For a ∈ Ai: µAi (a) =

∑
a−i∈A−i

µ (a, a−i).

Note: µAi (a) = 0 if an only if ∀a−i∈A−iµ (a, a−i) = 0.

Definition (Conditional Probability) Let µ ∈ ∆ (A) be a correlated strategy. µ (·|b) ∈
∆ (A−i) is the probability of a−i ∈ A−i given µ and b ∈ Ai. It is defined as: µ (a−i|b) =
µ(b,a−i)
µAi (b)

.

Definition (Correlated Equilibria) A correlated strategy µ ∈ ∆ (A) is a correlated
equilibrium if;

∀i∀a∈Ai
[
µAi (a) > 0→ ∀c∈Ai

∑
a−i∈A−i

ui
(
a, a−i

)
µ
(
a−i|a

)
≥

∑
a−i∈A−i

ui
(
c, a−i

)
µ
(
a−i|a

)]

or equivalently:

∀i∀a∈Ai∀c∈Ai
∑

a−i∈A−i

(
ui
(
a, a−i

)
− ui

(
c, a−i

))
µ
(
a, a−i

)
≥ 0

Since µAi (a) = 0 ⇐⇒ ∀a−i∈A−iµ (a, a−i) = 0 then the condition is satisfied with equality
when µAi (a) = 0.

Definition (Correlated Equilibria Payoffs) CEP =

{
x ∈ Rn|xi =

∑
a∈A

ui (a)µ (a) ∧ µ ∈ ∆ (A)

}
.

Theorem (Existence of Correlated Equilibria) The set of CE is non-empty since for
s a NE the probability over actions profile Prs is a CE.

Proof:

• Let s be a NE and Prs (a) =
n∏
i=1

si (ai) its induced probability over action profiles. Note

from the definition of the NE that

si ∈ argmax
t∈Si

[
u
(
t, s−i

)]
= argmax

t∈Si

∑
ai∈Ai

t (ai)
∑

a−i∈A−i

∏
j 6=i

sj (aj)u
(
ai, a

−i)
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This implies that si (ai) > 0 if and only if, for all c ∈ Ai:∑
a−i∈A−i

∏
j 6=i

sj (aj)u
(
ai, a

−i) ≥ ∑
a−i∈A−i

∏
j 6=i

sj (aj)u
(
c, a−i

)
• Note that since µ = Prs we have µ (a) =

∏
si (ai), and then µAi (ai) = si (ai)

∑
a−i∈A−i

∏
j 6=1

sj (aj) =

si (ai) and µ (a−i|ai) =
∏
j 6=1

sj (aj).

• Then the condition above gives:∑
a−i∈A−i

µ
(
a−i|ai

)
u
(
ai, a

−i) ≥ ∑
a−i∈A−i

µ
(
a−i|ai

)
u
(
c, a−i

)
for all player and all action ai such that µAi (ai) = si (ai) > 0. Then µ = Prs is a
Correlated Equilibrium.

Proposition

i. The set of CE is convex and compact since is defined by a finite set of linear equations.

ii. The set of CEP is convex and compact.

iii. co (NEP) ⊆ CEP with strict inclusion for some games.
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21.4 Min-Max Theorem

Definition (Zero Sum Game) A two players finite action normal form game is zero sum
if the sum of the utilities of the two players is equal to 0 for any action profile. Let u1 = u
,so u2 = −u.

Definition (MinMax Theorem) For a zero sum game of two players:

min
s2∈∆(A2)

max
s1∈∆(A1)

u
(
s1, s2

)
= max

s1∈∆(A1)
min

s2∈∆(A2)
u
(
s1, s2

)
Proof:

i. Note that for any s1 ∈ ∆ (A1) and s2 ∈ ∆ (A2) it holds that:

u
(
s1, s2

)
≥ min

s2∈∆(A2)
u
(
s1, s2

)
Then by taking maximum at both sides with respect to s1:

max
s1∈∆(A1)

u
(
s1, s2

)
≥ max

s1∈∆(A1)
min

s2∈∆(A2)
u
(
s1, s2

)
Note that the RHS is now constant, and a lower bound to the LHS across s2, then:

min
s2∈∆(A2)

max
s1∈∆(A1)

u
(
s1, s2

)
≥ max

s1∈∆(A1)
min

s2∈∆(A2)
u
(
s1, s2

)
ii. Note that for any s1 ∈ ∆ (A1) it holds that:

max
s1∈∆(A1)

min
s2∈∆(A2)

u
(
s1, s2

)
≥ min

s2∈∆(A2)
u
(
s1, s2

)
In particular for ŝ1 a NE of the game the inequality must hold. Note that if (ŝ1, ŝ2) it
is defined as an strategy profile such that:

u
(
ŝ1, ŝ2

)
= max

s1∈∆(A1)
u
(
s1, ŝ2

)
− u

(
ŝ1, ŝ2

)
= max

s2∈∆(A2)
−u
(
ŝ1, s2

)
The second condition implies:

u
(
ŝ1, ŝ2

)
= min

s2∈∆(A2)
u
(
ŝ1, s2

)
= max

s1∈∆(A1)
u
(
s1, ŝ2

)
Then the initial condition gives (evaluated at ŝ1):

max
s1∈∆(A1)

min
s2∈∆(A2)

u
(
s1, s2

)
≥ min

s2∈∆(A2)
u
(
ŝ1, s2

)
max

s1∈∆(A1)
min

s2∈∆(A2)
u
(
s1, s2

)
≥ max

s1∈∆(A1)
u
(
s1, ŝ2

)
≥ min

s2∈∆(A2)
max

s1∈∆(A1)
u
(
s1, s2

)
Where the second inequality follows by the definition of minimum. The first and last
term of the inequalities give the result.
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Definition (Value of a Game) For a zero sum game of two players define the value of
the game as V : Rnm → R (where n = #A1 and m = #A2):

V (u) = max
s1∈∆(A1)

min
s2∈∆(A2)

U
(
s1, s2|u

)
For a given strategy profile s1 = (p1, . . . , pn), s2 = (q1, . . . , qn) and payoffs u ∈ Rnm we define

U (s1, s2|u) =
n∑
i=1

m∑
j=1

piqjuij.

Proposition (Properties of the Value of a Game) The value of a game is continuous,
non-decreasing and homogenous of degree one in payoffs.

Proof:

i. Consider the problem:
v
(
s1, u

)
= min

s2∈∆(A2)
U
(
s1, s2|u

)
note that U is continuous in s1, s2 and u and that the minimum is being taken over s2

in a compact set that does not vary with s1 or u. By the theorem of the maximum the
value of this problem, as a function of s1 and u is a continuous function. Now consider:

V (u) = max
s1∈∆(A1)

min
s2∈∆(A2)

U
(
s1, s2|u

)
= max

s1∈∆(A1)
v
(
s1, u

)
again since v is continuous and s1 varies in a compact set independent of u by the
theorem of the maximum V is a continuous function of u.

ii. Let u1 ≤ u2. Clearly for all s1, s2: U (s1, s2|u1) ≤ U (s1, s2|u2). Then:

min
s2∈∆(A2)

U
(
s1, s2|u1

)
≤ min

s2∈∆(A2)
U
(
s1, s2|u2

)
V (u1) = max

s1∈∆(A1)
min

s2∈∆(A2)
U
(
s1, s2|u1

)
≤ max

s1∈∆(A1)
min

s2∈∆(A2)
U
(
s1, s2|u2

)
= V (u2)

iii. Let λ ∈ R, note that U (s1, s2|λu) = λU (s1, s2|u) and maxλf (x) = λmax f (x).
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21.5 Best Response Functions in 2x2 NFG

Consider the general 2× 2 game with payoffs for player 1 listed below

L R
T a b
B c d

In the 2×2 the following best response functions are possible for player 1. The vertical axis
represents the probability player 1 attaches to action T in response to player 2’s probability
q of playing action L.

There are only 9 possible types of best response functions that depend in how the player
1’s strategies are compared, given an strategy of player 2. The relevant comparisons are then
between a and c and between b and d. p is the probability of player 1 playing T and q is the
probability of player 2 playing L.

q

p

1

1

(a) a < c, b < d

q

p

1

1

(b) a > c, b > d

q

p

1

1

(c) a = c, b < d

q

p

1

1

(d) a = c, b > d

q

p

1

1

(e) a > c, b = d

q

p

1

1

(f) a < c, b = d

q

p

1

1

(g) a > c, b < d

q

p

1

1

(h) a < c, b > d

q

p

1

1

(i) a = c, b = d

69



22 Extensive Form Games
Definition (Extensive Form Game) An Extensive form game is a tuple

G =
{
I, α, p,X, Z,�, P,

{
V i
}
i∈I ,

{
ui
}
i∈I , C

}
formed by:

i. A finite set of players I = {1, . . . , n}.

ii. An initial node α where “nature” moves.

iii. A probability distribution P over “nature’s” actions, Cα.

iv. A set of move nodes for players X.

v. A set of final nodes Z.

vi. A binary relation � defined over the nodes N = α ∪X ∪ Z.

(a) x � y is read x comes after y.
(b) For all z ∈ Z there exists x ∈ X such that z � x.
(c) For all x ∈ X the set {y ∈ N |x � y � α} is linearly ordered. � is complete and

transitive on the set.

vii. A partition of the move nodes into the move nodes of each player P = {P 1, . . . , P n}
with X =

⋃
i∈I
P i and P i

⋂
P j = ∅ for i 6= j.

viii. Information partitions for each player’s move nodes V i =
{
vi1, . . . , v

i
ki

}
with P i =

ki⋃
j=1

vij

and vim
⋂
vin = ∅ for m 6= n.

ix. A payoff (utility) function defined over the set of final nodes (Z) given by: ui (z).

x. A correspondence C that assigns actions to information sets. So that Cv are the actions
of player i at move nodes in information set v.

EFG A game is usually only represented by a tuple G =
{
X,Z, P, {V i}i∈I , {ui}i∈I

}
omitting some elements.

Definition (Ordering Sets)

i. The set of successors of x S (x) = {y ∈ X ∪ Z|y � x}.

ii. The set of immediate successors of x IS (x) =
{
y ∈ S (x) | 6 ∃y′ 6=y 6=xy � y

′ � x
}
.

iii. The set of predecessors of x P (x) = {y ∈ X ∪ Z|x � y}.

iv. The set of immediate predecessors of x IP (x) =
{
y ∈ P (x) | 6 ∃y′ 6=y 6=xx � y

′ � y
}
.

v. The path to a final node z Path (z) = {x ∈ X|z � x � α}.
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Definition (Linear Game) An EFG is linear if ∀z∈Z∀v# (Path (z) ∩ v) ≤ 1. where v is
an information set of some player.

Definition (Perfect Recall Game) An EFG is of perfect recall if for all i

∀vim,vin∈V i∀x1,x2∈vin,y∈vim
[
∃c∈C

vim
x1 �c y → x2 �c y

]
where x �c y is read as x comes after y when choosing action c. Another way to write it is
that the following does not hold:

∃vim,vin∈V i∃x1,x2∈vin,y∈vimx1 �c y ∧ x2 6�c y

Definition (Perfect Information Game) An EFG is of perfect information if ∀i∀v∈V i∃x∈P iv =
{x}. That is if all information sets are singletons.

Definition (Pure Strategy) A pure strategy is a plan of actions for every information
set. The set of all pure strategies is Si = {si : V i →

⋃
Cv|si (v) ∈ Cv}, where v ∈ V i.

Definition (Payoff from Pure Strategy) Let ui : S → R be the payoff of a pure strategy
defined as: ui (s) =

∑
x∈IS(α)

p (x)ui (z (x, s)) where p (x) is the probability that node x is played

given “nature’s” move, and z (x, s) is the unique final node induced by x ∈ IS (α) and the
strategy profile s.

Definition (Mixed Strategy) A mixed strategy for player i is σi ∈ Σi = ∆ (Si). Note
by Prσ the probability over final nodes induced by σ.

Definition (Behavioral Strategy) A behavioral strategy βi ∈ B is a set of functions
βi (v, ·) ∈ ∆ (Cv), so that βi = {βi (v, ·) |βi (v, ·) ∈ Cv, v ∈ V i}. Note by Prβ the probability
over final nodes induced by β.

Definition (Induced Normal Form Game) The induced NFG is a tupleG =
{
I, {Si, ui}i∈I

}
where Si is the set of pure strategies of player i in the EFG and ui is the payoff from the
pure strategies of the EFG.

Definition (NE in Mixed Strategies) A NE in mixed strategies is a NE of the NFG.

Definition (NE in Behavioral Strategies) A NE in behavioral strategies is an strategy
β such that for all i:

βi ∈ BRi
B (β) =

{
bi ∈ B|∀c∈B

∑
z∈Z

ui (z)Pr(b,β−i) (z) ≥
∑
z∈Z

ui (z)Pr(c,β−i) (z)

}
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Definition (Backward Induction) It is assumed that the game if of perfect information
and that there will be no ties.

The solution of the backward induction (BI) process is a strategy profile s = {s1, . . . , sn}
where si

(
xij
)

= c ∈ Cxij for x
i
j ∈ P i.

Let Ψ =
{
xij|IS

(
xij
)
⊂ Z

}
be the set of “pre-final” nodes, and Υ =

{
z ∈ Z|z ∈ IS

(
xij
)
∧ xij ∈ Ψ

}
the set of final nodes following xij ∈ Ψ. The strategy s is obtained as follows:

i. Arbitrarily take xij ∈ Ψ. Select cij ∈ Cxij such that ui
(
z
(
cij
))
≥ ui

(
z
(
c
′)) for all

c
′ ∈ Cxij , where z (c) ∈ IS

(
xij
)
is the final node that follows xij when action c is chosen.

set si
(
xij
)

= cij.

(a) Note that c exists since #Cxij <∞ for all i, j, and ui (z (c)) 6= ui
(
z
(
c
′)) for c 6= c

′

by assumption.

ii. Repeat the process for all elements of Ψ, this is a finite set since this is a finite game.

iii. Define a new game where X̂ = X\Ψ, Ẑ = Z\Υ
⋃{

ẑij|ẑij = xij ∈ Ψ
}

and ∀iui
(
ẑij
)

=

ui
(
z
(
si
(
xij
)))

.

iv. For the new game check X̂, if X̂ = ∅ then the game is solved (only nature moves), and
the strategy profile s is complete (it has an action for every node of every player). If
X̂ 6= ∅ repeat steps (i) to (iii).

Theorem (Zermelo) The Backward Induction procedure is solved in #X iterations and
produces a vector of final payoffs and (at least one) pure strategy profile which is a Nash
Equilibrium.

Proposition Every perfect recall game is linear.

Proof: Suppose not and let G be a perfect recall game that is not linear.

• Let v ∈ V i be an information set such that there exists a final node z for which
# ({x ∈ X|x ∈ Path (z) ∩ v}) > 1, this v and z exist since G is not linear.

• Take x, y ∈ Path (z) ∩ v, wlog x �c y for some action c ∈ Ci
v.

• G is not of perfect recall: let w = v ∈ V i and z = y then there exists c ∈ Ci
v and x �c z

yet y �c z does not hold since a node cannot come after itself.

• This shows that G is not of perfect recall, which is a contradiction.

Proposition (Behavioral Strategies to Mixed Strategies) Let G be a linear EFG
and β a behavioral strategy profile. There exists σ ∈ Σ a mixed strategy profile such that
Prσ = Prβ. The mixed strategy is given by σi (si) =

∏
v∈V i

βi (v, si (v)).
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Proposition (Mixed Strategies to Behavioral Strategies) Let G be a perfect re-
call EFG and σ a mixed strategy profile. There exists β ∈ B a behavioral strategy pro-

file such that Prβ = Prσ. The behavioral strategy is given by βi (v, c) =

∑
si∈Rel(v,c)

σi(si)∑
si∈Rel(v)

σi(si)
,

where Rel (v) = {si ∈ Si|∃s−i∈S−iPath (si, s−i) ∩ v 6= ∅} is the set of strategies for player i
for which there exists a strategy profile that intersects information set v, and Rel (v, c) =
{si ∈ Rel (v) |si (v) = c} is the set of those strategies that take action c at v.

Proposition (Best Response in Behavioral Strategies - Theorem 6.2.1 Van Damme
pg. 107) A behavioral strategy b ∈ Bi is a best response to the profile β (note it includes
actions of all players) if and only if it is a best response at every v ∈ V i that is reached with
positive probability under β−i. That is if:

∀v∈V i
∑
x∈v

P β
α (x) > 0 −→ ∀b′∈Bi

∑
x∈v

µ (x)

 ∑
z∈S(x)

P
(b,β−i)
x (z)ui (z)

 ≥∑
x∈v

µ (x)

 ∑
z∈S(x)

P

(
b
′
,β−i

)
x (z)ui (z)


where:

i. P β
α (x) is the probability of reaching node x starting from the initial node (α) and given

that players move according to β.

ii. P (b,β−i)
x (z) is the probability of reaching final node z given that the initial node is x

and players move according to (b, β−i).

iii. µ (x) = Pβα (x)∑
x∈v P

β
α (x)

is the probability of reaching node x given information set v and
behavioral strategy β.

Proposition (NE in Behavioral Strategies) A strategy β is a NE in behavioral
strategies if and only if βi is a best response to β at all information sets that are reached by
β with positive probability. (That is, if it is a NE in the agent normal form game).
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22.1 Subgame Perfect Equilibria

Definition (Subgame) Let G be an EFG and x ∈ XG a move node. A subgame Gx is
defined from x as follows if x satisfies the consistency condition below.

Gx =
{
I,XGx , ZGx ,�, PGx ,

{
V i
Gx

}
i∈Gx

, {ui}i∈I
}

where

i. XGx = SG (x) = {y ∈ XG|y � x}

ii. ZGx = {z ∈ Z|z � x}

iii. P i
Gx

= P i
G ∩XGx

iv. V i
Gx

= {v ∈ V i
G|v ⊆ SG (x)}

The consistency condition is:

∀i∈I∀v∈V iv ⊆ XGx ∨ v ∩XGx = ∅

Definition (Behavioral Strategy) Let βi be a behavioral strategy in G, the restriction
βix of βi is: βix (v, ·) = βi (v, ·) if v ∈ V i

Gx
.

Definition (Subgame Perfect Equilibria) A behavioral strategy profile β is a SPE if
and only if for all x ∈ X such that x defines a subgame Gx, the restriction βx is a NE on Gx.

Proposition (Subgame Perfect Equilibria)

i. The set of SPE is non-empty.

ii. For a game of perfect information a strategy obtained by backward induction is a SPE.

iii. If ŝ is a pure strategy NE then ŝ induces a NE in all subgames reached by ŝ. This is
different from ŝ being a SPE.
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22.2 Perfection Under Behavioral and Mixed Strategies

Definition (Perturbation of Behavioral Strategies) η ∈ ×
i∈I
×
v∈V i

R#Cv
++ is a perturbation

term, where #Cv is the number of actions of player i in information set v. η = (η1, . . . , ηn)
and ηi =

(
ηi1, . . . , η

i
ki

)
where ki is the number of information sets of player i.

Definition (Perturbed Behavioral Strategy) The set of perturbed strategies for player

i under perturbation η is βiηi =

{
βi ∈ Si|∀j∀c∈C

vi
j

βi
(
vij, c

)
≥ ηij > 0

}
.

Definition (η-Equilibria) A perturbed strategy β̂ (η) is an η-equilibrium if for all i:
β̂ (η) ∈ BRi

Bi
ηi

(
β̂ (η)

)
Definition (Perfect Equilibria in Mixed Strategies) σ ∈ Σ is a perfect equilibria for
game G if it is a perfect equilibria of the associated NFG.

Definition (Perfect Equilibria in Behavioral Strategies) A behavioral strategy β ∈ B
is a perfect equilibrium if there exists a sequence {ηn} of perturbations such that ηn → 0
and a sequence of βn of behavioral strategies such that for all n βn is an ηn-equilibrium and
βn → β.

Note: In general these two concepts do not coincide. They generate different outcomes.

Definition (Agent Normal Form Game) Let G be an extensive form game. Interpret
each player as a collection of agents, each for every information set. Each agent has the
same payoffs as its player. The agent normal form game is the normal form game associated
with this interpretation. The players are given by all the agents, each with the actions of its
corresponding information set (Cv).

Proposition (Best Responses and Information Sets) For a player i bi ∈ B (a
behavioral strategy) is a best response to behavioral profile β if and only if bi it is a best
response to β for each information set v ∈ V i that is reached with positive probability when
β\bi is played.

Proof: Let Ri (β−i) =
∑
z∈Z

P β (z)ui (z) is the expected payoff of player i under behavioral

profile β. This can be expressed as:

Ri (β) =
∑
z∈Z

P β (z)ui (z) =
∑
v∈V i

(∑
x∈v

P β (x)

)∑
x∈v

P β (x)∑
x∈v P

β (x)

∑
z∈S(x)

P β (z)

P β (x)
ui (z)

=
∑
v∈V i

P β (v)

∑
x∈v

P β
v (x)

∑
z∈S(x)

P β
x (z)ui (z)


=

∑
v∈V i

P β (v)Ri
v (β)
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where P β (v) is the probability of reaching information set v given β, P β
v (x) is the probability

of reaching x given information set v and β and P β
x (z) is the probability of reaching z given

x and β. Finally Ri
v (β) is the payoff of the agent associated with information set v given

behavioral profile β.
Then b maximizes Ri (b, β\b) =

∑
v∈V i P

((b,β\b)) (v)Ri
v (b, β\b) if and only if b maximizes

Ri
v (b, β\b) for each v with P (b,β\b) (v) > 0.

Corollary β is a η-equilibrium of the EFG if and only if β is a η-equilibrium of the
ANF. (in an η-equilibrium all information sets are reached with positive probability).

Proposition (Perfect Equilibria in Behavioral Strategies and Agent Normal Form
Game) Behavioral strategy β is a perfect equilibrium of the extensive form game if and
only if it is a perfect equilibrium of the agent normal form game.

Note: A perfect equilibria in the agent normal form game always exists.

Proposition (Existence of Perfect Equilibria) Every extensive form game has a perfect
equilibria in mixed strategies and a perfect equilibria in behavioral strategies.
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22.3 Sequential Equilibria

Definition (Belief) A belief is a function µ : X → [0, 1] such that ∀i∀v∈V i
∑
x∈v
µ (x) = 1.

Definition (Rationalization of β) A behavioral strategy β is rational given µ if βi is a
best response to β−i at the subgame defined by every information set. Expected utility is
computed at the information set using µ for the nodes that define the information set.

Define the expected utility at information set v ∈ V i given that beliefs are µ, player i
plays b and other players play β−i is:

∑
x∈v

µ (x)

 ∑
z∈S(x)

P
(b,β−i)
x (z)ui (z)


where P (b,β−i)

x (z) is the probability of reaching final node z given that the initial node is x
and players move according to behavioral strategy (b, β−i).

Definition (Bayes consistency) A belief µ is Bayes consistent with a behavioral strategy
β if:

i. If β is a fully mixed behavioral strategy then µ is defined by Bayes rule using β:

∀v∈V i∀x∈vµ (x) = Pβ (x|v) =
P β
α (x)∑

x∈v
P β
α (x)

where P β
α (x) is the probability of reaching node x starting from the initial node and

given that player move according to behavioral strategy β.

ii. If β is not a fully mixed behavioral strategy then µ is consistent with β if there exists
a sequence βn → β of fully mixed strategies, and a sequence of µn consistent with βn
such that µn → µ.

Definition (Sequential Equilibria) A sequential equilibria is a pair (β, µ) of behavioral
strategies and beliefs such that:

i. β is rational at every information set given µ.

ii. µ is Bayes consistent with β

Proposition (Subgame Perfect Equilibria and Sequential Equilibria) Every se-
quential equilibrium is a subgame perfect equilibrium.
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Proof: Let β be a behavioral strategy part of a sequential equilibrium of game G, and
suppose that it is not subgame perfect. Then there exists a subgame Gx for which βx (the
restriction of β to Gx) is not a NE. Then it must be that there exists γix such that for some
i:

∑
z∈Zx

 ∏
x∈Path(z)∩P i

γix (x, cz)

 ∏
x∈Path(z)\P i

βx (x, cz)

ui (z) >
∑
z∈Zx

 ∏
x∈Path(z)

βx (x, cz)

ui (z)

yet this violates βx being sequential since for all information set of i that is reached with
positive probability by βx the LHS of the inequality above can be expressed in terms of the
beliefs induced by βx. As a response to those beliefs βx is optimal, then it cannot be that γix
gives a higher payoff.

Proposition (Behavioral Perfect Equilibria and Sequential Equilibria) Every per-
fect equilibrium is a sequential equilibrium.

Proof: Let β ∈ B be a perfect equilibrium, then there exists a sequence {ηn} of pertur-
bations such that ηn → 0 and a sequence of βn ∈ B such that for all n βn is an ηn-equilibrium
and βn → β.

Since for each n βn is a fully mixed behavioral strategy define µn as the system of beliefs
Bayes consistent with βn.

Note that since βn is a ηn-equilibrium then it reaches all information sets with positive
probability, it must be that βin is a best response to βn at all information sets:

∀i∀v∈V i∀b∈Bi
∑
x∈v

µn (x)

 ∑
z∈S(x)

P
(βn,β−in )
x (z)ui (z)

 ≥∑
x∈v

µn (x)

 ∑
z∈S(x)

P
(b,β−in )
x (z)ui (z)


that is the definition of βn being sequentially rational with µn.

Define µ = limµn, this limit exists since µn is a sequence in a compact set. It follows
that µ is Bayes consistent with β by construction.

Finally β is sequentially rational with µ. This follows from taking limits on the inequality
above (recalling βn → β, µn → µ) and using continuity of P (·)

x (with respect to βn).
Then (β, µ) is a sequential equilibria.

Proposition (Existence of Sequential Equilibria) Let G be an extensive form
game, since a perfect equilibria on behavioral strategies exists for G then a sequential equi-
libria exists for G.

Note (Types of equilibrium in behavioral strategies)

• Perfect (trembling hand) equilibria makes sure that no weakly dominated strategies are
played. Since all information sets (and all nodes in all information sets) are reached
with positive probability, weakly dominated strategies are never played.
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• Sequential equilibria makes sure that no strongly dominated strategies are played (but
there are beliefs under which weakly dominated strategies are played). Beliefs can be
such that some nodes in an information set are reached with zero probability, under
those beliefs it can be a best response to play weakly dominated strategies.

• Subgame perfect equilibria makes sure that behavior off the equilibrium path is rational.

• Nash equilibria only makes sure that behavior in the equilibrium path is rational.
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