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Part I

Random Variables and Probability
Consider an experiment that can have several (but finite) outcomes. For example trowing a
dice can turn out in getting any number from 1 to 6, or asking someone out can generate an
affirmative response, a negative one or perhaps a maybe, or no response at all. A probability
function is a function that assigns a value to each possible outcome while satisfying certain
rules.

Its clear that since the outcomes here are finite, outcomes form a set S = {s1, . . . , sn} a
probability is then a list (π1, . . . , πn) such that Pr (si) = πi:

i. πi ≥ 0 for all i.

ii.
∑
πi = 1.

Note that it is natural to define other outcomes that are formed by unions of the former
ones, like getting an even number when trowing the dice (the union of getting a two a four
and a six) or getting a positive answer or a maybe when asking someone out. It is clear that
the probability of these new outcomes is defined by the sum of probabilities of the original
outcomes used to define them.

Formally we could say that for any set A ⊆ S we define IA = {i|si ∈ A} and then a
function µ : 2S → [0, 1] as:

µ (A) = Pr (A) =
∑
i∈IA

πi

Furthermore we can define the expected value of a real valued function f : S → R as
E [f ] =

∑
µ ({si}) f (si).

This same discussion can be carried out if the possible outcomes are countably infinite,
but it is difficult to generalize it otherwise. The objective now is to study which properties
does this kind of function satisfy and how it is generalized to deal with cases where outcomes
are arbitrary. The key for this is to realize that a probability is a function that maps sets
into the interval [0, 1], hence the study of functions that map sets into non-negative numbers
will provide the necessary theory, these functions are called measures, for obvious reasons.

The following sections draw on the short exposition of measure theory contained in Chap-
ter 7 of Stokey et al. (1989) and complements it with portions of Kolmogorov and Fomin
(2012) (chapters 7 to 10). Both these references are introductory although they present all the
relevant results. All the material is also covered in a more advanced manner in Kolmogorov
and Fomin (1999).

The aim of the course is not to dwell in the mathematical details of the theory but rather
present the most useful results for applications in economic theory, because of this many of
the proofs will be omitted only including those that are either instructive of the way the
theory is developed. Kolmogorov and Fomin (2012) is a good source for detailed (and easy
to understand) proofs.

Markov processes are defined following Stokey et al. (1989), chapter 8, and we finish with
the definition of the most common stochastic processes used in the rest of the course.
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1 Measure

1.1 Measurable spaces (σ-algebras)

Before we define a measure recall that a measure has for domain a collection of sets. For a
measure to have some desirable properties this collection of sets cannot be left unrestricted.
It turns out that the appropriate family of sets to be consider is that of σ-algebra.

Definition 1.1. (σ-algebra) Let S be a set and A ⊆ 2S a family of its subsets. A is a
σ-algebra if and only if:

i. ∅, S ∈ A.

ii. A ∈ A implies Ac = S\A ∈ A. We say that A is closed under complement.

iii. An ∈ A for n = 1, . . . implies ∪An ∈ A. We say that A is closed under countable union.

(a) Since ∩An = (∪Acn)c we have that A is closed under countable intersection.

If A is only closed under finite union (or intersection) then A is an algebra.

A σ-algebra imposes certain consistency to the family of sets under consideration. The
way to interpret it is that only subsets of the σ-algebra can be known, hence measured.
Because of property (i) it is possible to know when none or all of the outcomes occurred.
Also if there is an outcome that occurred it must be possible to determine if it didn’t.
Finally if it is possible to determine that some outcomes occurred individually it can also be
determined if at least one or all of them were realized.

It is instructive to consider two simple examples of σ-algebras that arise from throwing a
4 sided dice, then S = {1, 2, 3, 4}. One (trivial) σ-algebra is:

A = {∅, S}

Another one is the σ-algebra generated by the collection {{1} , {2} , {3} , {4}}, then:

A =

{
{1} , {2} , {3} , {4} , {2, 3, 4} , {1, 3, 4} , {1, 2, 4} , {1, 2, 3} ,

{1, 2} , {2, 3} , {3, 4} , {1, 3} , {1, 4} , {2, 4} , ∅, S

}
In this case A = 2S, but this is not necessarily true, imagine that one can only determine if
an even number was thrown, then the outcomes are {{1, 3} , {2, 4}}, the σ-algebra is:

A = {{1, 3} , {2, 4} , ∅, S}

When S has uncountably many elements this process cannot be exemplified as easily
but one can always define the σ-algebra generated by a subset A ⊆ 2S as the intersection
of all σ-algebras that contain A. Clearly the arbitrary intersection of σ-algebras is again a
σ-algebra.

Now that we have defined a σ-algebra its possible to say what a measurable set and a
measurable space are:
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Definition 1.2. (Measurable Space) A pair (S,A) where S is any set and A is a σ-algebra
is called a measurable space. A set A ∈ A is called A-measurable.

Note that we say that A ⊆ S is measurable with respect to a σ-algebraA if its elements are
identifiable, that is, if the outcomes represented in A can be told apart from other outcomes
given the information in A. For example the set A = {4} is not measurable in the last
example above, since its impossible to know if a 4 was the outcome of the throw.

A σ-algebra of special importance is the Borel σ-algebra.

Definition 1.3. (Borel σ-algebra) Let S = R and A be the set of open and half open
intervals. The Borel algebra, noted by B, is the σ-algebra generated by A. A set B ∈ B is
called a Borel set.

Note that the Borel algebra could have been defined equivalently with the closed and
half closed intervals (use complement). In general one can define the Borel algebra for any
metric space (S, ρ) as the smallest σ-algebra containing all the open balls. In the case of the
Euclidean spaces it can also be generated with open rectangles.

What follows is to define the measure of a measurable set.
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1.2 Measures

1.2.1 Measures in σ-algebras

Given a measurable space (S,A) a measure is nothing but a function µ : A → R with certain
restrictions that guarantee its consistency:

Definition 1.4. (Measure) Let (S,A) be a measurable space. A measure is an extended
real-valued function µ : A → R such that:

i. µ (∅) = 0

ii. µ (A) ≥ 0 for all A ∈ A.

iii. µ is countably additive. If {An}∞n=1 is a countable, disjoint sequence in A, then:

µ (∪An) =
∑

µ (An)

If furthermore µ (S) < ∞ then µ is said to be a finite measure, and if µ (S) = 1 then µ is
said to be a probability measure.

Definition 1.5. (Measure Space) A triple (S,A, µ) where S is a set, A is a σ-algebra of its
subsets and µ is a measure on A is called a measure space. The triple is called a probability
space if µ is a probability measure.

An important concept is that of almost everywhere and almost surely. These are qualifiers
for a given proposition that can be evaluated in sets of A.

Definition 1.6. (Almost Everywhere and Almost Surely) Let (S,A, µ) be a measure
space. A proposition is said to hold almost everywhere (a.e.) or almost surely (a.s.) if there
exists a set A ∈ A such that µ (A) = 0 and the proposition holds in Ac.

An example of the use of a.e. or a.s. is when treating functions that are similar to each
other. One can say that two functions are equivalent a.e. or that a function is continuous
a.e. Then the functions f and g satisfy f (x) = g (x) and A = {x|f (x) 6= f (y)} satisfies
µ (A) = 0. In measure theory the behavior of functions a.e. is all that matters, then we can
treat functions that have anomalies as long as those anomalies occur only in sets of measure
zero.

There are some properties of a measure that are useful to keep in mind, a crucial one is
used for Bayes law and the definition of conditional probability.

Proposition 1.1. Let (S,A, µ) be a measure space and B ∈ A a set. Define λ : A → R as
λ (A) = µ (A ∩B). Then λ is a measure on (S,A). If in addition µ (B) <∞ then λ̃ defined
as λ̃ (A) = µ(A∩B)/µ(B) is a probability measure on (S,A).

Proof. First note that if A,B ∈ A then A∩B ∈ A, this follows from a σ-algebra being closed
under countable intersection, by letting A1 = A and An = B for n ≥ 2 the result obtains. It
is left to check the three properties of a measure:
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i. λ (∅) = µ (∅ ∩B) = µ (∅) = 0.

ii. λ (A) = µ (A ∩B) ≥ 0.

iii. Let {An}∞n=1 be a countable, disjoint sequence in A, then note that the sequence
{An ∩B}∞n=1 is also disjoint and that:

λ (∪An) = µ ((∪An) ∩B) = µ (∪ (An ∩B)) =
∑

µ (An ∩B) =
∑

λ (An)

iv. If µ (B) <∞ then all the previous results hold for λ̃ by dividing everything by µ (B).
Furthermore λ̃ (S) = µ(S∩B)

µ(B)
= µ(B)

µ(B)
= 1.

Another useful property is given by the following proposition, it reflects the intuitive
property of measures being ’increasing’:

Proposition 1.2. Let (S,A, µ) be a measure space and A,B ∈ A sets. If A ⊆ B then
µ (A) ≤ µ (B), if in addition µ is finite then µ (B\A) = µ (B)− µ (A).

Proof. Since A ⊆ B there exits C = B\A = B ∩ Ac such that A ∪ C = B and A ∩ C = ∅.
Then:

µ (A) + µ (C) = µ (B)

since µ (C) ≥ 0 if follows that µ (A) ≤ µ (B). If µ is finite then all elements above are well
defined and: µ (B\A) = µ (B)− µ (A).

The following property is widely used to establish properties of limits of functions, and
of the Lebesgue integral:

Proposition 1.3. Let (S,A, µ) be a measure space:

i. If {An} is an increasing sequence in A, that is, if An ⊆ An+1 for all n, then:

µ (∪An) = limµ (An)

ii. If {Bn} is an decreasing sequence in A, that is, if Bn ⊇ Bn+1 for all n, then:

µ (∩Bn) = limµ (Bn)

Proof. Stokey et al. (1989, Sec. 7.2). Satisfying these two properties makes a measure
continuous.
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1.2.2 Measures in algebras and extensions [Optional]

So far we have defined a measure on an σ-algebra, but a σ-algebra is usually a large collection
of sets and defining a function on such a set while preserving the consistency required for a
measure is not an easy task. An alternative is given by defining measures on algebras, which
are smaller and less complicated collections of sets. It can be shown that these measures
preserve all the desirable properties of the more complicated spaces, and also allow for an
extension to σ-algebras, once the measure is properly constructed.

We start by defining a measure on an algebra.

Definition 1.7. (Measure) Let (S,A) be a measurable space. A measure is an extended
real-valued function µ : A → R such that:

i. µ (∅) = 0

ii. µ (A) ≥ 0 for all A ∈ A.

iii. If {An}∞n=1 is a countable, disjoint sequence in A, and ∪An ∈ A, then:

µ (∪An) =
∑

µ (An)

If furthermore µ (S) < ∞ then µ is said to be a finite measure, and if µ (S) = 1 then µ is
said to be a probability measure.

Note that condition (iii) also includes finite union of disjoint sets as a special case.

Definition 1.8. (σ-finite measure) Let S be a set, A an algebra of its subsets and µ
a measure defined on A. If there is a countable sequence of sets in A, {An}, such that
µ (An) ≤ ∞ and S = ∪An then µ is σ-finite

It is now possible to extend the notion of this measure to a σ-algebra.

Theorem 1.1. (Caratheodory extension theorem) Let S be a set, A an algebra of its
subsets and µ a measure defined on A. Let A? be the smallest σ-algebra containing A. There
exists a measure µ? on A? such that µ? (A) = µ (A) for all A ∈ A.

The problem of uniqueness is also solved.

Theorem 1.2. (Hahn extension theorem) Let S be a set, A an algebra of its subsets, µ a
measure defined on A and A? the minimal σ-algebra of A. If µ is σ-finite then the extension
µ? is unique.

To see how these theorems and the extension of a measure are used consider defining
a measure on the Borel σ-algebra. It seems logical to define the measure of an interval
A = (a, b) as µ (A) = b − a if b ≥ a and µ (A) = 0 otherwise (since the interval would be
empty). Yet the Borel σ-algebra contains sets beyond simple intervals, and the countable
union of intervals can give rise to weird sets. An answer to this problem is given by defining
a measure on the Borel algebra, formed by all types of intervals and their finite unions.
Defining a measure on this set seems straightforward:
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i. µ (∅) = 0

ii. µ ((a, b)) = µ ([a, b]) = µ ((a, b]) = µ ([a, b)) = b− a

iii. µ ((−∞,∞)) = µ ((−∞, b]) = µ ([a,∞)) =∞

iv. µ (∪ (an, bn)) =
∑

(bn − an) if the intervals are disjoint.

The function µ can be verified to be a measure on the Borel algebra, and hence an extension
to the Borel σ-algebra exists. If we restrict our attention to S = [a, b] and the intervals
contained in it we can define a σ-finite measure, obtaining uniqueness of the extension. This
is how we can deal with complicated environments.

Once the measure is extended to the σ-algebra all the results obtained above apply.

1.2.3 Completion of a measure [Optional]

One small detail is left to be checked. Sometimes there is a set B ⊆ S such that B ⊆ A ∈ A
and µ (A) = 0, but if B /∈ A then its measure is undefined, while it should be clearly zero.
The completion of a σ-algebra to include these type of ’harmless’ sets is what follows. Note
that as before including sets or behaviors of measure zero is of no consequence.

Definition 1.9. (Completion of a σ-algebra) Let (S,A, µ) be a measure space. Define a
collection C as:

C = {C ⊂ S|∃A∈Aµ (A) = 0 ∧ C ⊂ A}

The completion of σ-algebra A is:

A′ =
{
B
′ ⊆ S |B′ = (A ∪ C1) \C2 A ∈ A ∧ C1, C2 ∈ C

}
Note that by letting C1 = C2 = ∅ we get A ⊆ A′ , A′ includes all sets in 2S that differ from
a set in A by a set of measure 0.

Definition 1.10. (Completion of a measure) Let (S,A, µ) be a measure space and A′

the completion of A. µ
(
B
′)

= µ (B) for any B′ ∈ A′ that differs from B ∈ A by a set of
measure 0.

The Caratheodory and Hahn extension theorems also apply for completions.
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2 Measurable functions
A measurable function is a type of function for which it is possible to know (to measure)
the conditions (the set) that originates certain outcomes. One can think of a function as
mapping certain events in a given measure space to outcomes in another measure space. A
function is measurable if the sets that induce a given outcome are measurable. Formally:

Definition 2.1. (Measurable function) Let (S,A, µ) and
(
S
′
,A′ , µ′

)
be measure spaces

and f : S → S
′ a function. f is measurable if and only if f−1

(
A
′) ∈ A for all A′ ∈ A′ .

A special case of notable importance is that of
(
S
′
,A′ , µ′

)
= (R,B, λ), where λ is the

Lebesgue measure on the plane. This are real valued functions. In this case the B-measurable
sets in R can be characterized in the following way:

Theorem 2.1. Let (S,A, µ) be a measure space and f : S → R. f is µ-measurable if and
only if f−1 ((−∞, c)) = {x ∈ S|f (x) < c} ∈ A for all c ∈ R.

Proof. This theorem is stated as the definition of a real valued function f being µ-measurable
in Stokey et al. (1989), but a formal proof is presented in Kolmogorov and Fomin (2012, Sec.
28, Thm. 1). It can also be stated with any of the inequalities ≥,≤, >,<.

Also when the measure space in question is a probability space one can characterize
formally what a random variable is.

Definition 2.2. (Random variable) Let (S,A, P ) be a probability space and f : S → R
a real valued function. f is a random variable if and only if f is measurable, that is, if and
only if f−1 (B) ∈ A for all B ∈ B, where B is the Borel σ-algebra on R. We further establish
the same notation:

i. An outcome is an element s ∈ S.

ii. An event is a measurable subset of S: A ∈ A.

iii. The real number f (s) is a realization of the random variable.

iv. The probability measure for f is then: µ (B) = P (f−1 (B)) = P ({s ∈ S|f (s) ∈ B}),
for B ∈ B.

v. The distribution function for f is: G (b) = µ ((−∞, b]), for b ∈ R.

Generally it is very hard to find a function that is not measurable. The details of the
example will depend on the spaces considered. For example if f : R→ R and A is the set of
all open (or closed) sets in R the definition of measurability is equivalent to that of continuity
(the pre-image of an open set has to be open) and then all functions that are not continuous
are not measurable. It is clear that more complete σ-algebras make more difficult to generate
counterexamples. The following three results show how difficult it is to generate them:

Proposition 2.1. Let f : R→ R.

i. If f is continuous then f is measurable with respect to the Borel sets.
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ii. If f is monotone then f is measurable with respect to the Borel sets.

Proof. Each case is proven:

i. Let f be continuous. Consider the set f−1 ((−∞, c)) for any c ∈ R, note that (−∞, c)
is open, since f is continuous then its pre-image is open, then it is a Borel set. Then
its measurable.

ii. Let f be monotone increasing. Consider the set f−1 ((−∞, c)) for arbitrary c ∈ R.
Note that f−1 ((−∞, c)) = (−∞, a) or f−1 ((−∞, c)) = (−∞, a] or f−1 ((−∞, c)) =
(−∞,∞) or f−1 ((−∞, c)) = ∅ for some a ∈ R. Monotonicity ensures that if a ∈
f−1 ((−∞, c)) and b ≤ a then b ∈ f−1 ((−∞, c)). Suppose its not, then there exists
numbers b ≤ a such that f (b) > c ≥ f (a), contradicting monotonicity.

Note that all these sets are in B, then f is B-measurable.

Corollary 2.1. The composition of measurable functions is measurable. In particular the
composition of a continuous function with a measurable function is measurable.

Proposition 2.2. Let S = {s1, s2, . . .} be a countable set (potentially infinite) and A = 2S

a σ-algebra on S. Then all functions f : S → R are measurable.

Proof. The proof is immediate since the pre-image of a Borel set is a subset of S, then it
belongs to A = 2S.

In a more general way one can establish the measurability of a function by relating to a
class of well behave ’simple’ functions. The base for this class is the indicator function.

Definition 2.3. (Indicator Function) Let (S,A) be a measurable space. An indicator
function χA : S → R is:

χA (s) =

{
1 if s ∈ A
0 if s /∈ A

Clearly χA is measurable if and only if A ∈ A.

Definition 2.4. (Simple Function) Let (S,A) be a measurable space. A simple function
is a function that takes at most countably many values. When the function takes finitely
many values it can be expressed as:

φ (s) =
n∑
i=1

αiχAi (s)

where {Ai} is a sequence of subsets of S and αi ∈ R.

Characterizing the measurability of simple functions is slightly more complicated.

Proposition 2.3. A simple function taking values {y1, y2, . . .} is measurable if and only if
the sets Ai = {s ∈ S|φ (s) = yn} are measurable.
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Proof. Both directions are proven.

i. Let φ be measurable, and note that {yn} ∈ B, then its pre-image is measurable wrt A.

ii. Let the sets be measurable, that isAi ∈ A, and consider B ∈ B a Borel set. Then:

φ−1 (B) = {s ∈ S|φ (s) = yi ∈ B} =
⋃
yi∈B

Ai

Since each Ai ∈ Ai and the union is taken over no more than countably many sets we
have

⋃
yi∈B Ai ∈ A by definition of a σ-algebra. This proves measurability of φ−1 (B).

In what follows all simple functions will be considered measurable. The importance of
simple functions is given by the applications of the following proposition.

Proposition 2.4. Let (S,A) be a measurable space and let {fn} be a sequence of measurable
functions converging pointwise to f , that is lim fn (s) = f (s) for all s. Then f is also
measurable.

Proof. The proof can be found in Stokey et al. (1989, Sec. 7.3) or in Kolmogorov and Fomin
(2012, Sec. 28.1).

Corollary 2.2. If f is non-negative one can choose the sequence {fn} to be strictly increasing.

Corollary 2.3. If f is bounded one can choose the sequence {fn} to converge uniformly.

The main application is the following result that gives a characterization of measurable
functions in terms of simple functions:

Proposition 2.5. A function f is measurable if and only if it an be represented as the limit
of a uniformly converging sequence of measurable simple functions.

Proof. The first direction is immediate from the previous proposition. If f is the limit of
measurable functions then f is also measurable.

Let f be measurable. It is left to construct a converging sequence of simple functions that
converges to f . wlog let f (s) ≥ 0 for all s, then by the Archimedean principle there exists a
non-negative integer m such that

m

n
≤ f (s) <

m+ 1

n

Let fn (s) = m/n, since n is fixed and m ∈ N ∪ {0} it follows that fn can take at most
countably many values, hence it is simple. fn is also measurable since:

f−1
n ((−∞, c)) = {s ∈ S|fn (s) ≤ c} =

{
s ∈ S|fn (s) ≤ m?

n

}
=

{
s ∈ S|fn (s) <

m? + 1

n

}
For m? chosen by the Archimedean principle. Note that the last set is f−1

((
−∞, m?+1

n

))
which is measurable by assumption. Then fn is measurable for all n.
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Finally note that fn → f uniformly since:

|fn (s)− f (s)| ≤
∣∣∣∣mn − m+ 1

n

∣∣∣∣ =
1

n

Other results will follow and are left stated without proof:

Proposition 2.6. Let f, g be measurable functions and α ∈ R then:

i. f + g is measurable.

ii. αf is measurable.

iii. fg is measurable.

iv. 1/f is measurable provided that f (s) 6= 0.

Finally continuity of functions is used to strengthen the intuition around measurability.

Proposition 2.7. Let f, g be equivalent function defined on an interval E, that is they are
equal a.e. If f and g are continuous then they coincide.

Proof. Suppose not, then there exists x ∈ E such that f (x) 6= g (x). Let ε = |f (x)− g (x)|,
since f and g are continuous there exists δ such that for x′ ∈ Bδ (x) it holds that

∣∣f (x)− f
(
x
′)∣∣ <

ε
2
and

∣∣g (x)− g
(
x
′)∣∣ < ε

2
. Then for all x′ ∈ Bδ (x) it holds that f

(
x
′) 6= g

(
x
′), but Bδ (x)

has strictly positive measure, contradicting f and g being equivalent.

Proposition 2.8. A function f equivalent to a measurable function g is measurable.

Proof. Since the functions are equivalent the sets {x|f (x) ≤ c} and {x|g (x) ≤ c} can differ
in at most by a set of measure zero. Then if the second set is measurable so is the first one
(taking into account the completion of the σ-algebra). This proves measurability.

Corollary 2.4. A function f equivalent to a continuous function is measurable.

Proof. Immediate from continuous functions being measurable.

This implies that if a function is continuos a.e. then it is measurable, again the behavior
of functions in sets of measure zero carries no consequence. It turns out that this corollary
can be strengthened. The result is powerful and is stated without a proof:

Theorem 2.2. (Luzin) Let f : [a, b] → R be a function. f is continuous if and only if for
all ε > 0 there exists a continuous function g such that µ {x ∈ [a, b] | f (x) 6= g (x)} < ε.

This theorem shows that for the case of functions of real variable and real value measur-
ability is equivalent to continuity, except on a set of arbitrarily small size. In other words
a measurable function can be made continuous by altering its values on a set of arbitrarily
small measure.
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3 The Lebesgue integral
The Lebesgue integral is in at least two important ways a generalization of the Riemann
integral and it serves a crucial purpose of defining what it means to take the expected value
of a function with respect to a probability distribution. The first sense in which the Riemann
integral is generalized is that the Lebesgue integral is defined over measurable functions, a
space that is much richer than that of Riemann integrable functions, the second sense is
much more crucial: the Lebesgue integral is defined for functions with domain in arbitrary
sets, thus allowing to handle a more abstract and general class of functions.

Intuitively the Lebesgue integral is constructed in a similar way than the Riemann inte-
gral. To construct the latter one takes successively finer grids of the domain and evaluate the
function at certain points, constructing step functions, one above the function and one below,
then two sums are constructed and the value of the integral is defined as the (common) value
of the limit of those sums as the length of the grid’s spaces goes to zero.

The Lebesgue integral of a function f : S → R+ is constructed by taking grids over
the range of the function {yi}ni=1 such that 0 = y1 ≤ . . . ≤ yn. Then one can define the
sets Ai = {s ∈ S|yi ≤ f (s) < yi+1} and using the measure over S define λ (Ai) and the sum∑
yiλ (Ai). The Lebesgue integral is then the limit of this sum as the values yi are closer

together.
The introduction before of simple functions makes sense when defining the Lebesgue

integral. Its definition seems intuitive for this class of functions and Proposition 2.5 creates
a bridge between them and the more general class of measurable functions, thus allowing to
extend the Lebesgue integral to this broader family.

In what follows we restrict attention to non-negative, real valued functions.

Definition 3.1. (Lebesgue integral for simple functions) Let (S,A, µ) be a measure
space and f : S → R+ a simple, µ-measurable function that takes no more than countably
many values {y1, y2, . . .}. The Lebesgue integral over the set A ⊆ S is defined as:∫

A

f (s) dµ =
∑
n

ynµ (An) (3.1)

where the sets An are defined as:

An = {s ∈ A|f (s) = yn}

Note that these sets can be empty if there is no element of s in A for which f takes a given
value. The Lebesgue integral is defined as long as the series in (3.1) is absolutely convergent.
Note that if f takes finitely many values and µ is finite (or a probability measure) this
condition is satisfied.

An example is given by the constant function, f (s) = 1 for all s ∈ S, then:∫
A

f (s) dµ =

∫
A

dµ = µ (A)

It can be shown that the lebesgue integral satisfies some natural properties:
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Proposition 3.1. Let f and g be non-negative, measurable, simple and integrable functions
on (S,A, µ), a measure space, and c ≥ 0 a constant. Then:

i.
∫
A

(f + g) (s) dµ =
∫
A
f (s) dµ+

∫
A
g (s) dµ

ii.
∫
A

(cf) (s) dµ = c
∫
A
f (s) dµ

iii. If f is bounded |f (s)| ≤M a.e. then f is integrable and
∣∣∫
A
f (s) dµ

∣∣ ≤Mµ (A).

Proof. Kolmogorov and Fomin (2012, Sec. 29.1).

Definition 3.2. (Lebesgue integral - Nonnegative functions) Let (S,A, µ) be a mea-
sure space. A measurable function f : S → R is said to be integrable on a set A if there
exists a sequence {fn} of integrable simple functions converging uniformly to f on A. The
Lebesgue integral is defined as: ∫

A

f (s) dµ = lim

∫
A

fn (s) dµ (3.2)

Note that this definition precludes the integral from being infinite, as shown in Kol-
mogorov and Fomin (2012, Sec. 29.1), the limit above exists provided that the functions
fn are integrable (recall that it was asked of the sum in (3.1) to be finite), moreover it is
independent of the choice of sequence approximating f , this sequence can be furthermore
be chosen to be strictly increasing (Stokey et al., 1989). Yet, the concept of the Lebesgue
integral can be easily generalized to allow for infinite values, the definition in Stokey et al.
(1989) allows for this.

What follows is a list of properties of the Lebesgue integral which should be familiar if
there is any knowledge of the behavior of Riemann integrals. They are not of particular
interest in this course.

Proposition 3.2. Properties of the Lebesgue integral for non-negative measurable functions:

i.
∫
A

(f + g) (s) dµ =
∫
A
f (s) dµ+

∫
A
g (s) dµ

ii.
∫
A

(cf) (s) dµ = c
∫
A
f (s) dµ

iii. If g is measurable and integrable and f is bounded by g: |f (s)| ≤ g (s) a.e., then f is
integrable and

∣∣∫
A
f (s) dµ

∣∣ ≤ ∫
A
g (s) dµ.

(a) If f is bounded and measurable then it is integrable.

iv. If f ≤ g a.e. then
∫
f (s) dµ ≤

∫
g (s) dµ.

v. If A ⊆ B with A,B ∈ A then
∫
A
f (s) dµ ≤

∫
B
f (s) dµ

vi. Let A = ∪An where {An} is a finite or countable sequence of disjoint sets. If f is
integrable on A then f is integrable on An for all n and:∫

A

f (s) dµ =
∑
n

∫
An

f (s) dµ

when the series on the right is absolutely convergent.
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Finally it is noted that a non-negative integrable function induces a measure on a space,
the following proposition makes this clear.

Proposition 3.3. Let f be a non-negative, integrable function, then λ : A → R defined as:

λ (A) =

∫
A

f (s) dµ

is a measure on (S,A).

Definition 3.3. (Lebesgue integral) Let (S,A, µ) be a measure space. A measurable
function f : S → R is said to be integrable if the following two integrals are finite:∫

f+ (s) dµ

∫
f− (s) dµ

where:

f+ (s) =

{
f (s) if f (s) ≥ 0

0 if f (s) < 0
f+ (s) =

{
0 if f (s) ≥ 0

−f (s) if f (s) < 0

The integral of f is defined as:∫
f (s) dµ =

∫
f+ (s) dµ−

∫
f− (s) dµ (3.3)

Recall that when (S,A, µ) is a probability space the function f is called a random variable,
the definitions above are then the definitions of the expected value of a random variable, this
expected value exists when f is integrable, we have seen that a sufficient condition for this is
to be bounded a.e. and the measure to be finite, this last condition is satisfied immediately
by probability measures.
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4 The Stieltjes integral [Optional]
The Lebesgue-Stieltjes integral is a type of integral specially useful in probability theory, be-
cause of the resemblance between the Stieltjes measures and probability measures. To intro-
duce the concept consider a real valued random variable that takes values on a closed interval
[a, b], this is for example the result of coin toss when catalogued as 0 or 1, the underlying prob-
ability space is formed by S = {H,T}, A = {∅, S, {H} , {T}} and a probability measure on
A, a function µ : A → [0, 1] such that µ ({H}) , µ ({T}) ≥ 0, µ (S) = µ ({H}) + µ ({T}) = 1
and µ (∅) = 0. The random variable is then a function f : S → R such that f (H) = 0 and
f (T ) = 1. It seems natural to ask what is the probability that f (s) = 1, it is of course given
by µ (T ), in the same way can ask for the probability that f (s) ≤ c for any value c, the
function that answers that question is called the cumulative distribution function. In this
example we have:

F (c) = Pr (f (s) ≤ c) =


0 if c < 0

µ (H) if 0 ≤ c < 1

1 if 1 ≤ c

Since the measure µ is non-negative it is clear that F has to be a non-decreasing function, it
is also continuous from the left, moreover it is possible to recover µ from knowledge of F :

µ (H) = F (0) µ (T ) = 1− F (0)

The Stieltjes measure is a general way of looking at this last step. It treats the problem
of inducing a measure from a non-decreasing left continuous function. The application to
probability theory is apparent since we deal with the CDF of a random variable, and not
directly with its probability measure, as we saw before it is this latter object the one that
defines the expected value.

Now we turn to define formally the Stieltjes integral. Let F : [a, b] → R be a non-
decreasing and left-continuous function. Let A be an algebra of all subintervals of [α, β)
(including open, closed and half-open intervals). Define a measure on A by:

m (α, β) = F (β)− F (α + 0)

m [α, β] = F (β + 0)− F (α)

m (α, β] = F (β + 0)− F (α + 0)

m [α, β) = F (β)− F (α)

Now consider the Lebesgue extension of m, call it µF and the σ-algebra of all µF -measurable,
call it AF . Note that AF contains all subintervals of [α, β) and hence all the Borel sets of
[α, β).

Definition 4.1. (Stieltjes measure) The measure µF described above is called the (Lebesgue-
)Stieltjes measure and F its generating function.

This concept is easily extended to the whole real line. Some examples show the generality
of this type of measure:

Example 4.1. Let F (x) = x, then the Stieltjes measure is nothing but the Lebesgue measure
on the real line, that is, the extension of the concept of length of an interval.
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Example 4.2. Let F be a jump function with discontinuity points {x1, x2, . . .} and corre-
sponding jumps {h1, h2, . . .}. The measure is of course:

m ({xn}) = hn m ({x1, x2, . . .}c) = 0

Then every subset of [α, β) is µF -measurable since their measure depends only on count-
able points. Any set A has measure given by:

µF (A) =
∑
xn∈A

hn

This number exists by assumption. A Stieltjes measure generated by a jump function is
called a discrete measure. Note that all discrete random variables have CDF that are jump
functions.

Example 4.3. Let F be an absolutely continuous non-decreasing function on [α, β). Abso-
lutely continuous functions have a finite derivative a.e. let this derivative be f = F

′ . Then
the Stieltjes measure µF is defined for all Lebesgue measurable sets and:

µF (A) =

∫
A

f (x) dx

clearly in this case µF ({x}) = 0 since {x} has Lebesgue measure 0.
The result follows from Lebesgue theorem:

Theorem 4.1. (Lebesgue) If F is absolutely continuous on [a, b] then the derivative F ′ is
integrable on [a, b] and:

F (β)− F (α) =

∫ β

α

F
′
(x) dx

Proof. Kolmogorov and Fomin (2012, Sec. 33, Thm. 6).

Applying this theorem here we get:

m (α, β) = m [α, β] = m (α, β] = m [α, β) =

∫ β

α

f (x) dx

Since f is non-negative and integrable wrt all Lebesgue-measurable subsets of [a, b]
(
B[a,b]

)
we know by proposition (3.3) that

µF (A) =

∫
A

f (x) dx

is a measure on
(
[a, b] ,B[a,b]

)
that coincides with m, since the extension is unique we get that

µF is the Stieltjes measure we are looking for.
This type of measure is called absolutely continuous and is related to continuous random

variables.

Now we can define the integral with respect to a Stieltjes measure:
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Definition 4.2. (Lebesgue-Stieltjes integral) Let µF be Stieltjes measure with generating
function F , and let g be a µF -measurable function, then the integral is defined as:∫ b

a

g (x) dF (x) =

∫
[a,b]

g (x) dµF

If µF is discrete with F (x) =
∑
xn≤x

h (xn), then we have:

∫ b

a

g (x) dF (x) =
∑
n

g (xn)hn

If µF is absolutely continuous then:∫ b

a

g (x) dF (x) =

∫ b

a

g (x) f (x) dx

As hinted above in probability Stieltjes measures arise naturally. Let ξ be a random vari-
able and define F (x) = Pr (ξ < x), then as noted above F is non-decreasing and continuous
from the left, moreover F (−∞) = 0 and F (∞) = 1. The Lebesgue-Stieltjes measure allows
us to define the expected value and variance of the random variable as:

E [ξ] =

∫ ∞
−∞

xdF (x) V [ξ] =

∫ ∞
−∞

(x− E [ξ])2 dF (x)

note that these definitions are valid for discrete and continuous random variables.
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5 Stochastic Processes

5.1 Definitions

The idea now is to study sequences of random variables. A stochastic process is similar to a
random variable, with the difference that it also depends on time. Adding the time dimension
adds notation, but it does not change any of the main ideas. For convenience we will first go
over the definition of a random variable.

Definition 5.1. (Random variable) Let (Ω,A, P ) be a probability space and x : Ω → R
a real valued function. x is a random variable if and only if x is measurable, that is, if and
only if x−1 (B) ∈ A for all B ∈ B, where B is the Borel σ-algebra on R. We further establish
the same notation:

i. An outcome is an element ω ∈ Ω.

ii. An event is a measurable subset of Ω: A ∈ A.

iii. The real number x (ω) is a realization of the random variable.

iv. The probability measure for x is then: µ (B) = P (x−1 (B)) = P ({ω ∈ Ω|x (ω) ∈ B}),
for B ∈ B.

v. The distribution function for f is: G (b) = µ ((−∞, b]), for b ∈ R.

Now we can work on adding the time dimension to the definition of a random variable.
In general time can be discrete or continuous, but in what follows we will assume that time is
continuous starting at 0 and going on forever, so t ∈ [0,∞). Intuitively a stochastic process
is formed by function x : [0,∞)×Ω→ R that gives a realization for every outcome and time.
At every point in time the random variable takes a variable, the sequence of those values
forms the realization (path) of the stochastic process.

The question is on how to measure the possible outcomes of the random variable through
time. We need a way of determining where the random variable is at a certain point in
time, and where it has been, but that does not provide information about the value of future
realizations. This is achieved using a filtration.

Definition 5.2. (Filtration) Let A be a σ-algebra. The set A = {At|t ≥ 0} is a filtration
if At ⊆ A and As ⊆ At for all t ≥ 0 and s ≤ t. At is the set of events known at time t.

Now we can define a stochastic process as a function that is measurable in a filtered space.

Definition 5.3. (Stochastic Process) Let (Ω,A, P ) be a filtered probability space with a
time index t ∈ R+, and let B+ be the Borel sets of R+. A stochastic process is a function
x : [0,∞)×Ω→ R that is measurable with respect to B+×A (that is, x is jointly measurable
in (t, ω)). Moreover:

i. For all t ∈ R+ and ω ∈ Ω, x (t, ω) is measurable with respect to At, where At is in the
filtration A.
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ii. For all t ∈ R+, x (t, ·) : Ω→ R is an ordinary random variable on the probability space
(Ω,At, Pt).

iii. For all ω ∈ Ω, x (·, ω) : R+ → R is a Borel measurable function. This is called the
sample path of x.

5.2 Discrete time examples

It is not hard to come up with examples of discrete time stochastic processes. They are often
used to model the behavior of many stationary economic variables by means of ARMA(p,q)
representations, as well non-stationary variables usually related to random walks.

To fix ideas we start with the simple example of a (fair) coin toss. There are two possible
outcomes, so Ω = {H,T}, when tossing the coin is always possible to know which outcome
occurred, and whether or not the coin was tossed, this gives: A = {{H} , {T} , ∅,Ω}. Finally
the probability distribution P assigns values to sets in the σ-algebra A:

P ({H}) = P ({T}) =
1

2
P (∅) = 0 P (Ω) = 1

Now we can define a random variable ε : Ω → R as: ε (H) = 1 and ε (T ) = −1. ε is a
random variable with respect to the probability space (Ω,A, P ). As will be the case almost
always we can dispense of the outcome space Ω for most applications and just refer to the
random variable and the probability distribution induced over its values. In this way we
have: ε ∈ {−1, 1} with Pr (ε = 1) = Pr (ε = −1) = 1/2.

Furthermore we can extend this example to define the stochastic process that comes up
from the repeated coin toss. In this case time is discrete and finite t ∈ {1, 2, 3} and at each
time a coin is tossed, then the random variable variable εt is defined as the value of ε given
the outcome of the tth coin toss. The sequence {εt}3

t=1 is a stochastic process with respect to
the filtered probability space (Ω,A, P ), where:

Ω = {(H,H,H) , (H,H, T ) , (H,T,H) , (H,T, T ) , (T,H,H) , (T, T,H) , (T,H, T ) , (T, T, T )}

A = 2Ω P (ω) =
1

8
∀ω∈Ω

The filtration is established taking into account that at each point in time only the outcome
of current and past tosses is known:

A1 = {∅,Ω, {(H,H,H) , (H,H, T ) , (H,T,H) , (H,T, T )} , {(T,H,H) , (T, T,H) , (T,H, T ) , (T, T, T )}}

A2 = {∅,Ω, {(H,H,H) , (H,H, T )} , {(T,H,H) , (T,H, T )} , {(H,T,H) , (H,T, T )} , {(T, T,H) , (T, T, T )}}

A3 = A

So, in the first σ-algebra all outcomes for which the first toss comes up heads are indistin-
guishable from each other, in the second σ-algebra one can distinguish between outcomes
that have the sequence {H,T} and {H,H}, but no information is given about the outcome
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of third toss. This same ideas apply if time goes on forever, so we can define our stochastic
process over t ∈ N.

In the previous example the stochastic process obtained satisfies the property of being iid
(identically and independently distributed). The values of the stochastic process at each point
in time are independent from its previous values, and they all have the same probabilities of
occurring.

We now use our stochastic process {εt} to define a random walk. Random walks are
particularly useful to understand the behavior of continuous time stochastic processes. As
we will see the building block of most of them is the continuous time approximation of a
random walk.

Example 5.1. (Random Walk Process) Consider a stochastic process x. Denote by xt
the value of x at time t, and fix the initial value x0. xt is assumed to evolve according to:

xt = xt−1 + εt for t ≥ 1

εt is a random variable that can take two values {−1, 1}, and its probability distribution is
independent of time, so that: Pr (εt = 1) = Pr (εt = −1) = 1

2
.

Note that given the starting value x0 the variable xt can only take on discrete values.
For instance, for x0 = 0 and t odd they are {−t, . . . ,−1, 0, 1, . . . , t}, and for t even they are
{−t, . . . ,−2, 0, 2, . . . , t}. These values tell you which paths of the process cam be known at
time t.

Finally, this process has no drift. Given an initial value x0 the expected value of xt
for any t is x0 (E [xt] = x0), this follows from the expected value of each change being
E [xt − xt−1] = E [εt] = 0.

This process can be generalized in many ways. The most useful one for our purposes is
to allow for drift, which can be done by changing the probabilities of the random variable εt,
letting Pr (εt = 1) = p and Pr (εt = −1) = 1 − p achieves the desired result. If p > 1/2 the
process will have positive drift.

5.3 Brownian motion (Wiener processes)

A Brownian motion, or Weiner process, is a continuous time stochastic process (W (t)) that
satisfies three properties:

i. W (t) has continuous sample paths.

ii. W (t) has stationary independent increments.

iii. Increments ofW (t) over a finite interval of time are normally distributed with variance
that increases linearly in time.

The first property implies that a Brownian motion has no jumps, so as the time interval goes
to zero the change in the process must also go to zero. The second and third properties imply
that the change in W (t) over some interval of length ∆t must satisfy:

∆W = εt
√

∆t εt ∼ N (0, 1)
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which we write as dW = εt
√
dt as ∆t→ 0. Note that this implies that:

E [dW ] = E [εt]
√
dt = 0 V [dW ] = E

[
ε2t
]
dt = dt

Moreover we assume that εt is serially uncorrelated, i.e., E [εtεs] = 0 for t 6= s, so the values
of dW for any two different time intervals are independent.

Its easy to note the relation between the Brownian motion and the random walk processes.
In discrete time we had ∆xt = xt − xt−1 = εt∆t, where ∆t = 1. We will use this fact when
approximating Brownian motions using random walks as ∆t→ 0.

To see that this representation implies the third property consider a time interval that
starts at t and ends at T , and divide into n intervals of length ∆t = T/n. Then we have:

W (t+ T )−W (t) =
n∑
i=1

εi
√

∆t

What we want to show is that W (t+ T ) −W (t) ∼ N (0, t). To prove this we can use the
Central Limit Theorem:

Theorem 5.1. (Central Limit Theorem) If {ε1, ε2, ε3, . . .} are iid (but not necessarily

normal) with E [εi] = µ < ∞ and V [εi] = σ2 < ∞, then Zn =
√
n

n∑
i=1

εi−nµ

σ
→ N (0, 1) as

n→∞.

Note that εi already satisfies being iid and E [εi] = 0 and V [εi] = 1, so Zn =
√
n

n∑
i=1

εi.

Then we can write:
W (t+ T )−W (t) =

√
TZn

By the CLT this converges to a N (0, T ) as n→∞.
A Brownian motion can be generalized to have drift µ and variance σ2. This is done by

adjusting the way the increments of the stochastic process work:

dx = µdt+ σdW

In this case the increments are given by a non-stochastic component µdt, which indicates
that the process will drift by µ per unit of time deterministically if there are no shocks, and
by a stochastic component σdW , where σ is scaling the variance of the increments of the
Weiner process W . This process satisfies:

E [dx] = µdt V [dx] = σ2dt

5.3.1 Random walk approximation of a Brownian motion

As mentioned above we can use the similarities between the increments of a Brownian motion
and the increments of a random walk to approximate continuous time processes using discrete
time ones. This is important because of two reasons: it helps explain the mechanics of the
continuous time model, and it provides an algorithm for simulation in the computer.
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Our objective is to approximate the a Brownian motion with drift:

dx = µdt+ σdW

We will approximate with a discrete time process y whose increments are h with probability
p and −h with probability 1− p. This gives:

E [∆y] = ph− (1− p)h = (2p− 1)h

V [∆y] = E
[
(∆y)2]− (E [∆y])2 =

(
1− (2p− 1)2)h2

In order to get the approximation we need to choose values for h, p and ∆t so that:

µ∆t = (2p− 1)h

σ2∆t = 4p (1− p)h2

Solving for p we get:

p2 − p+
σ2

4 (σ2 + µ2∆t)
= 0

The roots of these equation are:

p =
1

2

(
1±

√
1− σ2

(σ2 + µ2∆t)

)

=
1

2

(
1± µ

√
∆t√

σ2 + µ2∆t

)
≈ 1

2

(
1± µ

σ

√
∆t
)

where the approximation follows if ∆t is small enough relative to σ2/µ2, since we are taking
∆t close to zero this assumption is satisfied. We further choose only the “+” root since that
way p ≥ 1/2 when µ ≥ 0.

Now we can find a value for h:

σ2∆t = 4p (1− p)h2

σ2∆t = 2
(

1 +
µ

σ

√
∆t
)(

1− 1

2

(
1 +

µ

σ

√
∆t
))

h2

σ2∆t =
(

1 +
µ

σ

√
∆t
)(

1− µ

σ

√
∆t
)
h2

σ2∆t =

(
1−

(µ
σ

)2

∆t

)
h2

σ2∆t ≈ h2

σ
√

∆t ≈ h

As before we can disregard the term
(
µ
σ

)2
∆t as long as ∆t is small enough relative to σ2/µ2.
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As an exercise can verify that the first equation also holds:

µ∆t = (2p− 1)h

µ∆t = (2p− 1)σ
√

∆t
µ

σ

√
∆t = 2p− 1

1

2

(
1 +

µ

σ

√
∆t
)

= p

In order to simulate a Brownian motion with parameters (µ, σ) we can do as follows:

i. Set a ∆t small relative to σ2

µ2
.

ii. Set p = 1
2

(
1 + µ

σ

√
∆t
)
and h = σ

√
∆t.

iii. Simulate the increments of x by drawing realization of a random variable εt that takes
value h with probability p and −h with probability 1− p.

5.4 Ito processes

Ito processes are the generalization of Brownian motions. Their drift and variance is allowed
to depend on the level of the process and the time:

dx = µ (x, t) dt+ σ (x, t) dW (5.1)

where the functions µ and σ give the value of the mean and standard deviations of the
increments of the process x:

µ (x, t) = lim
∆→0+

1

∆
E [x (t+ ∆)− x (t) |x (t) = x]

(σ (x, t))2 = lim
∆→0+

1

∆
E
[
(x (t+ ∆)− x (t))2 |x (t) = x

]
For future reference note that an Ito process can also be represented as:

x (t) = x (0) +

∫ t

0

µ (x, s) ds+

∫ t

0

σ (x, s) dW (s)

where the last term is a stochastic integral. Stochastic integrals play an important role in
the theory of stochastic processes, for now it suffices to state the following result.

Proposition 5.1. Let x (t) be an integrable function, then E
[∫ t

0
x (s) dW (s)

]
= 0.

This proposition states that the expected value of a stochastic integral is identically zero.
The derivation of the result, along with other properties can be found in Stokey (2009, Sec.
3.2).

Two Ito process are of particular importance. They are presented in the examples below.
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Example 5.2. (Geometric Brownian notion) A Geometric Brownian motion is an Ito
process with µ (x, t) = µx and σ (x, t) = σx, so:

dx = µxdt+ σxdW

A geometric Brownian motion can be thought of as a Brownian motion where the properties
apply to percentage increments instead of increments, note that:

dx

x
= µdt+ σdW

So the percentage increment, dx/x, are normally distributed with mean µ∆t and variance
σ2∆t.

Example 5.3. (Ornstein-Uhlenbeck process) Unlike the previous processes an OU pro-
cess is mean reverting, similar to an AR(1) process in discrete time. An OU process is an Ito
process with µ (x, t) = µ (x− x) and σ (x, t) = σ. Note that if x > x then the process drifts
down, and if x < x the process drifts up.

dx = µ (x− x) dt+ σdW

5.5 Jump processes - Poisson Processes

Jump processes are a type of stochastic process that has discontinuous paths. Jump process
change by discrete amounts when a certain outcome occurs. The most important Jump
process is the Poisson process, which is just a jump process such that the time of the jumps
follows a Poisson distribution. To define it let λ be the mean arrival rate of a jump and u
the size of the change of the process (usually u = 1, but in general u can be itself a random
variable). Then for some process q we have:

dq =

{
0 with prob. 1− λdt
u with prob. λdt

We can now define a more general process that depends on the Jump process q:

dx = f (x, t) dt+ g (x, t) dq (5.2)

where absent a jump x evolves deterministically according to the function f , and when there
is a jump it moves according to function g. Note that:

E [dx] = f (x, t) dt+ λEu [g (x, t)u] dt
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Part II

Stochastic Calculus
This part of the course develops the mathematical tools necessary to study how random
variables affect optimization problems. The most important result is Ito’s Lemma, which
defines the way in which we can take derivatives of functions that depend on diffusions.
Then we can apply Ito’s Lemma to problems of dynamic optimization, with special attention
to stopping time problems. Finally we apply it to the characterization of the distribution of
a random variable. This is done by means of the Kolmogorov forward equation.

All these sections follow closely Dixit and Pindyck (1994), with some portions adapted
from Stokey (2009).
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6 Ito’s Lemma
We are often concerned with the behavior of functions of stochastic processes, in particular
the differentials of those functions. The number one example at hand is to know how the
value of an asset (or an option) evolves over time. Ito’s Lemma gives a way to compute those
differentials. This relates the functions we are interested in to the stochastic differential
equation that governs the underlying stochastic process.

Consider a function F (x, t) that depends on a stochastic process x. x is assumed to be
an Ito process following:

dx = µ (x, t) dt+ σ (x, t) dW (6.1)

Normal calculus rules would give the differential of F as:

dF =
∂F

∂x
dx+

∂F

∂t
dt

Although not always clear, one of the reasons for expressing the differential without resorting
to higher order terms is that those terms depend on dt2, dt3 . . .. As dt → 0 all higher order
terms go to zero faster, and are hence ignored. But stochastic process add a new factor
since their components depend of time through

√
dt, so square terms like (dx)2 must also be

considered.
A second order Taylor expansion of F gives:

dF =
∂F

∂x
dx+

∂F

∂t
dt+

1

2

(
∂2F

∂x2
(dx)2 +

∂2F

∂t2
(dt)2 +

∂2F

∂t2
(dx) (dt)

)
As shown in Øksendal (2003, Sec. 4.1) dWdt = dt2 = 0, they can be safely ignored since
they depend on terms of order higher than dt. That leaves us with:

dF =
∂F

∂x
dx+

∂F

∂t
dt+

1

2

∂2F

∂x2
(dx)2 (6.2)

From the definition of our Ito process we get:

(dx)2 =
(
µ2 (x, t) (dt)2 + 2µ (x, t)σ (x, t) dtdW + σ2 (x, t) (dW )2)

= σ2 (x, t) (dW )2

We can again drop the terms involving (dt)2 and (dtdW ), and also show that (dW )2 = dt
(recall that E

[
(dW )2] = dt). The proof is not hard and can be found in Øksendal (2003,

Sec. 4.1). Replacing:

dF =

(
∂F

∂x
dx+

∂F

∂t
dt

)
+

1

2

∂2F

∂x2

(
σ2 (x, t) dt

)
dF =

(
∂F

∂t
+ µ (x, t)

∂F

∂x
+

1

2
σ2 (x, t)

∂2F

∂x2

)
dt+ σ (x, t)

∂F

∂x
dW (6.3)

This derivation (Ito’s Formula) means that y = F (x, t) is itself an Ito process with
µy (x, t) =

(
Ft + µ (x, t)Fx + 1

2
σ2 (x, t)Fxx

)
and σy (x, t) = σ (x, t)Fx as parameters. Unsur-

prisingly, the expected value of y is µy (x, t) and its variance is σy (x, t) dt.
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6.1 Application to geometric brownian motion

We can use Ito’s Lemma to obtain the properties of different stochastic processes. For instance
the Geometric Brownian motion can be shown to be the exponential of a standard brownian
motion, or equivalently it can be shown that the logarithm of a geometric brownian motion
is a brownian motion.

Let x be a geometric brownian motion satisfying:

dx = µxdt+ σxdW

and y = lnx. By Ito’s Lemma:

dy =

(
µx · 1

x
+

1

2
σ2x2 ·

(
−1

x2

))
dt+ σx · 1

x
dW

=

(
µ− 1

2
σ2

)
dt+ σdW

thus y is a brownian motion with parameters µy = µ− 1
2
σ2 and σy = σ. Note that the drift

of y is lower than the drift of x, since the logarithm is a concave function Jensen’s inequality
implies that the expected value of the log is lower.

We can also obtain the expected value of x by noting that:

x (t) = x (0) +

∫ t

0

µx (s) ds+

∫ t

0

σx (s) dW (s)

taking expectations gives:

E [x (t)] = x (0) +

∫ t

0

µE [x (s)] ds

recalling that the third term is a stochastic integral, and hence has expected value equal to
zero. From this equation we can derive a first order differential equation for the expected
value of x:

dE [x] = µE [x] dx

The solution for this equation, given the boundary condition E [x (0)] = x (0) is:

E [x] = x (0) eµt

Finding the variance (and other moments) works in the same way. For the variance we want
to obtain an expression for x2, so first consider the function f (x) = x2. By Ito’s Lemma we
get:

df =
(
2µx2 + σ2x2

)
dt+ 2σx2dW

x2 = f (x) = x2
0 +

(
2µ+ σ2

) ∫ t

0

x2 (s) ds+ 2σ

∫ t

0

x2 (s) dW (s)

We can now take expectations to obtain:

E
[
x2
]

= x2
0 +

(
2µ+ σ2

) ∫ t

0

E
[
x2 (s)

]
ds
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which leads to a differential equation for E [x2]:

dE
[
x2
]

=
(
2µ+ σ2

)
E
[
x2
]

E
[
x2
]

= x2 (0) e(2µ+σ2)t

the variance is then:

V [x] = E
[
x2
]
− E [x]2

= x2 (0) e(2µ+σ2)t − x2 (0) e2µt

= x2 (0) e2µt
(
eσ

2t − 1
)

Some applications are shown below:

Example 6.1. Consider an asset that gives flow payoffs x that evolve according to a geo-
metric brownian motion

dx = µxdt+ σxdW

we can compute the expected discounted value of holding that asset easily using the results
above:

E

[∫ ∞
0

e−ρtx (t) dt

]
=

∫ ∞
0

e−ρtE [x (t)] dt =

∫ ∞
0

x (0) e−(ρ−µ)tdt =
x0

ρ− µ

Example 6.2. Now consider an agent that receives flow consumption of x, which evolves
again as a geometric brownian motion. The agent’s utility is CRRA, so that u (x) = x1−θ

1−θ .
We want to know the expected present value of utility.

E

[∫
e−ρtu (x (t)) dt

]
=

∫
e−ρtE [u (x (t))] dt

To know it we need to compute E [u (x (t))]. From Ito’s Lemma we have:

du =

(
µx · x−θ +

1

2
σ2x2 ·

(
−θx−θ−1

))
dt+ σx · x−θdW

du = (1− θ)
(
µ− θ

2
σ2

)
x1−θ

1− θ
dt+ (1− θ)σ x

1−θ

1− θ
dW

du = (1− θ)
(
µ− θ

2
σ2

)
udt+ (1− θ)σudW

Thus, u is itself a geometric brownian motion (actually if x is a brownian motion xk is a
geometric brownian motion). Using our previous results we have:

E [u] = u (x (0)) e(1−θ)(µ− θ2σ2)t

So we have:

E

[∫
e−ρtu (x (t)) dt

]
=

∫
e−ρtE [u (x (t))] dt =

(x (0))1−θ

(1− θ)
(
ρ− (1− θ)

(
µ− θ

2
σ2
))
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6.2 Poisson Processes

Similar, and simpler, results can be obtained if x follows a Poisson process:

dx = f (x, t) dt+ g (x, t) dq

and we have a function H (x, t) that depends on x. Unlike the Ito Process the Poisson
process does not depend on

√
dt, so higher order terms in the Taylor expansion can be

ignored altogether to get:

dH = Htdt+Hxdx

= (Ht + f (x, t)Hx) dt+ g (x, t)Hxdq

The expected value of this change must take into account the probability of a jump in q
(given by λdt), so we have:

E [dH] = (Ht + f (x, t)Hx) dt+ λEu [H (x+ ug (x, t) , t)−H (x, t)] dt (6.4)

it follows, by using the identity function that E [dx] = f (x, t) dt+ λEu [ug (x, t)] dt.
We can apply this result to a couple examples taken from Dixit and Pindyck (1994):

Example 6.3. Consider an individual that lives forever and receives a wage w (t) at each
point in time. The wage increases by ε at random times, following a Poisson process with
arrival rate λ, so:

dw = εdq

The individual wants to know the expected discounted value of taking the job we need to
compute:

V (w) = E

[∫ ∞
0

e−ρtw (t) dt

]
The function V (a value function) has a recursive representation, this is easier to see in the
discrete time approximation. Consider a period of length ∆t, then:

V (w (t)) = w (t) ∆t+
1

1 + ρ∆t
E [V (w (t+ ∆t))]

(1 + ρ∆t)V (w (t)) = (1 + ρ∆t)w (t) ∆t+ E [V (w (t+ ∆t))]

ρ (∆t)V (w (t)) = (1 + ρ∆t)w (t) ∆t+ E [V (w (t+ ∆t))− V (w (t))]

ρV (w (t)) = (1 + ρ∆t)w (t) +
E [∆V ]

∆t

Taking the limit as ∆t→ 0 we get:

ρV = w +
E [dV ]

dt
(6.5)

Staying in the job works just like an asset, with a normal return at rate ρ being equal to the
sum of the dividend (in this case given by the wage) and the expected capital gains (from
changes in the wage). In the expression above E[dV ]

dt
= lim∆t→0

1
∆t
E [∆V ]
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We can apply the formula from above:

E [dH] = (Ht + f (x, t)Hx) dt+ λEu [H (x+ ug (x, t) , t)−H (x, t)] dt

where H = V , x = w, f (x, t) = 0 and g (x, t) = ε and u = 1 with certainty:

E [dV ] = λ (V (w + ε)− V (w)) dt

= λε

(∫ ∞
0

e−ρtdt

)
dt

=
λε

ρ
dt

This leaves us with an explicit solution for V :

V =
w

ρ
+
λε

ρ2

V is equal to an asset that pays the current wage forever plus the capitalized value of the
average raise in wages per unit of time.

Example 6.4. Consider now a firm that produces using capital. As long as capital is
operational a flow profit of π is obtained, but capital becomes obsolete when new technologies
arrive. These innovations occur at random times following a Poisson process with arrival rate
λ. Once the innovation arrives and the capital becomes obsolete the firm goes out of business
forever.

The value of the firm follows a process:

dV = −V dq

The return can be found as before:

ρV = π +
1

dt
E [dV ]

To find E [dV ] we can again use our formula with H = V , the identity function:

E [dV ] = −λV dt

replacing we get:

ρV = π − λV

V =
π

ρ+ λ

Note that this is equivalent to solving:

V =

∫ ∞
0

e−(ρ+λ)tπdt
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This should not be a surprise. Consider the case where there are no shocks and the firm can
operate forever with certainty. Then V is:

V =

∫ ∞
0

e−ρtπdt =
π

ρ

Now the firm shuts down with a certain probability, given by the arrival of the Poisson shock.
Then:

V = E

[∫ ∞
0

e−ρtπdt

]
=

∫ ∞
0

Pr [No shock until time t] e−ρtπdt

The probability of there being no shocks is known:

Pr [No shock until time t] = e−λt

Replacing gives the desired result.
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7 Dynamic Programming
In dynamic programming we aim to develop tools for solving problems that involve actions
through time, that in turn affect the total value obtained by the agent takin the decisions.
The key of dynamic programming is that it focuses on the current decision being taken and
its effect on the continuation value for the agent, rather than try to solve for the whole
sequence of actions at once.

7.1 Discrete time overview

Dynamic Programming

To build up to the concepts of dynamic programming in continuous time we will first consider
a simple discrete time problem of a firm that must invest a fixed amount I to set up the
operation of the firm. Once the firm is operational the firm produces one unit of good every
period.The current price of the good is known and given by p0, in the second period the price
can go up or down:

p1 =

{
(1 + u) p0 with prob. q
(1− d) p0 with prob. 1− q

After that the price is constant. Hence, the firm’s decision is whether to invest in the first
period, in the second, or not to invest at all. It makes no sense to wait any longer since
no new information will arrive after the initial change in price. The firm discounts future
payments with an interest rate r.

We can solve the problem by tracing the decisions that the firm can take. In the second
period, once the price is known and assuming that the firm is not yet in operation, the firm
can either invest or not. If the firm does not invest it gets zero payoff, if it invests it gets:

F1 (p1) = p1 +
p1

1 + r
+

p1

(1 + r)2 = p1

∞∑
i=0

1

(1 + r)i
=

1 + r

r
p1

The payoff of the firm is then:

V1 (p1) = max {F1 (p1)− 0, 0}

Knowing this is relevant because if the firm does not invest in the first period it can always
do so later, so V1 constitutes the continuation payoff of the firm. The payoff to the firm if it
does not invest in the first period is then:

1

1 + r
E [V1 (p1)] =

1

1 + r
(qV1 ((1 + u) p0) + (1− q)V1 ((1− d) p0))
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If the firm invests in the first period the payoff is:

F0 (p0) = p0 +
1

1 + r
E [F1 (p1)]

= p0 +
1

1 + r
(qF1 ((1 + u) p0) + (1− q)F1 ((1− d) p0))

= p0 +

(
q

r
(1 + u) p0 +

1− q
r

(1− d) p0

)
=

1

r
(1 + r + q (u+ d)− d) p0

So, the value of the firm is:

V0 (p0) = max

{
F0 (p0)− I, 1

1 + r
E [V1 (p1)]

}
In this example we already see the basics of dynamics programming, splitting the problem

into the decision at hand (invest or not invest) and the continuation value that they entail.
The example also highlights one of the recurring topics of the course: option value. The
firm has an option that allows it to invest any of the two dates. Waiting in this problem has
value, since investing in the future also means to invest with better information. In fact we
can compute the value of this option (to wait) by comparing the value that the firm would
have if it was forced to take a decision in the first period:

Ω0 (p0) = max {F0 (p0)− I, 0}

with the value that includes the possibility of action in the second period:

V0 (p0)− Ω0 (p0)

We can now extend this simple model to allow for action in many periods (more than
two). Consider a firm that operates for T <∞ periods. In each period the firm will choose
the value of a control variable u that affects (potentially) the per-period payoffs of the firm,
namely the profits, and the evolution of a random variable x. x is assumed to follow a Markov
process so that the CDF of xt+1 is Φt (xt+1|xt, ut). The random variable x is also allowed to
affect payoffs, so per-period payoffs are: π (ut, xt).

The firm discounts the future at rate 1
1+ρ

and receives a final payoff pf ΩT (xT ) in the last
period. The objective is:

V0 (x0) = max
{ut}T−1

t=0

E

[
T−1∑
t=0

(
1

1 + ρ

)t
π (ut, xt) +

(
1

1 + ρ

)T
ΩT (xT )

]
(7.1)

dynamic programming allows us to write the problem recursively. In the last period we have:

VT−1 (xT−1) = max
uT−1

π (uT−1, xT−1) +

(
1

1 + ρ

)
E [ΩT (xT ) |xT−1, uT−1] (7.2)
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For all other periods we can use the notion of continuation payoffs to obtain:

Vt (xt) = max
ut

π (ut, xt) +

(
1

1 + ρ

)
E [Vt+1 (xt+1) |xt, ut] (7.3)

The problem can then be solved by backwards induction, choosing contingent plans for ut (xt)
one period at a time, instead of tackling the more complicated problem of choosing the whole
sequence of {ut}.

When time is not finite, there is no terminal date, and we cannot use backwards induction
to solve the problem. In this case the value of the firm itself is also independent of time,
since each period is just like the next. We then have:

V (x) = max
u

π (u, x) +

(
1

1 + ρ

)
E
[
V
(
x
′
)
|x, u

]
(7.4)

the problem is now to find a function V that satisfies the equation above. The details behind
the solution to this problem can be found in Stokey et al. (1989).

This setup is very versatile and can be applied to firm problems as the one above, but it
is also at the core of modern macroeconomic theory. The following examples make this point
in a non-stochastic version of the model.

Example 7.1. Consider an economy in which the representative consumer lives forever.
There is a good in each period that can be consumed or saved as capital as well as labor.
The consumer’s utility function is

V
(
k0

)
=
∞∑
t=0

βt log ct

Here 0 < β < 1. The consumer is endowed with 1 unit of labor in each period and with k0

units of capital in period 0. Capital fully depreciates each period. Feasible allocations satisfy

ct + kt+1 ≤ θkαt l
1−α
t

Here θ > 0 and 0 < α < 1. We can formulate the problem of maximizing the representative
consumer’s utility subject to feasibility conditions as a dynamic programming problem. The
appropriate Bellman’s equation is:

V (k) = max
c,k′,l
{log c+ βV (k′)}

s.t. c+ k′ ≤ θkαl1−α

c, k′ ≥ 0

0 ≤ l ≤ 1

To solve it we guess that the value function has the form a0 + a1 log k and solve for the
decisions of the consumer. The constraint will hold with equality because the utility function
is strictly increasing in consumption, also production increases with labor and there is no

36



disutility of it, hence there is a corner solution for labor indicating l = 1, so with the guess
the problem becomes

a0 + a1 log k = max
k′∈[0,θkαl1−α]

log
(
θkαl1−α − k′

)
+ β (a0 + a1 log k′)

Then the FOC is
1

θkαl1−α − k′
=
βa1

k′

solving for k′

k′ = βa1

(
θkαl1−α − k′

)
=
βa1 (θkαl1−α)

1 + βa1

Then plugging this back into the value function you get

a0 + a1 log k = log

(
θkαl1−α − βa1 (θkαl1−α)

1 + βa1

)
+ β

(
a0 + a1 log

(
βa1 (θkαl1−α)

1 + βa1

))
Collection terms with k you get

a1 log k = α log k + βa1α log k

a1 (log k − βα log k) = α log k

a1 =
α

1− βα

which means the policy function is

k′ =
β α

1−βα (θkαl1−α)

1 + β α
1−βα

= βαθkαl1−α

l = 1

c = θkαl1−α − βαθkαl1−α

Optimal Stopping Time

There is another type of problem that deserves special treatment. Optimal stopping time
problems are at the core of the continuous time applications in the rest of the course. In these
problems the agent faces a binary choice (instead of a continuous choice as in the example
above), they resemble the example of the firm at the beginning of the Section where the firm
has to choose whether or not to invest. This problems are characterized by the inaction of
the agent, since the agent usually acts just once, and most of the time the optimal choice is
to do nothing. To characterize these problems let Ω (x) be the termination payoff received
once the action is taken (and time is stopped). It depends on the value of state x. The
Bellman equation is now:

V (x) = max

{
Ω (x) ,max

u
π (u, x) +

(
1

1 + ρ

)
E
[
V
(
x
′
)
|x, u

]}
(7.5)
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We can now define a stopping time as a random variable that signals the decision to stop
and take the termination payoff Ω (x). So:

T ? =

{
x|Ω (x) ≥ max

u
π (u, x) +

(
1

1 + ρ

)
E
[
V
(
x
′
)
|x, u

]}
(7.6)

In general T ? can take many forms, but in most (if not all) of the relevant economic appli-
cations it will take the form: T ? = [x,∞), T ? = (−∞, x] or T ? = (−∞, x] ∪ [x,∞). As
an example we apply these ideas to the problem of search and unemployment, the McCall
search model.

Example 7.2. Consider the following infinite horizon model. An agent searches for a job.
Each period the agent receives a wage offer from a distribution F (w) with bounded support
W =

[
0,W

]
. If accepted the agent will remain employed at that wage forever. If rejected

the worker receives unemployment benefits b. Wage offers are iid over time. The worker
preferences are

∑
βtct. Assume no borrowing or lending.

We first set up the workers decision as a dynamic programming problem:

V E (w) =
w

1− β

V U = b+ β

∫
max

{
V E (w̃) , V U

}
dF (w̃)

The decision of a worker when facing a wage offer w is to accept it or reject it, the worker
will accept if V E (w) > V u and reject otherwise. Then the value of the worker is:

V (w) = max
[
V E (w) , V U

]
V (w) = max

[
w

1− β
, b+ β

∫
V (w̃) dF (w̃)

]
Now we need to show that the decision to take action (accept a job offer) is given by T ? =
[w,∞), where w is the reservation wage. To show this note that V U is independent of the
wage and that V E is increasing in wages. The reservation wage satisfies:

w

1− β
= b+ β

∫
V (w̃) dF (w̃)

This implies that V is constant for w < w, since the offers are rejected, and it is equal to V E

for w ≥ w:

V (w) =

{
w

1−β if w < w
w

1−β if w ≥ w
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It is left to find w. To do this we should first solve for V U :

V U = b+ β

∫
max

{
V E (w̃) , V U

}
dF (w̃)

= b+ β

∫ w

0

w

1− β
dF (w̃) + β

∫ W

w

w̃

1− β
dF (w̃)

= b+
β

1− β

(∫ w

0

wdF (w̃) +

∫ W

w

w̃dF (w̃)

)

= b+
β

1− β

(
w −

∫ W

w

wdF (w̃) +

∫ W

w

w̃dF (w̃)

)

= b+
β

1− β

(
w +

∫ W

w

(w̃ − w) dF (w̃)

)
Note that the agent knows she is guaranteed to have w forever, finding a job just adds to the
value with the wage in excess of w.

Turning back to determining w we can replace V U to get:

w = b+
β

1− β

∫ W

w

(w̃ − w) dF (w̃)

This equation is guaranteed to have a solution for w ∈
[
c,W

]
. The LHS is increasing in w,

while the RHS is decreasing in w.

7.2 Continuous time dynamic programming

We can now turn to develop a general framework to solve dynamic problems in continuous
time. To start consider the problem developed in the previous section with periods of length
∆t. The agent receives a payoff π (u, x) ∆t every period (where π is the payoff flow), and
discounts the future at a rate ρ per unit of time, so the effective discount rate for the period
of length ∆t is: 1

1−ρ∆t
. This leads to the following Bellman-type equation

V (x) = max
u

π (u, x) ∆t+

(
1

1 + ρ∆t

)
E
[
V
(
x
′
)
|x, u

]
(7.7)

Rearranging we get:

ρV (x) = max
u

(1 + ρ∆t) π (u, x) +
E
[(
V
(
x
′)− V (x)

)
|x, u

]
∆t

(7.8)

Taking the limit as ∆t→ 0 we get our continuous time Bellman equation:

ρV (x) = max
u

π (u, x) +
1

dt
E [dV (x) |x, u] (7.9)

where
E [dV ]

dt
= lim

∆t→0

1

∆t
E [∆V ]
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Equation (7.9) works just like a non-arbitrage condition. We can thing of the agent as
holding an asset with value V . The LHS gives the normal rate of return per unit time that
the agent requires to hold the asset, given the discount rate ρ. The RHS gives the effective
payoff of the asset, composed by the immediate flow payoff π, and the expected capital gains
(brought up by changes in the value of the asset).

We can further characterize the problem given knowledge of the stochastic process that
x follows. This will allow us to evaluate the expectation in (7.9). If x follows an Ito process,
as in equation (5.1), then Ito’s Lemma gives the following result:

dV =

(
µ (x, t)V

′
+

1

2
σ2 (x, t)V

′′
)
dt+ σ (x, t)V

′
dW

E [dV ] =

(
µ (x, t)V

′
+

1

2
σ2 (x, t)V

′′
)
dt

Replacing we get the Hamilton-Jacobi-Bellman equation:

ρV (x) = max
u

π (u, x) + µ (x, t)V
′
(x) +

1

2
σ2 (x, t)V

′′
(x) (7.10)

We can take FOC with respect to u and then get a differential equation for V that we can
solve.

If x follows a Poisson process, like the one in equation (5.2), we can obtain a similar
result. From equation (6.4) we can compute E [dV ]:

E [dV ] =
(
f (x, t)V

′
(x)
)
dt+ λEu [V (x+ ug (x, t))− V (x)] dt

Optimal Stopping Time and the Smooth Pasting Condition

We now go back to the stopping time problem reviewed in Section 7.1. Consider then the
problem of an agent that is engaged in some activity (say running a firm). The agent gets
a flow payoff of π (x) if she continues with the activity, and Ω (x, t) if she quits the activity
(stops). The value of the agent is:

V (x, t) = max

{
Ω (x, t) , π (x) ∆t+

1

1 + ρ∆t
E [V (x+ dx, t+ ∆t)]

}
(7.11)

where x follows a diffusion process and in equation (5.1). We assume that Ω is continuous
and weakly increasing in x.

In order to solve the problem we need to find regions of x where it is best for the agent
to continue and those for which it is best to stop. If x is in the continuation region then:

V (x) = π (x) ∆t+
1

1 + ρ∆t
E
[
V
(
x
′
)]

From above we know that this implies that for x in the continuation region we have (by
applying Ito’s lemma):

ρV (x, t) = π (x) + Vt (x, t) + µ (x, t)Vx (x, t) +
1

2
σ2 (x, t)Vxx (x, t)
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For simplicity we assume now that the continuation region has the form x ≥ x? (t). It is only
for x ≥ x? (t) that the equation above holds. In order to solve it we need to impose certain
boundary conditions.

By assumption we know that V (x) = Ω (x, t) for x < x? (t), then, by continuity we can
impose that:

V (x? (t) , t) = Ω (x? (t) , t)

this is called “value-matching”. Note that continuity at x? is actually necessary for a solution.
Suppose for a contradiction that it is optimal to stop for x < x? (t), but that V (x? (t) , t) <
Ω (x? (t) , t), since V has to be continuous in the domain x ≥ x? (t) (because it is the solution
to a differential equation), and Ω is continuous by definition, then it holds that for x to
the right of x? (t), but sufficiently close to x? (t) it also holds that V (x, t) < Ω (x, t), which
contradicts x ≥ x? (t) being the continuation region. A similar argument applies for the other
inequality.

But this condition is not sufficient to solve the problem, since the value of x? (t) is still
unknown. The condition that allows us to solve the problem (of jointly finding V and x?)
is to impose further smoothness to our value function, it must not only be continuous, but
continuously differentiable. This condition is called “smooth pasting” and it requires the first
derivative of the value function to be continuous, that is:

Vx (x? (t) , t) = Ωx (x? (t) , t)

The reason behind the smooth pasting condition is not at all evident. I will illustrate it
below, but I recommend checking Appendix C of Chapter 4 in Dixit and Pindyck (1994), or
Stokey (2009, Prop 6.4 pg 124).

To see why the smooth pasting condition arise consider the following case built for a
contradiction: the value matching condition holds, but the smooth pasting condition fails,
hence V and Ω must meet at a kink. There are two options:

i. There is an upward kink (forming a concave function). If this is the case then, by
continuity, Ω would be higher than F for some value x > x?. Contradicting that the
continuation region starts at x?.

ii. There is a downward kink (forming a convex function). If this is the case then x?

cannot be a point of indifference either. There is a better strategy, namely continuing
for some time ∆t and then choosing what to do. This strategy give higher (expected)
payoff.
To see this recall the random walk formulation of the brownian motion, in a time lapse
∆t x can either go up by h with probability p or down by −h with probability 1 − p,
where:

h = σ
√

∆t p =
1

2

(
1 +

µ

σ

√
∆t
)

Then the agent can continue if the step is upward and stop if it is downward. The
expected payoff of this strategy is:

V (x? (t) , t) = π (x? (t) , t) ∆t+
1

1 + ρ∆t
[pV (x? (t) + h, t+ ∆t) + (1− p) Ω (x? (t)− h, t+ ∆t)]

41



We can take a Taylor expansion around (x? (t) , t) to approximate the value of V (x? (t) + h, t+ ∆t)
and Ω (x? (t)− h, t+ ∆t):

V (x? (t) + h, t+ ∆t) ≈ V (x? (t) , t) + Vx (x? (t) , t)h+ Vt (x? (t) , t) ∆t

Ω (x? (t)− h, t+ ∆t) ≈ Ω (x? (t) , t)− Ωx (x? (t) , t)h+ Ωt (x? (t) , t) ∆t

Replacing gives:

V (x? (t) , t) = π (x? (t) , t) ∆t+
1

1 + ρ∆t

(
V (x? (t) , t) +

1

2
[(Vx (x? (t) , t)− Ωx (x? (t) , t))h+ (Vt (x? (t) , t) + Ωt (x? (t) , t)) ∆t]

)
where we use the value matching condition and the fact that ph ≈ 1

2
σ
√

∆t and
p∆t ≈ 1

2
∆t.

Note that what matters for evaluating the strategy is the continuation value, and that
∆t is of order h2, so the first two terms in the continuation value

(
V (x? (t) , t) + 1

2
h (Vx (x? (t) , t)− Ωx (x? (t) , t))

)
will dictate the behavior of the gain as ∆t → 0 (or equivalently h → 0). These terms
are positive as long as Vx (x? (t) , t) > Ωx (x? (t) , t), which is the case if there is a down-
ward kink.
Then there cannot be a downward kink, since it would contradict the optimality of the
strategy of stopping at x? (t).

Example 7.3. Consider a firm that has flow revenues of ext , and that can be closed at any
time and sold for a value Ω > 0. The owner of the firm is risk neutral and discounts the
future at a rate ρ > 0. xt follows:

dxt = µdt+ σdW

The problem of the firm’s owner is then:

V (x) = max

{
Ω, ex∆t+

1

1 + ρ∆t
E [V (x+ dx)]

}
where continuation is optimal for x ≥ x?. Note that the problem is independent of time.

As long as x is in the continuation region the value function satisfies the HJB equation:

ρV (x) = ex + µVx (x) +
1

2
σ2Vxx (x)

This is a second order ordinary differential equation with constant coefficients. Then we
know that the solution has the form:

V (x) = V P (x) + A1H1 (x) + A2H2 (x)

where V P is a particular solution to the differential equation, H1 and H2 are homogenous
solutions, and A1and A2 are constants to be determined.

The particular solution is easy to obtain. We can solve for the value of never stopping:

V P (x) = E

[∫ ∞
0

e−ρtexdt

]
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We can solve this expectation using the results in example 6.1. We get:

V P (x) =
x

ρ−
(
µ+ 1

2
σ2
)

we assume that ρ−
(
µ+ 1

2
σ2
)
> 0 in order to guarantee the existence of this solution.

The homogenous solutions are obtained from the homogenous equation:

ρH (x) = µHx (x) +
1

2
σ2Hxx (x)

by guessing that H (x) = eξx and replacing we get:

ρeξx = µξeξx +
1

2
σ2ξ2eξx

0 = −ρ+ µξ +
1

2
σ2ξ2

our guess is verified for ξ a root of the equation above. There are two roots:

ξ2 = −µ+
√
µ2 + 2σ2ρ

σ2
ξ2 =

−µ+
√
µ2 + 2σ2ρ

σ2

note that ξ1 < 0 < 1 < ξ2, this follows from ρ > 0 and the assumption ρ −
(
µ+ 1

2
σ2
)
> 0.

Joining we get the solution for our HJB equation:

V (x) = V P (x) + A1e
ξ1x + A2e

ξ2x

Now we must determine the values of A1 and A2. To do so we first need to impose certain
conditions on our value function.

i. From optimality in exit it must be that: V (x) ≥ Ω.

ii. From feasibility it must be that: V (x) ≤ V P (x) + Ω.

iii. Value matching implies: V (x?) = Ω.

We will show that A2 = 0. Suppose for a contradiction that A2 > 0, then as x → ∞ we
have eξ1x → 0 (since ξ1 < 0), and eξ2x →∞ (since ξ2 > 0), since A2 > 0 this implies that V
violates its upper bound. Now suppose for a contradiction that A2 < 0, as before eξ1x → 0
and eξ2x → ∞, since ξ2 > 1 the last term will grow faster than the first one, thus violating
the lower bound (the value goes to −∞). Then it must be that A2 = 0.

Then we can obtain A1 from the value matching condition:

V (x?) = V P (x?) + A1e
ξ1x?(

Ω− V P (x?)
)
e−ξ1x

?

= A1
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with this the solution is complete, given a value for x?. It is left to find such value, for that
we make use of the smooth pasting condition:

Vx (x?) = 0

V P
x (x?) + A1ξ1e

ξ1x? = 0

1

ρ−
(
µ+ 1

2
σ2
) +

(
Ω− x?

ρ−
(
µ+ 1

2
σ2
)) ξ1 = 0

1

ξ1

+

(
ρ−

(
µ+

1

2
σ2

))
Ω = x?
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8 The Kolmogorov Forward Equation
The last section of this part of the course develops the Kolmogorov Forward Equation, which
describes the dynamics of the probability distribution of a random variable (given its initial
value). Moreover, it characterizes the stationary distribution of the variable if such distribu-
tion exists. This is of particular importance for models with heterogenous agents since the
distribution of the agents in the economy is obtained via the KFE.

Given some initial conditions x0 and t0 the objective is to characterize the probability
distribution function ϕ (x, t):

Pr (xt ∈ [a, b]) =

∫ b

a

ϕ (u, t) du

In order to characterize ϕ we first need to impose a process for x, and then use the random
walk approximation. For simplicity:

dx = µdt+ σdW

In the random walk approximation the process varies in a period of length ∆t by a magnitude
of h, it increases with probability p or decreases with probability 1− p, where:

h = σ
√

∆t p =
1

2

(
1 +

µ

σ

√
∆t
)

From time t−∆t to time t the process can reach a value x either by growing from x− h
or by decreasing from x + h. Then the probability (or more intuitively the fraction of the
mass) at point x at time t is given by:

ϕ (x, t) = pϕ (x− h, t−∆t) + (1− p)ϕ (x+ h, t−∆t)

We can approximate the elements of the right hand side with a second order Taylor expansion:

ϕ (x± h, t−∆t) ≈ ϕ (x, t)−∆t
∂ϕ (x, t)

∂t
± h∂ϕ (x, t)

∂x
+

1

2
h2∂

2ϕ (x, t)

∂x2

Note that terms of order higher than ∆t are ignored. We can replace to get:

0 = −∆t
∂ϕ (x, t)

∂t
+ (1− 2p)

(
h
∂ϕ (x, t)

∂x

)
+

1

2
h2∂

2ϕ (x, t)

∂x2

0 = −∆t
∂ϕ (x, t)

∂t
− µ

σ

√
∆t

(
σ
√

∆t
∂ϕ (x, t)

∂x

)
+

1

2
σ2∆t

∂2ϕ (x, t)

∂x2

0 = −∂ϕ (x, t)

∂t
− µ∂ϕ (x, t)

∂x
+

1

2
σ2∂

2ϕ (x, t)

∂x2

which gives the KFE:

∂ϕ (x, t)

∂t
= −µ∂ϕ (x, t)

∂x
+

1

2
σ2∂

2ϕ (x, t)

∂x2
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If x follows a more general diffusion process we can change the argument above to get:

∂ϕ (x, t)

∂t
= −∂ [µ (x, t)ϕ (x, t)]

∂x
+

1

2

∂2
[
σ (x, t)2 ϕ (x, t)

]
∂x2

The KFE is specially useful for finding the stationary distribution of the process. In this
case the distribution does not depend on time so the KFE is:

0 = −∂ [µ (x, t)ϕ (x)]

∂x
+

1

2

∂2
[
σ (x, t)2 ϕ (x)

]
∂x2

This equation can be integrated once to get:

c1 = −2µ (x, t)ϕ (x) +
∂
[
σ (x, t)2 ϕ (x)

]
∂x

where c1 is a constant of integration (to be determined later). Then we can use the integrating
factor:

s (x) = e
−

∫ x 2µ(z,t)

σ2(z,t)
dz

By multiplying both sides by the integrating factor we get:

s (x) c1 = e
−

∫ x 2µ(z,t)

σ2(z,t)
dz

(
−2µ (x, t)ϕ (x) +

∂
[
σ (x, t)2 ϕ (x)

]
∂x

)

The RHS can be rewritten noting that:

d

dx

[
s (x)σ2 (x, t)ϕ (x)

]
=

d

dx

[
e
−

∫ x 2µ(z,t)

σ2(z,t)
dz
σ2 (x, t)ϕ (x)

]
=

d

dx

[
e
−

∫ x 2µ(z,t)

σ2(z,t)
dz
]
σ2 (x, t)ϕ (x) + s (x)

d

dx

[
σ2 (x, t)ϕ (x)

]
= −2µ (x, t)

σ2 (x, t)
σ2 (x, t)ϕ (x) + s (x)

d

dx

[
σ2 (x, t)ϕ (x)

]
= −2µ (x, t)ϕ (x) + s (x)

d

dx

[
σ2 (x, t)ϕ (x)

]
Then we get:

s (x) c1 =
d

dx

[
s (x)σ2 (x, t)ϕ (x)

]
Integrating again:

c1

∫ x

s (y) dy + c2 = s (x)σ2 (x, t)ϕ (x)

rearranging gives:

ϕ (x) =
1

s (x)σ2 (x, t)

(
c1

∫ x

s (y) dy + c2

)
where

∫ x
f (ξ) dξ = F (x), being F the antiderivative of f .
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Example 8.1. Dynamics and Barriers Consider a brownian motion with two reflecting
barriers x and x. The process behaves as dx = µdt+σdW for x ∈ (x, x), but is kept in those
bounds by force. In terms of the random walk representation that means that starting at
x − h the process stays at x − h with probability p, instead of taking a step up, and goes
down to x− 2h with probability 1− p. Similarly for x+ h.

The KFE applies for any point in the interior of the domain, so for x ∈ (x, x) we have:

∂ϕ (x, t)

∂t
= −µ∂ϕ (x, t)

∂x
+

1

2
σ2∂

2ϕ (x, t)

∂x2

Moreover, since we are interested in the stationary behavior of the process we know that the
distribution does not depend on time, which results in:

0 = −µ∂ϕ (x)

∂x
+

1

2
σ2∂

2ϕ (x)

∂x2

or better:
ϕ
′
(x) =

1

2

σ2

µ
ϕ
′′

(x)

We can solve this equation:
ϕ (x) = Aeγx +B

where γ = 2µ
σ2 and A and B are constants to be determined. To find them we can make use

of the boundary conditions implied by the barriers.
From the random walk approximation we can derive the following equation for the upper

bound:

ϕ (x− h) = pϕ (x− h) + pϕ (x− 2h)

(1− p)ϕ (x− h) = pϕ (x− 2h)

Using now a second order Taylor expansion around x− h:

(1− p)ϕ (x− h) = p

(
ϕ (x− h)− hϕ′ (x− h) +

1

2
h2ϕ

′′
(x− h)

)
(1− 2p)ϕ (x− h) = −phϕ′ (x− h) + p

1

2
h2ϕ

′′
(x− h)

−µ
σ

√
∆tϕ (x− h) = −1

2

(
1 +

µ

σ

√
∆t
)
σ
√

∆tϕ
′
(x− h) +

1

4

(
1 +

µ

σ

√
∆t
)
σ2∆tϕ

′′
(x− h)

−2µ

σ2
ϕ (x− h) = −

(
1 +

µ

σ

√
∆t
)
ϕ
′
(x− h) +

1

2

(
1 +

µ

σ

√
∆t
)
σ
√

∆tϕ
′′

(x− h)

taking ∆t→ 0 we get:
2µ

σ2
ϕ (x) = ϕ

′
(x)

γϕ (x) = ϕ
′
(x)

Replacing for the solution of ϕ we find that B = 0. Then A is found to guarantee that ϕ
integrates to one. This results in:

ϕ (x) =
γeγx

eγx − eγx
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Part III

Applications
Explain here this part of the course
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9 Real Options
Consider the problem of a firm that is thinking about investing in a new project. The payoff
that the project generates varies stochastically, but its cost is fixed. To be precise: the firm
can, at any point in time, pay a fixed cost I to invest on a project that will have a payoff
x (t). Firm’s investment opportunity is a perpetual call option, that is, the right but not the
obligation to buy a share of some asset at a pre-specified price.

The payoff is assumed to follow a geometric brownian motion, so that:

dx = µxdt+ σxdW

The firm discounts the future at a rate ρ, so the problem of the firm is:

V (x0) = max
T

E
[
(x (T )− I) e−ρT |x (0) = x0

]
To fix ideas we can first solve for the deterministic case. For this we set σ = 0, which

implies that x (T ) = x0e
µt, for some initial value x0. Then:

V (x0) = max
T

(
x0e

µT − I
)
e−ρT

The following results follow:

i. If µ ≤ 0 then the payoff x is decreasing (or constant), so it is better to invest immedi-
ately if x0 > I, or never to invest if x0 ≤ I. This implies that:

V (x0) = max {x0 − I, 0}

ii. If 0 < µ ≤ ρ then x is growing, so the value of the firm (the value of holding the option
to invest) is positive, even if initially x0 < I . Eventually x > I.

(a) The optimal time is given by:

∂
(
x0e

µT − I
)
e−ρT

∂T
= 0

− (ρ− µ)x0e
−(ρ−µ)T + ρIe−ρT = 0

1

µ
ln

ρI

(ρ− µ)x0

= T

T = max

{
1

µ
ln

ρI

(ρ− µ)x0

, 0

}
(b) In some cases it is best to invest immediately. This happens if:

1

µ
ln

ρI

(ρ− µ)x0

≤ 0

ρI

(ρ− µ)x0

≤ 1

x? =
ρI

ρ− µ
≤ x0

Note that higher µ increases the threshold value of x0. Thus inducing longer waits.
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(c) Joining we get:

V (x0) =

 µ
ρ−µI

(
(ρ−µ)x0

ρI

) ρ
µ if x0 ≤ ρI

ρ−µ

x0 − I otw

iii. If µ > ρ then the payoff grows faster than the firm discount of the future, which implies
that the firm wants to wait forever.

Now we can solve the stochastic version of the problem. It is no longer possible to find
T ? directly, but we can still find the threshold value x?. To do it we first define the HJB
equation, recall from equation (7.9) that:

ρV dt = E [dV ]

(noting that the instantaneous payoff before investing is zero). We can use Ito’s lemma to
expand the RHS:

ρV = µxV
′
+

1

2
σ2x2V

′′

There are three boundary conditions that must hold:

V (0) = 0 V (x?) = x? − I V
′
(x?) = 1

The first one follows from 0 being an absorbing state (because of the properties of the
geometric brownian motion). The second one is value matching and the third one is smooth
pasting.

We guess that the solution is of the form:

V (x) = Axβ

for some A and β to be found later. This clearly solves the HJB equation. Replacing we can
solve for β:

ρV = µxV
′
+

1

2
σ2x2V

′′

ρAxβ = µβAxβ +
1

2
σ2Aβ (β − 1)xβ

ρ = µβ +
1

2
σ2β (β − 1)

0 = −ρ+

(
µ− 1

2
σ2

)
β +

1

2
σ2β2

β is then found from the roots of this equation:

β1 =
1

2
− µ

σ2
+

√(
1

2
− µ

σ2

)2

+ 2
ρ

σ2
> 1

β2 =
1

2
− µ

σ2
−

√(
1

2
− µ

σ2

)2

+ 2
ρ

σ2
< 0
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Since there are two distinct roots the solution to the HJB equation is in general:

V (x) = A1x
β1 + A2x

β2

But in order for the first boundary condition to hold we need that A2 = 0, since, with β2 < 0,
we could not evaluate the function otherwise. This leaves us with only one root, which we
denote β, and one constant A that we find below.

Replacing on the value matching and smooth pasting conditions we get:

A (x?)β = x? − I βA (x?)β−1 = 1

Solving for A = (x?)1−β

β
and replacing on the first equation we get:

x? = βx? − βI

x? =
βI

β − 1

which also gives the value of A.
Note that in the optimal strategy the firm does not invest when x? is equal to I (when

the net present value of investing becomes positive), but instead there is wedge between the
cost of investing and the value of investing. The wedge is given because the firm has to be
compensated for giving up the option to wait and see if the value increases even further.

Comparative Statics [Optional]

The threshold value x? depends on the parameters of the model through β. Although we
have an explicit solution for β in this case, that is not always the case. Nevertheless we can
use the quadratic equation that gives rise to β to run comparative statics.

Let Q be the quadratic equation, so that:

Q = −ρ+

(
µ− 1

2
σ2

)
β +

1

2
σ2β2

we want to know how β depends on σ. Taking total differentials we get:

dQ

dσ
=
∂Q

∂β

dβ

dσ
+
∂Q

∂σ
= 0

where the derivatives are evaluated at the positive root β found above. This expression gives:

dβ

dσ
= −

(
∂Q
∂σ

)(
∂Q
∂β

)
Signing the numerator is easy, since ∂Q

∂σ
= σβ (β − 1) > 0, we know it is positive since the

positive root β is higher than 1. Signing the denominator requires us to know the shape of
Q. It can be easily shown that Q is increasing at β1:

∂Q

∂β
= µ− 1

2
σ2 + σ2β = σ2

√(
1

2
− µ

σ2

)2

+ 2
ρ

σ2
> 0
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Then:
dβ

dσ
< 0

This means that higher variance (more uncertainty over the payoff of investing) reduces
β, which in turn increases β

β−1
. So the wedge between x? and I increases with uncertainty,

in other words the firm will need a larger return on the investment in order to invest.
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10 Menu cost Stokey (2009, Ch. 7)
Consider a firm whose profit flow at any date t depends on its relative price, that is: the
ratio of its own nominal price to an aggregate (industry-wide or economy-wide) price index,
where the latter is a geometric Brownian motion. Recall that if the price follows a GBM
then its log follows a brownian motion. It is then convenient to work with the prices in log
form. Let p (t) be the log of the firm’s nominal price and p (t) the log of the aggregate price
index. Then:

dp = −µdt+ σdWp

The initial value for the firm’s (log) nominal price p0 is given. The firm can change its
nominal price at any time, but to do so it must pay a fixed adjustment cost c > 0. This cost
is constant over time and measured in real terms. Because control entails a fixed cost, the
firm adjusts the price only occasionally and by discrete amounts.

The problem of the firm is to choose when to adjust the price, and by how much. One
can see this as a problem of choosing the (random) times at which to adjust the price, or of
choosing an inaction region, such that the price is adjusted when some condition is met.

Since the profit flow at any date depends only on the firm’s relative price, the problem
can be formulated in terms of that one state variable. Let:

z (t) = p (t)− p (t)

When the firm adjusts its price the variable z jumps. Part of the problem will be to find the
optimal value z? to which z is set when the firm decides to take action. Between adjustments
z evolves only with p, so we have (for any time at which there is no adjustment):

dz = µdt+ σdW

where dW = −dWp.
The profit flow of the firm, π (z), is a stationary function of its relative price z, and profits

are discounted at a constant interest rate r. The following restrictions on π, r, c and the
parameters µ, σ2 insure that the problem is well behaved:

i. r, c, σ2 > 0

ii. π is continuous everywhere, strictly increasing on (−∞, 0) and strictly decreasing on
(0,∞).

(a) The location of the peak of π at 0 is arbitrary.

We will assume that π takes the following form:

π (z) =

{
π0e

η+z if z ≥ 0

π0e
η−z if z < 0

where η+ < 0 < η−.
These assumptions imply that it is optimal to change the price if z gets too low or too

high. Then the inaction region is: (z, z̄).
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The HJB equation for z ∈ (z, z̄) is:

ρV (z) = π (z) + µV
′
(z) +

1

2
σ2V

′′
(z)

The boundary conditions for V are value matching and smooth pasting at z and z:

V (z) = V (z?)− c
V (z) = V (z?)− c
V
′
(z) = 0

V
′
(z̄) = 0

while z? is optimally found to maximize V . So it must satisfy:

V
′
(z?) = 0

The solution to the HJB equation is, just as before:

V (z) = V p (z) + A1e
ξ1z + A2e

ξ2z

where V p is a particular solution and H (z) = eξz is a solution to the homogeneous equation.
Finding the particular solution is not trivial. Stokey proposes the following solution:

W (z) = E

[∫ T

0

e−rtπ (z (t)) dt

]
where T is the (random) time at which the price will be adjusted. W gives then the expected
discounted value of the profits until the next adjustment. This function is difficult to deal
with, since T is not a real number, but instead a random variable. It is however possible
to exploit this to express W as an integral over values of z. This goes beyond what we are
covering, the details are available in Stokey (2009, Sec. 3.5). Critically it can be shown that:

W (z) = W (z̄) = 0

since there is no time until the next adjustment. It will occur in that instant.
This simplifies the value matching conditions to:

A1e
ξ1z + A2e

ξ2z = V (z?)− c
A1e

ξ1z + A2e
ξ2z = V (z?)− c

Unfortunately we cannot further solve this problem.
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