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Part I

Random Variables, Probability, and
Markov Processes
Consider an experiment that can have several (but finite) outcomes. For example trowing a
dice can turn out in getting any number from 1 to 6, or asking someone out can generate an
affirmative response, a negative one or perhaps amaybe, or no response at all. A probability
function is a function that assigns a value to each possible outcome while satisfying certain
rules.

Its clear that when the outcomes are finite, outcomes form a set S = {s1, . . . , sn}, a
probability is a list (π1, . . . ,πn) such that Pr

(
si
)
= πi:

(a) πi ≥ 0 for all i.

(b)
∑
πi = 1.

It is natural to define other outcomes that are formed by unions of the former ones, like
getting an even number when trowing the dice (the union of getting a two a four and a
six) or getting a positive answer or a maybe when asking someone out. It is clear that the
probability of these new outcomes is defined by the sum of probabilities of the original
outcomes used to define them.

Formally we could say that for any set A ⊆ S we define IA =
{
i|si ∈ A

}
and then a

function µ : 2S → [0, 1] as:
µ (A) = Pr (A) =

∑
i∈IA

πi

Furthermore we can define the expected value of a real valued function f : S → R as
E
[
f
]
=
∑
µ
({
si
})

f
(
si
)
.

This same discussion can be carried out if the possible outcomes are countably infinite,
but it is difficult to generalize it otherwise. The objective now is to study which properties
does this kind of function satisfy and how it is generalized to deal with cases where
outcomes are arbitrary. The key for this is to realize that a probability is a function that
maps sets into the interval [0, 1], hence the study of functions that map sets into
non-negative numbers will provide the necessary theory, these functions are called
measures, for obvious reasons.

The following sections draw on the short exposition of measure theory contained
in Chapter 7 of Stokey, Lucas, and Prescott (1989) and complements it with portions of
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Kolmogorov and Fomin (2012) (chapters 7 to 10). Both these references are introductory
although they present all the relevant results. All the material is also covered in a more
advanced manner in Kolmogorov and Fomin (1999).

The aim of the course is not to dwell in themathematical details of the theory but rather
present the most useful results for applications in economic theory, because of this many
of the proofs will be omitted only including those that are either instructive of the way the
theory is developed. Kolmogorov and Fomin (2012) is a good source for detailed (and easy
to understand) proofs.

We end with a discussion of Markov processes, defined following Stokey, Lucas, and
Prescott (1989, Ch. 8). These processes are key for the stochastic dynamic problems that
we will study in the first part of the course
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1. Measure

1.1. Measurable spaces (σ-algebras)

Before we define a measure recall that a measure has for domain a collection of sets. For a
measure to have some desirable properties this collection of sets cannot be left unrestricted.
It turns out that the appropriate family of sets to be consider is that of σ-algebra.

Definition 1.1. (σ-algebra) Let S be a set andA ⊆ 2S a family of its subsets.A is a σ-algebra
if and only if:

(a) ∅, S ∈ A.

(b) A ∈ A implies Ac = S\A ∈ A. We say that A is closed under complement.

(c) An ∈ A for n = 1, . . . implies ∪An ∈ A. We say that A is closed under countable union.

(i) A is closed under countable intersection because ∩An =
(
∪Acn

)c.
If A is only closed under finite union (or intersection) then A is an algebra.

A σ-algebra imposes certain consistency to the family of sets under consideration. The
way to interpret it is that only subsets of the σ-algebra can be known, hence measured.
Because of property (i) it is possible to know when none or all of the outcomes occurred.
Also if there is an outcome that occurred it must be possible to determine if it didn’t.
Finally if it is possible to determine that some outcomes occurred individually it can also
be determined if at least one or all of them were realized.

It is instructive to consider two simple examples of σ-algebras that arise from throwing
a 4 sided dice, then S = {1, 2, 3, 4}. One (trivial) σ-algebra is:

A =
{
∅, S
}

Another one is the σ-algebra generated by the collection {{1} , {2} , {3} , {4}}, then:

A =

{
{1} , {2} , {3} , {4} , {2, 3, 4} , {1, 3, 4} , {1, 2, 4} , {1, 2, 3} ,

{1, 2} , {2, 3} , {3, 4} , {1, 3} , {1, 4} , {2, 4} , ∅, S

}

In this case A = 2S, but this is not necessarily true, imagine that one can only determine if
an even number was thrown, then the outcomes are {{1, 3} , {2, 4}}, the σ-algebra is:

A =
{
{1, 3} , {2, 4} , ∅, S

}
6



When S has uncountably many elements this process cannot be exemplified as easily
but one can always define the σ-algebra generated by a subset A ⊆ 2S as the intersection
of all σ-algebras that contain A. Clearly the arbitrary intersection of σ-algebras is again a
σ-algebra.

Now that we have defined a σ-algebra its possible to say what a measurable set and a
measurable space are:

Definition 1.2. (Measurable Space) A pair (S,A) where S is any set and A is a σ-algebra is
called a measurable space. A set A ∈ A is called A-measurable.

We say that A ⊆ S is measurable with respect to a σ-algebra A if its elements are
identifiable, that is, if the outcomes represented inA can be told apart from other outcomes
given the information inA. For example the setA = {4} is notmeasurable in the last example
above, because its impossible to know if a 4 was the outcome of the throw.

A σ-algebra of special importance is the Borel σ-algebra.

Definition 1.3. (Borel σ-algebra) Let S = R andA be the set of open and half open intervals.
The Borel algebra, noted byB, is the σ-algebra generated byA. A set B ∈ B is called a Borel
set.

The Borel algebra could have been defined equivalently with the closed and half closed
intervals (use complement). In general one can define the Borel algebra for any metric
space (S, ρ) as the smallest σ-algebra containing all the open balls. In the case of the
Euclidean spaces it can also be generated with open rectangles.

What follows is to define the measure of a measurable set.
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1.2. Measures

1.2.1. Measures in σ-algebras

Given ameasurable space (S,A) a measure is nothing but a function µ : A→ Rwith certain
restrictions that guarantee its consistency:

Definition 1.4. (Measure) Let (S,A) be a measurable space. A measure is an extended
real-valued function µ : A→ R such that:

(a) µ (∅) = 0

(b) µ (A) ≥ 0 for all A ∈ A.

(c) µ is countably additive. If {An}∞n=1 is a countable, disjoint sequence in A, then:

µ (∪An) =
∑

µ (An)

If furthermore µ (S) <∞ then µ is said to be a finite measure, and if µ (S) = 1 then µ is said
to be a probability measure.

Definition 1.5. (Measure Space) A triple (S,A,µ) where S is a set, A is a σ-algebra of its
subsets and µ is a measure onA is called a measure space. The triple is called a probability
space if µ is a probability measure.

An important concept is that of almost everywhere and almost surely. These are
qualifiers for a given proposition that can be evaluated in sets of A.

Definition 1.6. (Almost Everywhere and Almost Surely) Let (S,A,µ) be a measure space.
A proposition is said to hold almost everywhere (a.e.) or almost surely (a.s.) if there exists
a set A ∈ A such that µ (A) = 0 and the proposition holds in Ac.

An example of the use of a.e. or a.s. is when treating functions that are similar to each
other. One can say that two functions are equivalent a.e. or that a function is continuous a.e.
Then the functions f and g satisfy f (x) = g (x) and A =

{
x| f (x) ̸= f ( y)

}
satisfies µ (A) = 0.

In measure theory the behavior of functions a.e. is all that matters, then we can treat
functions that have anomalies as long as those anomalies occur only in sets of measure
zero.

There are some properties of a measure that are useful to keep in mind, a crucial one
is used for Bayes law and the definition of conditional probability.
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Proposition 1.1. Let (S,A,µ) be a measure space and B ∈ A a set. Define λ : A → R as
λ (A) = µ (A ∩ B). Then λ is a measure on (S,A). If in addition µ (B) < ∞ then λ̃ defined as
λ̃ (A) = µ(A∩B)/µ(B) is a probability measure on (S,A).

Proof. First, if A,B ∈ A then A ∩ B ∈ A, this follows from a σ-algebra being closed under countable
intersection, by letting A1 = A and An = B for n ≥ 2 the result obtains. It is left to check the three
properties of a measure:

(a) λ (∅) = µ (∅ ∩ B) = µ (∅) = 0.

(b) λ (A) = µ (A ∩ B) ≥ 0.

(c) Let {An}∞n=1 be a countable, disjoint sequence inA, then the sequence {An ∩ B}∞n=1 is also disjoint
and that:

λ (∪An) = µ ((∪An) ∩ B) = µ (∪ (An ∩ B)) =
∑

µ (An ∩ B) =
∑

λ (An)

(d) If µ (B) <∞ then all the previous results hold for λ̃ by dividing everything by µ (B). Furthermore
λ̃ (S) = µ(S∩B)µ(B) = µ(B)

µ(B) = 1.

Another useful property is given by the following proposition, it reflects the intuitive
property of measures being ’increasing’:

Proposition 1.2. Let (S,A,µ) be a measure space and A,B ∈ A sets. If A ⊆ B then µ (A) ≤ µ (B),
if in addition µ is finite then µ (B\A) = µ (B) – µ (A).

Proof. Because A ⊆ B, there exits C = B\A = B ∩ Ac such that A ∪ C = B and A ∩ C = ∅. Then

µ (A) + µ (C) = µ (B) .

Moreover, µ (A) ≤ µ (B) because µ (C) ≥ 0. If µ is finite then all elements above are well defined
and: µ (B\A) = µ (B) – µ (A).

The following property is widely used to establish properties of limits of functions, and
of the Lebesgue integral:

Proposition 1.3. Let (S,A,µ) be a measure space:

(a) If {An} is an increasing sequence in A, that is, if An ⊆ An+1 for all n, then:

µ (∪An) = limµ (An)
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(b) If {Bn} is an decreasing sequence in A, that is, if Bn ⊇ Bn+1 for all n, then:

µ (∩Bn) = limµ (Bn)

Proof. Stokey, Lucas, and Prescott (1989, Sec. 7.2). Satisfying these two properties makes a measure
continuous.

1.2.2. Measures in algebras and extensions [Optional]

So far we have defined a measure on an σ-algebra, but a σ-algebra is usually a large
collection of sets and defining a function on such a set while preserving the consistency
required for a measure is not an easy task. An alternative is given by defining measures on
algebras, which are smaller and less complicated collections of sets. It can be shown that
these measures preserve all the desirable properties of the more complicated spaces, and
also allow for an extension to σ-algebras, once the measure is properly constructed.

We start by defining a measure on an algebra.

Definition 1.7. (Measure) Let (S,A) be a measurable space. A measure is an extended
real-valued function µ : A→ R such that:

(a) µ (∅) = 0

(b) µ (A) ≥ 0 for all A ∈ A.

(c) If {An}∞n=1 is a countable, disjoint sequence in A, and ∪An ∈ A, then:

µ (∪An) =
∑

µ (An)

If furthermore µ (S) <∞ then µ is said to be a finite measure, and if µ (S) = 1 then µ is said
to be a probability measure.

Condition (iii) also includes finite union of disjoint sets as a special case.

Definition 1.8. (σ-finitemeasure) Let S be a set,A an algebra of its subsets and µ ameasure
defined on A. If there is a countable sequence of sets in A, {An}, such that µ (An) ≤ ∞ and
S = ∪An then µ is σ-finite

It is now possible to extend the notion of this measure to a σ-algebra.
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Theorem 1.1. (Caratheodory extension theorem) Let S be a set,A an algebra of its subsets
and µ a measure defined onA. LetA⋆ be the smallest σ-algebra containingA. There exists
a measure µ⋆ on A⋆ such that µ⋆ (A) = µ (A) for all A ∈ A.

The problem of uniqueness is also solved.

Theorem 1.2. (Hahn extension theorem) Let S be a set, A an algebra of its subsets, µ a
measure defined onA andA⋆ theminimal σ-algebra ofA. If µ is σ-finite then the extension
µ⋆ is unique.

To see how these theorems and the extension of a measure are used consider defining
a measure on the Borel σ-algebra. It seems logical to define the measure of an interval
A = (a, b) as µ (A) = b – a if b ≥ a and µ (A) = 0 otherwise (because the interval would be
empty). Yet the Borel σ-algebra contains sets beyond simple intervals, and the countable
union of intervals can give rise to weird sets. An answer to this problem is given by defining
a measure on the Borel algebra, formed by all types of intervals and their finite unions.
Defining a measure on this set seems straightforward:

(a) µ (∅) = 0

(b) µ ((a, b)) = µ
([
a, b
])
= µ

(
(a, b

])
= µ

([
a, b)

)
= b – a

(c) µ ((–∞,∞)) = µ
(
(–∞, b

])
= µ ([a,∞)) =∞

(d) µ (∪ (an, bn)) =
∑
(bn – an) if the intervals are disjoint.

The functionµ can be verified to be ameasure on the Borel algebra, and hence an extension
to the Borel σ-algebra exists. If we restrict our attention to S =

[
a, b
]
and the intervals

contained in it we can define a σ-finite measure, obtaining uniqueness of the extension.
This is how we can deal with complicated environments.

Once the measure is extended to the σ-algebra all the results obtained above apply.

1.2.3. Completion of a measure [Optional]

One small detail is left to be checked. Sometimes there is a set B ⊆ S such that B ⊆ A ∈ A

and µ (A) = 0, but if B /∈ A then its measure is undefined, while it should be clearly zero.
The completion of a σ-algebra to include these type of ’harmless’ sets is what follows. As
before, including sets or behaviors of measure zero is of no consequence.

Definition 1.9. (Completion of a σ-algebra) Let (S,A,µ) be a measure space. Define a
collection C as:

C =
{
C ⊂ S|∃A∈Aµ (A) = 0 ∧ C ⊂ A

}
11



The completion of σ-algebra A is:

A
′
=
{
B
′
⊆ S |B

′
= (A ∪ C1) \C2 A ∈ A ∧ C1,C2 ∈ C

}
By letting C1 = C2 = ∅ we get A ⊆ A

′
, A

′
includes all sets in 2S that differ from a set in A by

a set of measure 0.

Definition 1.10. (Completion of a measure) Let (S,A,µ) be a measure space and A
′
the

completion of A. µ
(
B
′)
= µ (B) for any B

′ ∈ A
′
that differs from B ∈ A by a set of measure

0.

The Caratheodory and Hahn extension theorems also apply for completions.
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2. Measurable functions

Ameasurable function is a type of function for which it is possible to know (to measure)
the conditions (the set) that originates certain outcomes. One can think of a function as
mapping certain events in a given measure space to outcomes in another measure space. A
function is measurable if the sets that induce a given outcome are measurable. Formally:

Definition 2.1. (Measurable function) Let (S,A,µ) and
(
S
′
,A

′
,µ

′)
be measure spaces and

f : S→ S
′
a function. f is measurable if and only if f –1

(
A

′) ∈ A for all A
′ ∈ A

′
.

A special case of notable importance is that of
(
S
′
,A

′
,µ

′)
= (R,B, λ), where λ is the

Lebesgue measure on the plane. This are real valued functions. In this case the
B-measurable sets in R can be characterized in the following way:

Theorem 2.1. Let (S,A,µ) be a measure space and f : S→ R. f is µ-measurable if and only if
f –1 ((–∞, c)) =

{
x ∈ S| f (x) < c

}
∈ A for all c ∈ R.

Proof. This theorem is stated as the definition of a real valued function f being µ-measurable in
Stokey, Lucas, and Prescott (1989), but a formal proof is presented in Kolmogorov and Fomin (2012,
Sec. 28, Thm. 1). It can also be stated with any of the inequalities≥,≤, >, <.

Also when the measure space in question is a probability space one can characterize
formally what a random variable is.

Definition 2.2. (Random variable) Let (S,A,P) be a probability space and f : S→ R a real
valued function. f is a random variable if and only if f is measurable, that is, if and only
if f –1 (B) ∈ A for all B ∈ B, where B is the Borel σ-algebra on R. We further establish the
same notation:

(a) An outcome is an element s ∈ S.

(b) An event is a measurable subset of S: A ∈ A.

(c) The real number f (s) is a realization of the random variable.

(d) The probability measure for f is then: µ (B) = P
(
f –1 (B)

)
= P

({
s ∈ S| f (s) ∈ B

})
, for

B ∈ B.

(e) The distribution function for f is: G (b) = µ
(
(–∞, b

])
, for b ∈ R.
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Generally it is very hard to find a function that is not measurable. The details of the
example will depend on the spaces considered. For example if f : R → R and A is the
set of all open (or closed) sets in R the definition of measurability is equivalent to that of
continuity (the pre-image of an open set has to be open) and then all functions that are
not continuous are not measurable. It is clear that more complete σ-algebras make more
difficult to generate counterexamples. The following three results show how difficult it is
to generate them:

Proposition 2.1. Let f : R→ R.

(a) If f is continuous then f is measurable with respect to the Borel sets.

(b) If f is monotone then f is measurable with respect to the Borel sets.

Proof. Each case is proven:

(a) Let f be continuous. Consider the set f –1 ((–∞, c)) for any c ∈ R. The set (–∞, c) is open, because
f is continuous then its pre-image is open, then it is a Borel set. Then its measurable.

(b) Let f be monotone increasing. Consider the set f –1 ((–∞, c)) for arbitrary c ∈ R. Then,
f –1 ((–∞, c)) = (–∞, a) or f –1 ((–∞, c)) = (–∞, a] or f –1 ((–∞, c)) = (–∞,∞) or f –1 ((–∞, c)) = ∅
for some a ∈ R. Monotonicity ensures that if a ∈ f –1 ((–∞, c)) and b ≤ a then b ∈ f –1 ((–∞, c)).
Suppose its not, then there exists numbers b ≤ a such that f (b) > c ≥ f (a), contradicting
monotonicity.

All these sets are in B, then f is B-measurable.

Corollary 2.1. The composition of measurable functions is measurable. In particular the
composition of a continuous function with a measurable function is measurable.

Proposition 2.2. Let S = {s1, s2, . . .} be a countable set (potentially infinite) and A = 2S a
σ-algebra on S. Then all functions f : S→ R are measurable.

Proof. The proof is immediate because the pre-image of a Borel set is a subset of S, then it belongs
to A = 2S.

In a more general way one can establish the measurability of a function by relating to a
class of well behave ’simple’ functions. The base for this class is the indicator function.

14



Definition 2.3. (Indicator Function) Let (S,A) be a measurable space. An indicator
function χA : S→ R is:

χA (s) =

1 if s ∈ A

0 if s /∈ A

Clearly χA is measurable if and only if A ∈ A.

Definition 2.4. (Simple Function) Let (S,A) be a measurable space. A simple function is a
function that takes at most countably many values. When the function takes finitely many
values it can be expressed as:

ϕ (s) =
n∑
i=1
αiχAi (s)

where
{
Ai
}
is a sequence of subsets of S and αi ∈ R.

Characterizing the measurability of simple functions is slightly more complicated.

Proposition 2.3. A simple function taking values
{
y1, y2, . . .

}
is measurable if and only if the

sets Ai =
{
s ∈ S|ϕ (s) = yn

}
are measurable.

Proof. Both directions are proven.

(a) Let ϕ be measurable, and
{
yn
}
∈ B, then its pre-image is measurable wrt A.

(b) Let the sets be measurable, that isAi ∈ A, and consider B ∈ B a Borel set. Then

ϕ–1 (B) =
{
s ∈ S|ϕ (s) = yi ∈ B

}
=
⋃
yi∈B

Ai.

Because each Ai ∈ Ai and the union is taken over no more than countably many sets we have⋃
yi∈B Ai ∈ A by definition of a σ-algebra. This proves measurability of ϕ–1 (B).

In what follows all simple functions will be considered measurable. The importance of
simple functions is given by the applications of the following proposition.

Proposition 2.4. Let (S,A) be a measurable space and let
{
f n
}
be a sequence of measurable

functions converging pointwise to f , that is lim f n (s) = f (s) for all s. Then f is also measurable.

Proof. The proof can be found in Stokey, Lucas, and Prescott (1989, Sec. 7.3) or in Kolmogorov and
Fomin (2012, Sec. 28.1).
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Corollary 2.2. If f is non-negative one can choose the sequence
{
f n
}
to be strictly increasing.

Corollary 2.3. If f is bounded one can choose the sequence
{
f n
}
to converge uniformly.

The main application is the following result that gives a characterization of measurable
functions in terms of simple functions:

Proposition 2.5. A function f is measurable if and only if it an be represented as the limit of a
uniformly converging sequence of measurable simple functions.

Proof. The first direction is immediate from the previous proposition. If f is the limit of measurable
functions then f is also measurable.

Let f be measurable. It is left to construct a converging sequence of simple functions that
converges to f . wlog let f (s) ≥ 0 for all s, then by the Archimedean principle there exists a non-
negative integerm such that

m
n
≤ f (s) <

m + 1
n

Let f n (s) = m/n, because n is fixed and m ∈ N ∪ {0} it follows that f n can take at most countably
many values, hence it is simple. f n is also measurable because

f –1n ((–∞, c)) =
{
s ∈ S| f n (s) ≤ c

}
=
{
s ∈ S| f n (s) ≤

m⋆

n

}
=
{
s ∈ S| f n (s) <

m⋆ + 1
n

}
Form⋆ chosen by the Archimedean principle. The last set is f –1

((
–∞, m

⋆+1
n

))
which is measurable

by assumption. Then f n is measurable for all n.
Finally, f n → f uniformly because

∣∣ f n (s) – f (s)∣∣ ≤ ∣∣∣∣mn –
m + 1
n

∣∣∣∣ = 1
n
.

Other results will follow and are left stated without proof:

Proposition 2.6. Let f , g be measurable functions and α ∈ R then:

(a) f + g is measurable.

(b) α f is measurable.

(c) f g is measurable.

(d) 1/ f is measurable provided that f (s) ̸= 0.

Finally continuity of functions is used to strengthen the intuition around measurability.
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Proposition 2.7. Let f , g be equivalent function defined on an interval E, that is they are equal
a.e. If f and g are continuous then they coincide.

Proof. Suppose not, then there exists x ∈ E such that f (x) ̸= g (x). Let ϵ = | f (x) – g (x)|, because
f and g are continuous there exists δ such that for x

′
∈ Bδ (x) it holds that

∣∣∣ f (x) – f (x′)∣∣∣ < ϵ
2

and
∣∣∣g (x) – g (x′)∣∣∣ < ϵ2 . Then for all x′

∈ Bδ (x) it holds that f
(
x
′)
≠ g
(
x
′)
, but Bδ (x) has strictly

positive measure, contradicting f and g being equivalent.

Proposition 2.8. A function f equivalent to a measurable function g is measurable.

Proof. Because the functions are equivalent the sets
{
x| f (x) ≤ c

}
and

{
x|g (x) ≤ c

}
can differ in at

most by a set of measure zero. Then if the second set is measurable so is the first one (taking into
account the completion of the σ-algebra). This proves measurability.

Corollary 2.4. A function f equivalent to a continuous function is measurable.

Proof. Immediate from continuous functions being measurable.

This implies that if a function is continuous a.e. then it ismeasurable, again the behavior
of functions in sets of measure zero carries no consequence. It turns out that this corollary
can be strengthened. The result is powerful and is stated without a proof:

Theorem 2.2. (Luzin) Let f :
[
a, b
]
→ R be a function. f is measurable if and only if for all

ϵ > 0 there exists a continuous function g such that µ
{
x ∈

[
a, b
]
| f (x) ̸= g (x)

}
< ϵ.

This theorem shows that for the case of functions of real variable and real value
measurability is equivalent to continuity, except on a set of arbitrarily small size. In other
words a measurable function can be made continuous by altering its values on a set of
arbitrarily small measure.
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3. The Lebesgue integral [Optional]

The Lebesgue integral is in at least two important ways a generalization of the Riemann
integral and it serves a crucial purpose of defining what it means to take the expected
value of a function with respect to a probability distribution. The first sense in which the
Riemann integral is generalized is that the Lebesgue integral is defined over measurable
functions, a space that is much richer than that of Riemann integrable functions, the
second sense is much more crucial: the Lebesgue integral is defined for functions with
domain in arbitrary sets, thus allowing to handle a more abstract and general class of
functions.

Intuitively the Lebesgue integral is constructed in a similar way than the Riemann
integral. To construct the latter one takes successively finer grids of the domain and
evaluate the function at certain points, constructing step functions, one above the function
and one below, then two sums are constructed and the value of the integral is defined as
the (common) value of the limit of those sums as the length of the grid’s spaces goes to
zero.

The Lebesgue integral of a function f : S → R+ is constructed by taking grids over
the range of the function

{
yi
}n
i=1 such that 0 = y1 ≤ . . . ≤ yn. Then one can define the

sets Ai =
{
s ∈ S| yi ≤ f (s) < yi+1

}
and using the measure over S define λ

(
Ai
)
and the sum∑

yiλ
(
Ai
)
. The Lebesgue integral is then the limit of this sum as the values yi are closer

together.
The introduction before of simple functions makes sense when defining the Lebesgue

integral. Its definition seems intuitive for this class of functions and Proposition 2.5 creates
a bridge between them and the more general class of measurable functions, thus allowing
to extend the Lebesgue integral to this broader family.

In what follows we restrict attention to non-negative, real valued functions.

Definition 3.1. (Lebesgue integral for simple functions) Let (S,A,µ) be a measure space
and f : S→ R+ a simple, µ-measurable function that takes no more than countably many
values

{
y1, y2, . . .

}
. The Lebesgue integral over the set A ⊆ S is defined as:∫

A
f (s) dµ =

∑
n

ynµ (An) (3.1)

where the sets An are defined as:

An =
{
s ∈ A| f (s) = yn

}
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These sets can be empty if there is no element of s in A for which f takes a given value. The
Lebesgue integral is defined as long as the series in (3.1) is absolutely convergent. If f takes
finitely many values and µ is finite (or a probability measure) this condition is satisfied.

An example is given by the constant function, f (s) = 1 for all s ∈ S, then:∫
A
f (s) dµ =

∫
A
dµ = µ (A)

It can be shown that the lebesgue integral satisfies some natural properties:

Proposition 3.1. Let f and g be non-negative, measurable, simple and integrable functions on
(S,A,µ), a measure space, and c ≥ 0 a constant. Then:

(a)
∫
A ( f + g) (s) dµ =

∫
A f (s) dµ +

∫
A g (s) dµ

(b)
∫
A (c f ) (s) dµ = c

∫
A f (s) dµ

(c) If f is bounded | f (s)| ≤M a.e. then f is integrable and
∣∣∫
A f (s) dµ

∣∣ ≤Mµ (A).

Proof. Kolmogorov and Fomin (2012, Sec. 29.1).

Definition 3.2. (Lebesgue integral - Nonnegative functions) Let (S,A,µ) be a measure
space. A measurable function f : S → R is said to be integrable on a set A if there exists
a sequence

{
f n
}
of integrable simple functions converging uniformly to f on A. The

Lebesgue integral is defined as:∫
A
f (s) dµ = lim

∫
A
f n (s) dµ (3.2)

This definition precludes the integral from being infinite, as shown in Kolmogorov and
Fomin (2012, Sec. 29.1), the limit above exists provided that the functions f n are integrable
(recall that it was asked of the sum in (3.1) to be finite), moreover it is independent of the
choice of sequence approximating f , this sequence can be furthermore be chosen to be
strictly increasing (Stokey, Lucas, and Prescott 1989). Yet, the concept of the Lebesgue
integral can be easily generalized to allow for infinite values, the definition in Stokey, Lucas,
and Prescott (1989) allows for this.

What follows is a list of properties of the Lebesgue integral which should be familiar if
there is any knowledge of the behavior of Riemann integrals. They are not of particular
interest in this course.
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Proposition 3.2. Properties of the Lebesgue integral for non-negative measurable functions:

(a)
∫
A ( f + g) (s) dµ =

∫
A f (s) dµ +

∫
A g (s) dµ

(b)
∫
A (c f ) (s) dµ = c

∫
A f (s) dµ

(c) If g is measurable and integrable and f is bounded by g: | f (s)| ≤ g (s) a.e., then f is integrable
and

∣∣∫
A f (s) dµ

∣∣ ≤ ∫A g (s) dµ.
(i) If f is bounded and measurable then it is integrable.

(d) If f ≤ g a.e. then
∫
f (s) dµ ≤

∫
g (s) dµ.

(e) If A ⊆ B with A,B ∈ A then
∫
A f (s) dµ ≤

∫
B f (s) dµ

(f) Let A = ∪An where {An} is a finite or countable sequence of disjoint sets. If f is integrable on
A then f is integrable on An for all n and:∫

A
f (s) dµ =

∑
n

∫
An

f (s) dµ

when the series on the right is absolutely convergent.

Finally it is noted that a non-negative integrable function induces a measure on a space,
the following proposition makes this clear.

Proposition 3.3. Let f be a non-negative, integrable function, then λ : A→ R defined as:

λ (A) =
∫
A
f (s) dµ

is a measure on (S,A).

Definition3.3. (Lebesgue integral)Let (S,A,µ) be ameasure space. Ameasurable function
f : S→ R is said to be integrable if the following two integrals are finite:∫

f + (s) dµ
∫

f – (s) dµ

where:

f + (s) =

 f (s) if f (s) ≥ 0

0 if f (s) < 0
f + (s) =

0 if f (s) ≥ 0

– f (s) if f (s) < 0
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The integral of f is defined as:∫
f (s) dµ =

∫
f + (s) dµ –

∫
f – (s) dµ (3.3)

Recall that when (S,A,µ) is a probability space the function f is called a random
variable, the definitions above are then the definitions of the expected value of a random
variable, this expected value exists when f is integrable, we have seen that a sufficient
condition for this is to be bounded a.e. and the measure to be finite, this last condition is
satisfied immediately by probability measures.
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4. The Stieltjes integral [Optional]

The Lebesgue-Stieltjes integral is a type of integral specially useful in probability theory,
because of the resemblance between the Stieltjes measures and probability measures.
To introduce the concept consider a real valued random variable that takes values on
a closed interval

[
a, b
]
, this is for example the result of coin toss when catalogued as 0

or 1, the underlying probability space is formed by S = {H,T}, A =
{
∅, S, {H} , {T}

}
and

a probability measure on A, a function µ : A → [0, 1] such that µ ({H}) ,µ ({T}) ≥ 0,
µ (S) = µ ({H}) + µ ({T}) = 1 and µ (∅) = 0. The random variable is then a function f : S→ R

such that f (H) = 0 and f (T) = 1. It seems natural to ask what is the probability that f (s) = 1,
it is of course given by µ (T), in the same way can ask for the probability that f (s) ≤ c for
any value c, the function that answers that question is called the cumulative distribution
function. In this example we have:

F (c) = Pr ( f (s) ≤ c) =


0 if c < 0

µ (H) if 0 ≤ c < 1

1 if 1 ≤ c

Because themeasure µ is non-negative it is clear that F has to be a non-decreasing function,
it is also continuous from the left, moreover it is possible to recover µ from knowledge of
F:

µ (H) = F (0) µ (T) = 1 – F (0)

The Stieltjes measure is a general way of looking at this last step. It treats the problem
of inducing a measure from a non-decreasing left continuous function. The application to
probability theory is apparent because we deal with the CDF of a random variable, and not
directly with its probability measure, as we saw before it is this latter object the one that
defines the expected value.

Now we turn to define formally the Stieltjes integral. Let F :
[
a, b
]
→ R be a non-

decreasing and left-continuous function. Let A be an algebra of all subintervals of [α,β)
(including open, closed and half-open intervals). Define a measure on A by:

m (α,β) = F (β) – F (α + 0)

m [α,β] = F (β + 0) – F (α)

m (α,β] = F (β + 0) – F (α + 0)

m [α,β) = F (β) – F (α)
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Nowconsider the Lebesgue extension ofm, call itµF and theσ-algebra of allµF-measurable,
call it AF. This set contains all subintervals of [α,β) and hence all the Borel sets of [α,β).

Definition 4.1. (Stieltjesmeasure)ThemeasureµF described above is called the (Lebesgue-
)Stieltjes measure and F its generating function.

This concept is easily extended to the whole real line. Some examples show the
generality of this type of measure:

Example 4.1. Let F (x) = x, then the Stieltjes measure is nothing but the Lebesgue measure
on the real line, that is, the extension of the concept of length of an interval.

Example 4.2. Let F be a jump function with discontinuity points {x1, x2, . . .} and
corresponding jumps

{
h1, h2, . . .

}
. The measure is of course:

m ({xn}) = hn m
(
{x1, x2, . . .}c

)
= 0

Then every subset of [α,β) is µF-measurable because their measure depends only on
countable points. Any set A has measure given by:

µF (A) =
∑
xn∈A

hn

This number exists by assumption. A Stieltjes measure generated by a jump function is
called a discrete measure. All discrete random variables have CDF that are jump functions.

Example 4.3. Let F be an absolutely continuous non-decreasing function on [α,β).
Absolutely continuous functions have a finite derivative a.e. let this derivative be f = F

′
.

Then the Stieltjes measure µF is defined for all Lebesgue measurable sets and:

µF (A) =
∫
A
f (x) dx

clearly in this case µF ({x}) = 0 because {x} has Lebesgue measure 0.
The result follows from Lebesgue theorem:

Theorem4.1. (Lebesgue) If F is absolutely continuous on
[
a, b
]
then the derivative F

′
is integrable

on
[
a, b
]
and:

F (β) – F (α) =
∫ β

α
F
′
(x) dx
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Proof. Kolmogorov and Fomin (2012, Sec. 33, Thm. 6).

Applying this theorem here we get:

m (α,β) = m [α,β] = m (α,β] = m [α,β) =
∫ β

α
f (x) dx

Because f is non-negative and integrable wrt all Lebesgue-measurable subsets of
[
a, b
](

B[a,b]
)
we know by proposition (3.3) that

µF (A) =
∫
A
f (x) dx

is a measure on
([
a, b
]
,B[a,b]

)
that coincides withm, because the extension is unique we

get that µF is the Stieltjes measure we are looking for.
This type ofmeasure is called absolutely continuous and is related to continuous random

variables.

Now we can define the integral with respect to a Stieltjes measure:

Definition 4.2. (Lebesgue-Stieltjes integral) Let µF be Stieltjes measure with generating
function F, and let g be a µF-measurable function, then the integral is defined as:∫ b

a
g (x) dF (x) =

∫
[a,b]

g (x) dµF

If µF is discrete with F (x) =
∑
xn≤x

h (xn), then we have:

∫ b

a
g (x) dF (x) =

∑
n
g (xn) hn

If µF is absolutely continuous then:∫ b

a
g (x) dF (x) =

∫ b

a
g (x) f (x) dx

As hinted above in probability Stieltjes measures arise naturally. Let ξ be a random
variable and define F (x) = Pr (ξ < x), then as noted above F is non-decreasing and
continuous from the left, moreover F (–∞) = 0 and F (∞) = 1. The Lebesgue-Stieltjes
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measure allows us to define the expected value and variance of the random variable as:

E [ξ] =
∫ ∞
–∞

xdF (x) V [ξ] =
∫ ∞
–∞

(x – E [ξ])2 dF (x) .

These definitions are valid for discrete and continuous random variables.
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5. Markov Processes

As seen in Section 6.2 a great deal of problems can be expressed in a recursive setting,
and the use of recursive methods can provide solution to problems that would otherwise
be impossible to handle. When dealing with random variables the same topic arises, in
particular one can think of a sequence made by the realizations of a random variable,
because the sequence is ordered one can also think of each element of the sequence being
realized sequentially, in this way its natural to consider the case in which one element
of the sequence depends on the value of the previous element. More formally, when the
distribution of one element of the sequence depends on the realization of the previous
element. Markov processes are processes that behave in this way.

The objective is to introduce shocks to a dynamic program, so we start by considering
the deterministic dynamic program of Section 6.2, characterized by the Bellman equation:

v (x) = sup
y∈Γ (x)

{
F (x, y) + βv ( y)

}
(5.1)

The idea is to add a random variable whose realization z will affect the problem, z is a state
of the problem and its drawn each period from a distribution characterized by themeasure
λ. Formally consider (Z,Z, λ) a probability space, then we can define the problem to be::

v (x, z) = sup
y∈Γ (x)

{
F (x, y, z) + β

∫
v
(
y, z

′)
λ
(
dz

′)}
(5.2)

Recall that λ : Z→ R+maps sets of the σ-algebra Z to real numbers. The problem above
can be solved using the results of Sections (1) to (4), but it is not general enough for our
purposes because the distribution of z is fixed, and each draw is taken (each period) from
the same distribution.

In general we want the distribution of z
′
to be influenced by the previous draw z, for

this we need a special type of function, Q : Z × Z→ R, such that for all z ∈ Z it holds that
Q (z, ·) is a probability distribution for z

′
. This is called a transition function and it allows

to express the problem as:

v (x, z) = sup
y∈Γ (x)

{
F (x, y, z) + β

∫
v
(
y, z

′)
Q
(
z, dz

′)}
(5.3)

The objective is now to characterize transition functions and the properties of the process
that they generate.
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5.1. Transition functions

Definition 5.1. (Transition Function) Let (Z,Z) be a measurable space. A transition
function is a function Q : Z × Z→ [0, 1] such that:

(a) For each z ∈ Z the function Q (z, ·) is a probability measure on (Z,Z).

(b) For each A ∈ Z the function Q (·,A) is a Z-measurable function.

The interpretation is that for all current value of the random variable the transition
function induces a probability measure for next period’s value of the variable. Then Q (a,A)
is the probability that z

′ ∈ A if the current value of the variable is a.

Q (a,A) = Pr
(
z
′
∈ A|z = a

)
Any transition function defines two operators that will be of great importance later.

Definition 5.2. Let Q be a transition function on a measurable space (Z,Z). Define F as the
set of Z-measurable functions and Λ the set of probability measures on (Z,Z).

(a) TheMarkov operator of Q is an operator T defined on the set of Z-measurable functions:

T f (z) =
∫

f
(
z
′)
Q
(
z, dz

′)
for all z ∈ Z. T is the expected value of f in the next period if today’s realization is z.

(b) The Adjoint operator of Q is T⋆ is an operator defined on probability measures on (Z,Z):

T⋆λ (A) =
∫
Q (z,A) λ (dz)

for all A ∈ Z. T gives the probability that z
′ ∈ A if the current value of z is drawn from

probability distribution λ.

These operators are important because they will allow to characterize the distribution
of a sequence of random variables starting at some initial distribution. This is the objective
when solving a stochastic dynamic programming problem. In order for T and T⋆ to be
useful it is first necessary to check that they are sufficiently well behaved. The following
propositions will establish that the operators can be used recursively and their proof will
be instructive of how proofs go in measure theory.
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Proposition 5.1. Let (Z,Z) be a measurable space and Q a transition function on that space with
Markov operator T. Then T : M+ (Z,Z)→ M+ (Z,Z) where M+ (Z,Z) is the space of nonnegative,
extended variable Z-measurable functions.

Proof. The proof is done iteratively, first for indicator functions, then it is generalized to simple
functions and then to arbitrary nonnegative measurable functions.

First, for any f ∈ M+ we have that T f is a nonnegative function of extended real value, this
follows immediately, then it is left to check that T f is also measurable.

Case 1. Let A ∈ Z and f = χA, where χA is by construction measurable and nonnegative. Then:

T f (z) =
∫

f
(
z
′)
Q
(
z, dz

′)
=
∫
χA
(
z
′)
Q
(
z, dz

′)
=
∫
A
Q
(
z, dz

′)
= Q (z,A)

Because Q (·,A) is measurable (as a function of z for fixed A) by definition we establish
measurability of T f .

Case 2. Let f be a simple function then there exists (finitely many) indicator functions such that:

f (z) =
n∑
i=1
aiχAi (z). Then the Markov operator gives:

T f (z) =
∫

f
(
z
′)
Q
(
z, dz

′)
=
∫ n∑

i=1
aiχAi

(
z
′)
Q
(
z, dz

′)

=
n∑
i=1

ai

∫
A
χAi

(
z
′)
Q
(
z, dz

′)

=
n∑
i=1

aiTχAi

By the previous case each TχAi is measurable. Then, T f is also measurable because the
sum and scalar product of measurable functions is also measurable .

Case 3. Let f be an arbitrary nonnegative, extended real value, measurable function. By
proposition 2.5 we know that f can be expressed as the limit of point-wise convergent
sequence of simple functions because it is measurable and nonnegative. So for all z we
have:

T f (z) =
∫

f
(
z
′)
Q
(
z, dz

′)
=
∫
limϕn

(
z
′)
Q
(
z, dz

′)
= lim

∫
ϕn
(
z
′)
Q
(
z, dz

′)
= limTϕn (z)
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where the third step of interchanging the limit and the integral follows from Lebesgue’s
Monotone Convergence theorem.2 Finally the pointwise limit of measurable functions is
a measurable function (Proposition 2.4). The result follows because Tϕn is measurable
by the previous case.

Corollary 5.1. Let (Z,Z) be a measurable space and Q a transition function on that space with
Markov operator T. Then T : B (Z,Z) → B (Z,Z) where B (Z,Z) is the space of bounded Z-
measurable functions.

Proof. Let f be a bounded measurable function, then if 0 ≤ f ≤ m it holds that 0 ≤ T f ≤ m,
because Q (z, ·) is a probability measure. Then T f is bounded. Measurability follows from the
proposition above by applying it to f = f + – f –.

This allows us to apply iteratively the operator to a function because if f ∈ B (Z,Z) then
T f ∈ B (Z,Z), which allows to evaluate T (T f ), and so on. It will also be important to apply
the adjoint operator iteratively to a probability measure. The following proposition will
enable us to do so.

Proposition 5.2. Let (Z,Z) be a measurable space and Q a transition function on that space with
Adjoint operator T⋆. Then T⋆ : Λ (Z,Z) → Λ (Z,Z) where Λ (Z,Z) is the space of probability
measures on (Z,Z).

Proof. Let λ ∈ Λ (Z,Z) and consider T⋆λ (A) =
∫
Q (z,A) dλ (dz).

(a) T⋆λ ≥ 0 for all (z,A) because Q (z,A) ≥ 0.

(b) T⋆λ (∅) =
∫
Q (z, ∅) λ (dz) =

∫
0λ (dz) = 0, because Q (z, ·) is a probability measure.

(c) T⋆λ (Z) =
∫
Q (z, Z) λ (dz) =

∫
1λ (dz) = 1, because Q (z, ·) is a probability measure.

(d) It is left to show that T⋆λ is countably additive. Let
{
Ai
}
⊆ Z be a sequence of disjoint sets and

A = ∪Ai, then:

∞∑
i=1

T⋆λ
(
Ai
)
=

∞∑
i=1

∫
Q
(
z,Ai

)
λ
(
dzi
)
=
∫  ∞∑

i=1
Q
(
z,Ai

) λ (dzi) = ∫ Q (z,A) λ
(
dzi
)
= T⋆λ (A)

where
∑
Q
(
z,Ai

)
= Q (z,A) follows from Q being a σ-additive measure and interchange of the

sum and the integral can be done because of the Lebesgue’s monotone convergence theorem.

2The theorem states that if
{
f n
}
is a monotone increasing sequence of nonnegative measurable functions

then that converges pointwise to f then
∫
f dµ = lim

∫
f ndµ. Recall from proposition 2.5 that the sequence

{ϕn} of simple functions can be chosen to be monotone increasing.
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The following result establishes a duality between the Markov operator and its adjoint,
in words it says that the expected value of a function tomorrow can be computed with
either operator.

Proposition 5.3. Let (Z,Z) be a measurable space and Q a transition function on that space.
Then for any function f ∈ B (Z,Z) (or more generally f ∈M+ (Z,Z)) it holds that:∫

(T f (z)) λ (dz) =
∫

f
(
z
′)
T⋆λ

(
dz

′)
=
∫ ∫

f
(
z
′)
Q
(
z, dz

′)
λ (dz)

Then to obtain the expected value of function f tomorrow given a distribution λ of z
today the order of integration does not matter.

Proof. Stokey, Lucas, and Prescott (1989, Sec. 8.1).

We can now define a sequence of probability measures over the sequence of random
variables by iterating over Q with the Markov operator.

Q1 (z,A) = Q (z,A)
...

Qn+1 (z,A) =
(
TQn (·,A)

)
(z) =

∫
Qn
(
z
′
,A
)
Q
(
z, dz

′)
Then if a shock is drawn sequentially from Q the function Qn (z,A) will give the probability
of going from initial point z to a value in set A in exactly n periods. Its easy to show that
each Qn is a transition function.

Finally its clear that starting from an initial probability (λ) the Adjoint operator can be
used to define a sequence of probability measures

{
λn
}
as λn = T⋆λn–1, we interpret λ as

the distribution of the state z in the initial period and λn the (unconditional) distribution
of z in the nth period.

As a side note a transition function can have stronger properties that are of great use in
stochastic dynamic programming:

Definition5.3. (FellerProperty)A transition functionQhas the feller property if itsMarkov
operator maps the set of continuous bounded function into itself. T : C (Z)→ C (Z).

Definition 5.4. (Monotone transition functions) A transition function Q is said to be
monotone if its Markov operator maps nondecreasing functions to nondecreasing
functions.

30



5.2. Probability measures on spaces of sequences

The idea now is to study sequences of random variables and their probability distributions,
this can be done using the transition function defined above.

The first task at hand is to define a probability distribution on a finite sequence of
variables. For this let (Z,Z) be a measurable space and for t < ∞ let(
Zt,Zt

)
= (Z × . . .× Z,Z× . . .× Z) be a product space. Now let Q be a transition function

on (Z,Z). A probability measure on the sequence given z0, the initial value of the variable
is:

Definition 5.5. (Probability measure on finite sequence) µt : Z × Zt → [0, 1] is the
probability distribution for the finite sequence and its defined as:

µt (z0,B) =
∫
A1

. . .

∫
At
Q (zt–1, dzt) · Q (zt–2, dzt–1) · · ·Q (z0, dz1)

where B = A1 × . . . × At ∈ Zt is a rectangle in Zt. It can be shown that it is sufficient to
define µt only for this type of set, because it can then be extended uniquely to measurable
sets on Zt by the Caratheodory and Hahn extension theorems.

The next task is to handle infinite sequences of realizations of z. To do this we need to
be able to induce a σ-algebra Z∞ on the set of infinite sequences and then a probability
measure on that σ-algebra.

To do this define the set of finite-measurable rectangles. These sets establish outcomes
for the variables for the first T periods, leaving unspecified what happens to the sequence
afterwards.

Definition 5.6. (Finite-Measurable Rectangles)B is a finite measurable rectangle if its of
the form:

B = A1 × . . .× AT × Z × Z × . . .

for some finite T. Let C be the set of all finite measurable rectangles. Let A∞ be the set of
all finite unions of set in C.

It can be shown that A∞ is an algebra, then one can define Z∞ to be the σ-algebra
induced by A∞. Then one can define a measure on finite-measurable rectangles C just as
before, extend it to the algebra A∞, and the extend the extension to Z∞. This proves the
existence of a measure for infinite sequences that coincides with our notion of measure
for finite-measurable rectangles.

Now we can define what a stochastic process is:
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Definition 5.7. (Stochastic Process) Let (Ω,F,P) be a probability space. A stochastic
process on (Ω,F,P) is an increasing sequence of σ-algebras F1 ⊆ F2 ⊆ . . . ⊆ F, a
measurable space (Z,Z)and a sequence of functions σt : Ω → Z such that each σt is
Ft-measurable.

Definition 5.8. (Sample Path) Letω ∈ Ω, then (σ1 (ω) ,σ2 (ω) , . . .) is called the sample
path of the stochastic process givenω.

Each σt is just a random variable that takes a value on Z given some event on Ω. In
almost all cases we will have (Z,Z) = (R,B). The selection of the probability space (Ω,F,P)
is also standard. Because we are interested in the behavior of infinite sequences of the
realizations of the random variable we can set (Ω,F,P) = (Z∞,Z∞,µ (z0, ·)). The restriction
that the σ-algebras are increasing follows from the draws being taken sequentially, this
σ-algebras will be interpreted as possible histories, and any future history must include all
of the possible previous histories from which it could have followed.

Given a stochastic process we can use probability measure P to induce measures on
finite sets of sample paths.

Definition 5.9. (Probabilities on Paths) Let C ∈ Zn we can define:

Pt+1,...,t+n (C) = P
({
ω ∈ Ω | (σt+1 (ω) , . . .σt+n (ω)) ∈ C

})
This is the probability that an event occurs and the sample path lies in C between periods
t + 1 and t + n.

Definition5.10. (StationaryStochasticProcess)A stochastic process is said to be stationary
if Pt+1,...,t+n (C) is independent of t for all n and C. That is, if it does not matter the point in
time where we start the sequence.

Definition 5.11. (Conditional probability) Let Pt+1,...,t+n (C|at–s, . . . , at–1, at) be the
conditional probability of the event

{
ω ∈ Ω | (σt+1 (ω) , . . .σt+n (ω)) ∈ C

}
given that the

event
{
ω ∈ Ω | στ (ω) = aτ

}
happened.

Now we can define what a Markov process is:

Definition 5.12. (Markov Process) A stochastic process is a Markov process if:

Pt+1,...,t+n (C|at–s, . . . , at) = Pt+1,...t+n (C|at)

for t = 1, 2, . . ., n = 1, 2, . . ., s = 1, 2, . . . , t – 1 and C ∈ Zn.
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The distribution of the path of a Markov process only depends on the last realization.
A general setting is easy to construct using a transition function Q. Let (Ω,F,P) =

(Z∞,Z∞,µ (z0, ·)) and for each T define AT as the collection of all finite-measurable sets:

B = A1 × . . .× AT × Z × Z × . . .

As before this forms an algebra, let FT be the σ-algebra generated byAT . Clearly Ft ⊆ Ft+1.
Then we can define the sequence of functions z̃t : Ω→ Z as:

z̃t (ω) = z̃t (a1, a2, . . .) = at

so that it selects the tth realization of the sequence ω. These functions are clearly Ft

measurable, because they don’t contain information about future realizations of the
variable.

The definition of P through Q can be used to verify that this process is a Markov process.
Moreover it holds that:

Pt+1 (C|at–s, . . . , at) = Pt+1 (C|at) = Q (at,C)

for C ∈ Z.

5.3. Markov chains

Wenow zoom into a special type ofMarkov process that is particularly useful in applications
of dynamic programming. A Markov chain (or finite state Markov chain):

Definition 5.13. (Markov Chain) AMarkov chain is a Markov process defined on a space
Z =

{
z1, . . . , zl

}
with finite dimension (finitely many elements).

The relevance of Markov chains resides in two observations. First, they allow for a
simple characterization of their transition function, as shown below. Second, most
computational methods (and thus applications) of dynamic programming discretize the
state space, effectively imposing that the space Z is finite.

Before characterizing the transition function of a Markov chain it is useful to recall that
the natural σ-algebra over Z is Z = 2Z (the power set), and that the space of probabilities

distributions over Z is formed by vectors p ∈ Rl such that pi ≥ 0 and
l∑
i=1
pi = 13. The

3Formally p ∈ ∆l , where ∆l =

{
p ∈ Rl+|

l∑
i=1
pi = 1

}
is the l – 1 dimensional simplex. This same set is

particularly useful in characterizing price systems in finite dimensional exchange economies.
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transition function of the Markov process can be then characterized by a matrix:

Definition 5.14. (Markov Matrix / Stochastic Matrix) A square matrix Π =
[
πij

]
of

dimensions l × l is considered a Markov (or stochastic) matrix if πij ≥ 0 for all i and j ,

and
l∑
j =1
πij = 1 for all i. Equivalently, if its rows are probability distributions on Z: πi ∈ ∆l .

The transition function of a Markov chain is a function Q : Z × Z→ R+ that gives the
probability of a given set A ∈ Z given a current state zi. We can then construct a Markov
matrix by setting:

πij = Q
(
zi,
{
zj
})

= Pr
(
zt+1 = zj |zt = zi

)
So πij is interpreted as the probability that zt+1 = zj conditional on zt = zi. The row
πi =

(
πi1, . . . ,πil

)
is the conditional probability of zt+1, given that zt = zi.

We can also go the other way, constructing a transition function Q from aMarkovmatrix
Π. Let A ∈ Z, because Z is finite we can define A =

{
za1, . . . , zan

}
where a1, . . ., an are n ≤ l

indices. This gives:

Q
(
zi,A

)
=

n∑
j =1
πiaj

We can now define the Markov operator and the adjoint Markov operator of a Markov
chain making use of the Markov matrix (Markov!).

(a) Recall that TheMarkov operator ofQ is an operator T defined on the set ofZ-measurable
functions:

T f (z) =
∫

f
(
z
′)
Q
(
z, dz

′)
for all z ∈ Z. T is the expected value of f in the next period if today’s realization is z. For
Markov chains the function f can be reduced to a row-vector f⃗ =

(
f (z1) , . . . , f

(
zl
))
∈

Rl , which reduces the integral to:

T f
(
zi
)
= f⃗ π

′
i

more generally we have:
T f = f⃗Π

′

the ith element of T f (which is an l -dimensional vector) corresponds to:
E
[
f (zt+1) |zt = zi

]
.

(b) Recall that the adjoint operator ofQ is T⋆ is an operator defined on probabilitymeasures
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on (Z,Z):

T⋆λ (A) =
∫
Q (z,A) λ (dz)

for all A ∈ Z. T gives the probability that z
′ ∈ A if the current value of z is drawn from

probability distribution λ. Because the space is finite we can represent probabilities
distributions as vectors in ∆l . Let p ∈ ∆l be an initial distribution on Z, we want to
know the distribution on Z for the next period ( p̂):

T⋆ p = p̂ = pΠ where: p̂j =
l∑
i=1

piπij

The j th element of T⋆ p (which is an l -dimensional row-vector) corresponds to the
unconditional probability that zt+1 = zj : Pr

(
zt+1 = zj

)
.

It shouldn’t be a surprise that the Markov operator is characterized by Π
′
and the adjoint

operator by its transpose Π.4

As with general Markov processes there is a special interest in the limit behavior of the
adjoint operator

(
lim
n→∞

Πn p
)
, in particular the existence and properties of an invariant

distribution, that is p⋆ such that p⋆ = p⋆Π (generally λ⋆ = Tλ⋆). The problem of finding an
invariant distribution is frequently cast as an eigenvector problem. p⋆ is the eigenvector
associated with any unit-eigenvalue of Π.

Another property that will be of interest is the presence of Ergodic sets. These are
subsets of the space E ⊆ Z that the process never leaves once it takes a value in them.
Formally:

Definition 5.15. (Ergodic Set) A set E ⊆ Z is ergodic if and only if Q
(
zi,E

)
= 1 for all zi ∈ E

and there does not exist a proper subset E
′ ⊂ E that is ergodic.

The ergodic sets are important because they tell us sections of the state space that are
of interest. Only ergodic sets have positive mass in the invariant distribution.

Following SLP we now show 5 examples of the possible limit behavior of Markov chains.
After the examples we state the main results on the existence and uniqueness of ergodic

sets, invariant distributions, and the convergence of the sequences

{
1
n
n∑
k=0
Πk

}
and

{
Πn
}
.

(clearly if the second sequence converges so does the first one).

4If vectors are assumed to be columns instead of rows then T f = Π f and T⋆ p = Π′
p. The adjoint is

characterized as the transpose of the Markov operator in any case.
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Example 5.1. (Uniqueness of ergodic set, convergence of
{
Πn
}
) Let l = 2 and consider

the Markov matrix:

Π =

[
3/4 1/4
1/4 3/4

]
Clearly the only ergodic set is Z because one has positive probability of going to z1 or z2
starting in any state. Moreover:

lim
n→∞

Πn =

[
1/2 1/2
1/2 1/2

]

The invariant distribution is then p⋆ = (1/2, 1/2). Moreover lim
(
p0Π

n) = p⋆ for all p0 ∈ ∆2.

Note: Convergence is easily defined in this setup because the limit is taken element
wise.

Example 5.2. (Uniqueness of a ergodic set, convergence of
{
Πn
}
) Let l = 3 and γ ∈ (0, 1).

Consider the Markov matrix:

Π =


1 – γ γ/2 γ/2

0 1/2 1/2

0 1/2 1/2


There is a unique ergodic set E = {z2, z3} ̸= Z. The state z1 is never reached again once you
leave it. One can also show:

Πn =


(1 – γ)n (1–(1–γ)n)/2 (1–(1–γ)n)/2

0 1/2 1/2

0 1/2 1/2


clearly

{
Πn
}
converges:

lim
n→∞

Πn =


0 1/2 1/2

0 1/2 1/2

0 1/2 1/2


and the invariant distribution is p⋆ = (0, 1/2, 1/2).

Example 5.3. (Cyclical sets , convergence of

{
1
n
n∑
k=0
Πk

}
) Consider an l -dimensional

Markov chain and order its states into two subsets, the first one with k elements and the
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second one with l – k elements. Suppose the Markov matrix has the form:

Π =

[
0 Π1

Π2 0

]

where the first matrix Π1 is of dimension k × (l – k) and matrix Π2 of dimension (l – k)× k.
Clearly if at one period one is in the first subset the next period one will be in the second
subset, and vice-versa. So there are no proper subsets that form an ergodic subset, instead
the process cycles from the first subset to the second period by period.

Π2n =

[
(Π1Π2)n 0

0 (Π2Π1)n

]
Π2n+1 =

[
0 (Π1Π2)nΠ1

(Π2Π1)nΠ2 0

]

In this example the sequence
{
Πn
}
does not converge but its odd and even elements do,

then the sequence

{
1
n
n∑
k=0
Πk

}
does converge.

For example if l = 4, k = 2 and Π1 = Π2:

lim
n→∞

Π2n =


1/2 1/2 0 0
1/2 1/2 0 0

0 0 1/2 1/2

0 0 1/2 1/2

 lim
n→∞

Π2n+1 =


0 0 1/2 1/2

0 0 1/2 1/2
1/2 1/2 0 0
1/2 1/2 0 0



lim
n→∞

1
n

n∑
k=0
Πk =


1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4


An invariant distribution is found as one of the rows of the last limit: p⋆ = (1/4, 1/4, 1/4, 1/4).

Example 5.4. (Two ergodic sets, Infinitely many invariant distributions) Consider an
l -dimensional Markov chain and order its states into two subsets, the first one with k
elements and the second one with l – k elements. Suppose the Markov matrix has the form:

Π =

[
Π1 0

0 Π2

]

where the first matrix Π1 is of dimension k × (l – k) and matrix Π2 of dimension (l – k)× k.
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Clearly once the process enters the first subset it never leaves it. The same goes for the

second subset. Then they are both ergodic. AlsoΠn =

[
Πn1 0

0 Πn2

]
, this sequence converges

if and only if
{
Πn1
}
and

{
Πn2
}
converge. Let l = 4, k = 2 and Π1 = Π2 =

[
3/4 1/4
1/4 3/4

]
, then:

lim
n→∞

Πn =


1/2 1/2 0 0
1/2 1/2 0 0

0 0 1/2 1/2

0 0 1/2 1/2


There are two invariant distributions: p⋆1 = (1/2, 1/2, 0, 0) and p

⋆
2 = (0, 0, 1/2, 1/2). But any convex

combination of them is also an invariant distribution.

Example 5.5. (Two ergodic sets, Infinitely many invariant distributions) Let l = 3, γ ∈
(0, 2) and α,β ≥ 0 such that α + β = 1. Consider the Markov matrix:

Π =


1 – γ γα γβ

0 1 0

0 0 1


As in the second example s1 is a transient state (once you leave it you never come back),
but there are now two ergodic sets {s2} and {s3}. We also have:

lim
n→∞

Πn = lim
n→∞


(1 – γ)n

(
1 – (1 – γ)n

)
α
(
1 – (1 – γ)n

)
β

0 1 0

0 0 1

 =

0 α β

0 1 0

0 0 1


The sequence

{
Πn
}
converges and there are two invariant distributions p⋆1 = (0, 1, 0) and

p⋆2 = (0, 0, 1) given by the second and third rows of the limiting matrix. The first row is a
convex combination of the limiting distribution.

Nowwe turn to the general results. The following theorem encompasses all the possible
outcomes of a Markov chain. In particular, an ergodic set and a limit distribution always
exist, but they need not be unique, and although the sequence

{
Πn
}
need not converge, the

sequence

{
1
n
n∑
k=0
Πk

}
always converges, and its limit gives away the invariant distributions.
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Theorem 5.1. Let Z =
(
z1, . . . , zl

)
and denote the stochastic matrix by its elements: Π =

[
πij

]
.

The powers of Π are also denoted by its elements Πn =
[
π
(n)
ij

]
.

(a) Z can be partitioned into M ≥ 1 ergodic sets and a transient set (an ergodic set always exists).

(b) The sequence

{
1
n
n∑
k=0
Πk

}
always converges to a Markov matrix Π.

(i) For any p0 ∈ ∆l and pk = p0Π
k it holds that: 1n

n∑
k=0

pk → p0Π.

(c) Each row of Π is an invariant distribution, and every invariant distribution is a convex
combination of the rows of Π (so p0Π is an invariant distribution for all p0 ∈ ∆l ).

We can strengthen these results by imposing extra structure on Π. We can get
uniqueness of the ergodic set and the invariant distribution under a “reachability”
condition (at least one state should be reachable in finite time starting from anywhere).

Theorem 5.2. Let Z andΠ as in Theorem 5.1.Π has a unique ergodic set if and only if there exists
a state zj such that for all i ∈ (1, . . . , l ) there exist n ≥ 1 such that π(n)ij > 0.

Moreover, if this is the case Π has a unique invariant distribution p⋆ and all rows of Π are
equal to p⋆ (so for any p0 ∈ ∆l we have p0Π = p⋆).

The previous result still does not rule out cyclicality in the ergodic set. We can get this
under a “mixing” condition.

Theorem 5.3. Let Z and Π as in Theorem 5.1. For n = 1, 2, . . . and j = 1, . . . , l define ϵ(n)j =

min
i
π
(n)
ij and ϵ(n) =

l∑
j =1
ϵ
(n)
j . Z has a unique ergodic set without cyclically moving subsets if and

only if for some N ≥ 1 it holds that ϵ(N) > 0.
Moreover, if this is the case Π has a unique invariant distribution p⋆ and the sequence

{
Πn
}

converges (so for any p0 ∈ ∆l we have lim p0Π
n = p⋆).

In this notation, π(n)ij is the probability that state j is reached from state i in n steps. ϵ(n)j
measures the lowest such probability, because we don’t know from which state we start
from we need to know that the condition is satisfied for all states. This mixing property is
stronger than the first one because we need there to be at least one column of non-zero
elements, guaranteeing mixing towards one state (j ) starting from any state (i), uniformly
in time (the same time (N) for all the initial states).
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5.4. Weak convergence of monotoneMarkov processes

In the previous section we obtained results characterizing the limiting behavior of Markov
processes when the state space is finite. Unfortunately these results do not extend
immediately to general Markov processes. The problem at hand is to establish when the
sequence of distribution functions {λn}, constructed as λn = T⋆λn–1 with λ0 given,
converges. We must first define what it means for a sequence of distributions to converge.
The simplest definition comes in the form of set-wise convergence (the equivalent of
point-wise convergence for functions):

Definition 5.16. (Set-wise Convergence) Let (Z,Z) be a measurable space and Λ (Z,Z)
the set of probability distributions. Consider a sequence {λn} ⊆ Λ (Z,Z), we say that
λn

s.w→ λ ∈ Λ (Z,Z) if λn (A)→ λ (A) for all A ∈ Z.

This notion of convergence is intuitive but it turns out to be too strong for most
applications. The following proposition shows why:

Definition 5.17. Let (Z,Z) be a measurable space and Λ (Z,Z) the set of probability
distributions. Consider a sequence {λn} ⊆ Λ (Z,Z). {λn} converges set-wise to λ if and only
if lim

∫
f (z) dλn =

∫
f (z) dλ for all bounded and measurable functions f ∈ B (Z,Z).

Thus asking for set-wise convergence requires the expected value of a large class of
functions to converge. A way to weaken this is to limit the space of functions for which
convergence is required.

Definition 5.18. (Weak Convergence) Let (Z, ρ) be a metric space and Z the Borel set of Z.
Define Λ (Z,Z) as the set of probability distributions. Consider a sequence {λn} ⊆ Λ (Z,Z),
we say that {λn} converges weakly to λ ∈ Λ (Z,Z) if lim

∫
f (z) dλn =

∫
f (z) dλ for all

bounded and continuous functions f ∈ C (Z).

The main results we will obtain establish the existence of an invariant distribution
under a continuity assumption on the Markov operator (the Feller property). We can then
ensure uniqueness if the Markov operator is monotone and a mixing condition is satisfied,
along with uniqueness we will obtain the weak convergence of

{
T⋆nλ0

}
.

In what follows we consider Z ⊆ Rl for l < ∞, with Z the Borel σ-algebra of Z. The
Markov process is characterized by its transition function Q, its Markov operator T :
B (Z,Z) → B (Z,Z) and its adjoint operator T⋆ : Λ (Z,Z) → Λ (Z,Z). We also define the
inner product ⟨ f , λ⟩ =

∫
f (z) dλ.

We first expand on the Feller property through the following proposition:

Proposition 5.4. The following three statements are equivalent:
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(a) (Feller property) If f ∈ C (Z) then T f ∈ C (Z).

(b) If zn → z then Q (zn, ·)→ Q (z, ·) (that is for all A ∈ Z).

(c) If λn → λ then T⋆λn → λ

Then preserving continuity in conditional expected values (T f is a conditional expected
value) has equivalent statements in terms of the conditional distributions (Q (zn, ·)) and
unconditional distributions (T⋆λn). It turns out that continuity is enough to guarantee that
an invariant distribution exists.

Theorem 5.4. If Z ⊆ Rl is compact and Q satisfies the Feller property then an invariant
distribution exists. That is, there is λ⋆ ∈ Λ (Z,Z) such that λ⋆ = T⋆λ⋆.

Yet, continuity is not enough to rule out the existence of many invariant distributions or
of cycling sets. Monotonicity is needed for this. As before it is first useful to take a detour
on what monotonicity (as in Definition 5.4) implies for distribution functions. We then
have to impose an ordering of distribution functions to be able to talk about monotonicity.

Definition 5.19. (First Order Stochastic Dominance) A distribution µ (first order
stochastically) dominates λ (µ ≥ λ) if

∫
f (z) dµ ≥

∫
f (z) dλ for all increasing, bounded

and measurable function f .

In what follows we call a sequence {λn} monotone if λn+1 ≥ λn for all n, or if λn+1 ≤ λn
for all n. We can now establish the following result:

Proposition 5.5. The following three statements are equivalent:

(a) (Monotone property) If f ∈ B (Z,Z) is weakly increasing then T f is also weakly increasing.

(b) Let λ,µ ∈ Λ (Z,Z). If µ ≥ λ then T⋆µ ≥ T⋆λ.

(c) If z ≥ z
′
then Q (z, ·) ≥ Q

(
z
′
, ·
)
(in the stochastic dominance sense)

The last statement is particularly useful because it translatesmonotonicity of theMarkov
operator directly intomonotonicity of the transition function (“better” states lead to “better”
distributions).

Now we introduce the final condition needed for the main result of this section. It is a
mixing condition akin to that in Theorems 5.2 and 5.3, along with a restriction on the form
of the set Z. To see why it is necessary to go SLP exercises 12.12 and 12.13.

41



Assumption. The set Z =
[
a, b
]
is a closed and bounded rectangle in Rl characterized by a and

b,5 and there exists z ∈ Z, ϵ > 0 and N ≥ 1 such that:

QN
(
a,
[
c, b
])
≥ ϵ QN (b, [a, c]) ≥ ϵ

Under this assumption it is possible to reach the “upper” region of the rectangle,
[
c, b
]
,

in finite time starting from the “lower” corner (a), and it is possible to reach the “lower”
region of the rectangle, [a, c], in finite time starting from the “upper” corner (b). It is
possible to show that if one can move through the set from the corners it is possible to do
it from anywhere (under a monotonicity assumption).

Proposition 5.6. Let Q satisfy monotonicity and the previous assumption for some tuple (c, ϵ,N),
then:

QN
(
z,
[
c, b
])
≥ ϵ QN (z, [a, c]) ≥ ϵ for all z ∈ Z

Finally we establish the convergence result.

Theorem 5.5. Let S =
[
a, b
]
∈ Rl be a rectangle and satisfy the assumption above. If Q is

monotone and satisfies the Feller property, then Q has a unique invariant distribution λ⋆ and
T⋆nλ0 → λ⋆ for all λ0 ∈ Λ (Z,Z).

This completes the tools we need to tackle stochastic dynamic programming problems.
In that note, it is interesting to note the similarities between Theorem 5.5 and the
contraction mapping theorem and Blackwell’s conditions used below to establish a unique
solution for Bellman equations and the convergence to that solution from any starting
point by iteratively applying the Bellman operator(see Section 6.1). While Theorem 5.5
does not establish a sense of distance (inherent in complete metric spaces) it does provide
a very similar answer to the question of the existence and uniqueness of a fixed point
characterizing the solution to a functional equation.

The stationary distribution of a Markov process solves the functional equation:

λ = T⋆λ.

The result in the theorem is a set of sufficient conditions for there to be a unique solution,
λ⋆. These conditions have the Markov operator T preserve the continuity and boundedness
of functions (recalling that the space of continuous and bounded functions is a complete
metric space) andmonotonicity (as in Blackwell’s first sufficient condition for a contraction).

5A set Z ⊆ Rl is a closed and bounded rectangle if there are two vectors a, b ∈ Rl such thata ≤ b and
Z =

[
a1, b1

]
× . . .×

[
al , bl

]
.
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Moreover, the Theorem establishes the converges to λ⋆ from any initial distribution λ0 by
iteratively applying the adjoint Markov operator (as implied by the contraction mapping
theorem for the Bellman operator).
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Part II

Dynamic Programming
This part of the course develops the mathematical tools and notation used in dynamic
programming problems of the type encountered in applications across macroeconomics.
necessary to study how random variables affect optimization problems.

We start with an overview of non-stochastic (or deterministic) dynamic programming
problems and the main mathematical results that allow us to solve them. The exposition
follows almost verbatim Stokey, Lucas, and Prescott (1989, Ch. 3). The main objective here
is just having a reference for the main results in dynamic programming.

Having established the basics we extend the notation and the basic results to be able to
deal with stochastic problems. This follows Stokey, Lucas, and Prescott (1989, Ch. 9). The
objective of this section is to mention the main results without getting into details as they
are all extensions of the non-stochastic case.

Finally, we will use these tools to tackle centralized and decentralized economies in the
context of the Neoclassical Growth Model. We will first layout the decentralized version of
the model and define equilibrium. Having done that we can discuss how to solve the model
using the centralized problem. Finally we discuss the nature of the solution in terms of
Markov chains and their properties.
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6. Non-Stochastic Dynamic Programming [Optional]

The topic of this section is how to state and solve (deterministic) dynamic programming
problems. That is how to solve a Bellman equation of the form:

v (x) = sup
y∈Γ (x)

{
F (x, y) + βv ( y)

}
where the solution is given by a function v satisfying the equation. The final objective is
to establish conditions for a solution to exist and characterize the properties of such a
solution. To do this somemathematical background has to be set up, this is done in Section
6.1 where the contraction mapping theorem is stated and proven, and sufficient conditions
for an operator to be a contraction are established.

Once the basic tools are in place the problem at hand is to express usual sequential
problems (stated in terms of infinite sums) in a recursive way, the equivalence between
the two representations of the problem is established by optimality principle which is
presented in Section 6.2, along with it the conditions for existence of a solution and the
properties it can inherit from the objective function F and the correspondence Γ are listed.

All the exposition of the theoretical aspects follows (very) closely Section 3.2 and all
of chapter 4 of Stokey, Lucas, and Prescott (1989).6Most proofs are relegated to the book
because their treatment would require more time than the one the course has.

6.1. ContractionMapping Theorem

Three results are covered in this section that will be essential for studying dynamic
programming (DP) problems. These results are the contraction mapping theorem, its
corollary and the Blackwell sufficiency conditions. Before stating them recall the
definition of a complete metric space and of a contraction mapping (or simply
contraction) in a metric space:

Definition 6.1. Ametric space is a pair (S, ρ) of a set and ametric (or distance) ρ : S×S→ R

such that for all x, y, z ∈ S:

(a) ρ (x, y) ≥ 0 and ρ (x, y) = 0 ⇐⇒ x = y.

(b) ρ (x, y) = ρ ( y, x).

(c) ρ (x, z) ≤ ρ (x, y) + ρ ( y, z).
6There is no reason to deviate.
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Ametric space is furthermore complete if all Cauchy sequences in S converge to an element
in S.

Definition 6.2. Let (S, ρ) be a metric space and T : S→ S a function mapping S into itself.
T is a contraction (with modulus β) if and only if there exists β ∈ (0, 1) such that for all
x, y ∈ S:

ρ (Tx,T y) ≤ βρ (x, y)

The iterates of T are the mappings
{
Tn
}
defined by T0x = x and Tnx = T

(
Tn–1x

)
fro

n = 1, 2, . . ..

The contraction mapping theorem establishes the existence and uniqueness of a fixed
point in S for any contraction mapping, moreover it provides a simple algorithm to
approximate the fixed point from any arbitrary point in the space. A fixed point is a point
x ∈ S such that x = Tx.

Theorem 6.1. (Contraction Mapping Theorem) Let (S, ρ) be a complete metric space and
T : S→ S a contraction with modulus β, then:

(a) T has exactly one fixed point v ∈ S.

(b) For any v0 ∈ S and n = 0, 1, . . . it holds that:

ρ
(
Tnv0, v

)
≤ βnρ (v0, v)

Proof. The outline of the proof is to establish that the sequence {vn} ⊂ S with vn = Tnv0 is Cauchy
and the use completeness of the space to argue that its limit is the fixed point of the mapping.

Let v0 ∈ S and define vn+1 = Tvn so that vn = Tnv0. Because T is a contraction mapping:

ρ (v2, v1) = ρ (Tv1,Tv0) ≤ βρ (v1, v0)

By induction we get:
ρ (vn+1, vn) ≤ βnρ (v1, v0)

Then form > n we get:

ρ (vm, vn) ≤ ρ (vm, vm–1) + ρ (vm–1, vm–2) + . . . + ρ (vn+1, vn)

≤
(
βm–1 + βm–2 + . . . + βn

)
ρ (v1, v0)

= βn
(
βm–n–1 + βm–n–2 + . . . + 1

)
ρ (v1, v0)

≤ βn

1 – β
ρ (v1, v0)
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Because ρ(v1,v0)1–β is fixed, and finite, and βn → 0 its clear that for any ϵ > 0 there exists N large
enough for ρ (vm, vn) ≤ ϵ for all m,n ≥ N. Then {vn} is Cauchy and there exists v ∈ S such that
vn → v because S is complete.

Now we show that v is a fixed point of T. For all n and v0:

ρ (Tv, v) ≤ ρ
(
Tv,Tnv

)
+ ρ
(
Tnv, v

)
≤ βρ

(
v,Tn–1v

)
+ ρ
(
Tnv, v

)
= βρ (v, vn–1) + ρ (vn, v)

It follows that ρ (v, vn–1)→ 0 and ρ (vn, v)→ 0 because vn → v. Because this is done for arbitrary n
we get ρ (Tv, v) ≤ ϵ for all ϵ > 0 which implies ρ (Tv, v) = 0. By definition this is Tv = v, a fixed point.

To show uniqueness suppose for a contradiction that there is v
′
̸= v such that Tv

′
= v

′
, then:

0 ̸= ρ
(
v
′
, v
)
= ρ
(
Tv

′
,Tv
)
≤ βρ

(
v
′
, v
)

But this contradicts β < 1. Then v is the unique fixed point.
The second part of the theorem follows by induction. For n = 0,

ρ (Tv0, v) = ρ (Tv0,Tv) ≤ βρ (v0, v)

and for any n ≥ 1,
ρ
(
Tnv0, v

)
= ρ
(
Tnv0,Tv

)
≤ βρ

(
Tn–1v0, v

)
The result follows.

The contractionmapping theorem is a very powerful and simple theorem, yet its results
can be strengthened by further characterizing the fixed point. So far it has been established
its existence in S and its uniqueness, the following corollary to the theorem allows to locate
the fixed point in a given subset of S.

Corollary 6.1. Let (S, ρ) be a complete metric space and T : S→ S a contraction mapping with
fixed point v ∈ S.

(a) If S
′ ⊆ S is closed and T

(
S
′) ⊆ S

′
, then v ∈ S′.

(b) If in addition there exists S
′′ ⊆ S

′
such that T

(
S
′) ⊆ S

′′
, then v ∈ S′′.

Proof. Let v0 ∈ S
′
and

{
Tnv0

}
a sequence in S

′
so that Tnv0 → v, because S

′
is closed it follows that

v ∈ S
′
. If in addition T

(
S
′)
⊆ S

′′
then it follows that v = Tv ∈ S

′′
.
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Finally a set of sufficiency conditions are established for a mapping on the space of
bounded functions to be a contraction. In most economic applications these conditions
are trivial to check.

Theorem 6.2. (Blackwell conditions) Let X ⊆ Rl and B (X) be the the space of bounded
functions on X ( f : X → R) with the sup-norm. Let T : B (X)→ B (X), T is a contraction (with
modulus β) if it satisfies the following two conditions:

(a) (monotonicity) Let f , g ∈ B (X) and f (x) ≤ g (x) for all x ∈ X. Then T f (x) ≤ Tg (x) for all
x ∈ X.

(b) (discounting) There exists β ∈ (0, 1) such that T ( f + a) (x) ≤ T f (x) + βa for all f ∈ B (X),
x ∈ X and a ≥ 0.

Proof. If f (x) ≤ g (x) for all x we say that f ≤ g.
Let f , g ∈ B (X), by definition of the sup-norm f (x) – g (x) ≤ ∥ f – g∥ for all x ∈ X, then

f (x) ≤ g (x)+∥ f – g∥, using the notation defined at the beginning of the proof this is f ≤ g +∥ f – g∥,
where ∥ f – g∥ > 0 is a scalar. Then by hypothesis we have:

T f ≤ T (g + ∥ f – g∥) ≤ Tg + β ∥ f – g∥ −→ T f – Tg ≤ β ∥ f – g∥

But it also holds that g (x) – f (x) ≤ ∥ f – g∥ which implies Tg – T f ≤ β ∥ f – g∥. Joining we have,
for all x ∈ X:

|T f (x) – Tg (x)| ≤ β ∥ f – g∥

Taking sup we get:
∥T f – Tg∥ ≤ β ∥ f – g∥

which establishes that T is a contraction.

ExtendedBlackwell conditions. I also present amodified version of Blackwell’s sufficiency
conditions for vector valued functions. I first define the relevant set of functions.

Proposition 6.1. Let X ⊂ Rn and B (X) =
{
f | f : X → R ∧ ∃M f ∀x∈X | f (x)| ≤M f

}
the set of

bounded functions defined on the set X. The space S = B (X) × B (X) equipped with the norm

∥ f ∥ = max
{
∥ f 1∥∞ , ∥ f 2∥∞

}
= max

{
sup
x∈X

| f 1 (x)| , sup
x∈X

| f 2 (x)|

}
is a normed vector space. It

is also a metric space with the metric ρ ( f , g) = ∥ f – g∥.

Proof. The proof proceeds by showing that ∥·∥ is a norm.
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(a) Clearly ∥ f ∥ ≥ 0 and if f (x) = 0 for all x ∈ X then ∥ f ∥ = 0. Finally:

∥ f ∥ = 0

max

{
sup
x∈X

| f 1 (x)| , sup
x∈X

| f 2 (x)|

}
= 0

which happens if and only if sup
x∈X

| f 1 (x)| = 0 and sup
x∈X

| f 2 (x)| = 0. Again, this happens if and only

if f 1 (x) = f 2 (x) = 0 for all x ∈ X. That is, if f (x) = 0 for all x ∈ X.

(b) ∥α f ∥ = max

{
sup
x∈X

|α f 1 (x)| , sup
x∈X

|α f 2 (x)|

}
= |α|max

{
sup
x∈X

| f 1 (x)| , sup
x∈X

| f 2 (x)|

}
= |α| ∥ f ∥

(c) Triangle Inequality:

∥ f + g∥ = max

{
sup
x∈X

| f 1 (x) – g1 (x)| , sup
x∈X

| f 2 (x) – g2 (x)|

}

≤ max

{(
sup
x∈X

| f 1 (x)| + sup
x∈X

|g1 (x)|

)
,

(
sup
x∈X

| f 2 (x)| + sup
x∈X

|g2 (x)|

)}

≤ max

{
sup
x∈X

| f 1 (x)| , sup
x∈X

| f 2 (x)|

}
+ max

{
sup
x∈X

|g1 (x)| , sup
x∈X

|g2 (x)|

}
= ∥ f ∥ + ∥g∥

The first inequality follows from properties of the absolute value and the second one from the
inequality:

sup
x∈X

∣∣ f i (x)∣∣ + sup
x∈X

|gi (x)| ≤ max

{
sup
x∈X

| f 1 (x)| + sup
x∈X

|g1 (x)| , sup
x∈X

| f 2 (x)| + sup
x∈X

|g2 (x)|

}

(d) Under the above three conditions ∥ f ∥ is a norm.

(e) Clearly the sum and scalar product of bounded functions is bounded.

Proposition 6.2. Consider (S, ρ) with S = B (X) × B (X) and ρ ( f , g) = ∥ f – g∥. (S, ρ) is a
complete space.

Proof. The proof starts by showing that a Cauchy sequence in S is formed by Cauchy sequences in
B (X). Then the completeness of B (X) is used to establish the result.

(a) Let
{
f n
}
⊂ S be a Cauchy sequence and ϵ > 0. There exists N such that ∀n,m>N

∥∥ f n – fm∥∥ < ϵ
which is:

max

{
sup
x∈X

∣∣ f 1n (x) – f 1m (x)∣∣ , sup
x∈X

∣∣ f 2n (x) – f 2m (x)∣∣
}
< ϵ
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sup
x∈X

∣∣ f 1n (x) – f 1m (x)∣∣ < ϵ ∧ sup
x∈X

∣∣ f 2n (x) – f 2m (x)∣∣ < ϵ
This implies that the sequences

{
f 1n
}
⊂ B (X) and

{
f 2n
}
⊂ B (X) are Cauchy with respect to

the sup-norm ∥ f ∥∞ = sup
x∈X

| f (x)|.

(b) Because the space
(
B (X) , ∥ f ∥∞

)
is complete, the above implies that the sequences

{
f 1n
}
and{

f 2n
}
are convergent in the sup norm. ∃ f 1, f 2∈B(X) f 1n → f 1 ∧ f 2n → f 2. Denote f : S→ R2 as

f (x) =
[
f 1 (x) f 2 (x)

]′
.

(c) Let ϵ > 0. By convergence of
{
f 1n
}
and

{
f 2n
}
there exist numbers N1 and N2 such that:

∀n≥N1
∥∥ f 1n – f 1∥∥∞ < ϵ ∧ ∀n≥N2

∥∥ f 2n – f 2∥∥∞ < ϵ

Then for N = max {N1,N2} it holds that:

∀n≥N
∥∥ f 1n – f 1∥∥∞ < ϵ ∧

∥∥ f 2n – f 2∥∥∞ < ϵ

which is:
∀n≥N sup

x∈X

∣∣ f 1n (x) – f 1 (x)∣∣ < ϵ ∧ sup
x∈X

∣∣ f 2n (x) – f 2 (x)∣∣ < ϵ
implying then:

∀n≥Nmax

{
sup
x∈X

∣∣ f 1n (x) – f 1 (x)∣∣ , sup
x∈X

∣∣ f 2n (x) – f 2 (x)∣∣
}
< ϵ

which is:
∀n≥N

∥∥ f n – f ∥∥ < ϵ
(d) The above proves that a Cauchy sequence converges on S over the given norm.

Theorem 6.3. (Extended Blackwell) Consider (S, ρ) with S = B (X) × B (X) and ρ ( f , g) =
∥ f – g∥. Let T : S→ S be an operator satisfying

(a) (Monotonicity) f , g ∈ S and f (x) ≤ g (x), for all x ∈ X, implies T f (x) ≤ Tg (x), for all x ∈
X, (where f (x) ≤ g (x) is taken in the vector sense, i.e. f 1 (x) ≤ g1 (x) and f 2 (x) ≤ g2 (x)).

(b) (Discounting) there exists some β ∈ (0, 1) such that T ( f + A) ≤ T f (x) + βA for f ∈ S,
A = [a a]

′ ∈ R2+ and x ∈ X.

Then T is a contraction in S with modulus β.

Proof. The proof follows closely that of Blackwell’s conditions
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(a) Let f , g ∈ S, and define A =
[
∥ f – g∥ ∥ f – g∥

]′
, it holds that:

f 1 (x) – g1 (x) ≤ | f 1 (x) – g1 (x)| ≤ sup
x∈X

| f 1 (x) – g1 (x)|

≤ max

{
sup
x∈X

| f 1 (x) – g1 (x)| , sup
x∈X

| f 2 (x) – g2 (x)|

}
= ∥ f – g∥∞

By a similar argument f 2 (x) – g2 (x) ≤ ∥ f – g∥∞ then it holds that: f (x) ≤ g (x) +A for all x ∈ X

(b) By monotonicity and discounting:

T f (x) ≤ T (g + a) (x) ≤ Tg (x) + βA

which holds for all x ∈ X.

(c) The same argument applies to show that g (x) ≤ f (x) + A and Tg (x) ≤ T f (x) + βA for all x ∈ X.

(d) Joining:
T f i (x) – Tgi (x) ≤ β ∥ f – g∥ ∧ Tgi (x) – T f i (x) ≤ β ∥ f – g∥

which implies:

|T f 1 (x) – Tg1 (x)| ≤ β ∥ f – g∥ ∧ |T f 2 (x) – Tg2 (x)| ≤ β ∥ f – g∥

and then:

sup
x∈X

|T f 1 (x) – Tg1 (x)| ≤ β ∥ f – g∥ ∧ sup
x∈X

|T f 2 (x) – Tg2 (x)| ≤ β ∥ f – g∥

(e) Finally:

∥T f – Tg∥∞ = max

{
sup
x∈X

|T f 1 (x) – Tg1 (x)| , sup
x∈X

|T f 2 (x) – Tg2 (x)|

}
≤ max

{
β ∥ f – g∥ ,β ∥ f – g∥

}
= β ∥ f – g∥

This is the definition of T being a contraction with modulus β.

6.2. The Bellman Equation

We start with the infinite horizon consumption savingsmodel. This is the workhorsemodel
of modern macroeconomics and is known as the neoclassical growth model. There are
two (related) ways of setting up the problem. One resembles the finite horizon problem
already discussed, it is called sequence problem, the other form is to cast the problem as
the solution to a functional equation, this dynamic programming approach has several
advantages that will be presented in the next section.
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As before, consider a discrete time, consumption-savings problem where the agent can
either consume or save (invest) in capital that will be productive in the following period.
The agent derives utility from consumption according to utility function u and discounts
the future at a constant rate β < 1. Production only uses capital and the technology is
described by a function f .

The problem of an agent endowed with k0 units of capital is:

v (k0) = max
{ct,kt+1}∞t=0

∞∑
t=0
βtu (ct) s.t. ct + kt+1 ≤ f (kt) ct, kt ≥ 0 k0 given

Provided that u is strictly increasing, a sustained assumption, we can eliminate
consumption as before to get:

v (k0) = max
{kt+1}

∞∑
t=0
βtu ( f (kt) – kt+1) s.t. 0 ≤ kt+1 ≤ f (kt) k0 given

In the sequence problem, much like in the finite horizon problem before, the objective
is to look for an infinite sequence that solves the problem and attains the maximum. This
can prove to be too difficult in practice.

The dynamic programming problem takes a different approach. Instead of trying to
solve the problem for all periods simultaneously the objective is to solve the problem one
period at a time. That is, given the capital stock at the beginning of the period take an
optimal investment decision for the next period. The problem is that, in order to make the
decision, its necessary to know the extra value for the agent of the capital to be saved, we
need a function that represents preferences over next period’s capital.

The DP starts by assuming that we already know such a function. It is called a value
function and is defined as v above. The value function is the maximum value given to the
agent if she starts in a given period with initial capital k. Knowing v it is possible to cast the
following problem:

max
0≤k1≤ f (k0)

{
u ( f (k0) – k1) + βv (k1)

}
If we knew v the problem above could be solved. The solution to the problem is a policy
function g : R+ → R+ that gives the optimal capital next period given a capital level today.
That is k1 = g (k0).

It should be clear now that if v (k1) gives the maximum value starting in period 1 and the
problem abovemaximizes that value and the value in period 0 (given by u ( f (k0) – k1)) then
the value of the whole problem is given by the maximum above. But that is the definition
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of v, then:
v (k0) = max

0≤k1≤ f (k0)

{
u ( f (k0) – k1) + βv (k1)

}
This is a functional equation, where f and u are known functions, k1 is a variable of choice
and k0 is given. Then this is an equation in the function v, the solution to this equation is
the value function needed to solve the problem (to find the policy function).

In general solving functional equations is not easy, but this type of functional equation
can be reinterpreted to both establish the existence of a solution and to obtain a method to
find it.

Let u and f be bounded and continuous functions and define an operator T : C (X)→
C (X) as:

Tv (k) = max
0≤k′≤ f (k)

{
u
(
f (k) – k

′)
+ βv

(
k
′)}

boundedness of Tv is immediate for the sum of bounded is also bounded. Continuity is
a consequence of the ToM, the objective function is continuous and the correspondence
Γ (k) =

{
k
′
|0 ≤ k

′ ≤ f (k)
}
is continuous and compact valued because f is continuous and

bounded.
The solution to the functional equation, v, is then a fixed point of the mapping T. It is

left to verify that T is a contraction to establish the existence and uniqueness of the solution
to the neoclassical growth model. It turns out that Blackwell’s sufficient conditions are
immediate:

(a) (monotonicity) Let v,w ∈ C (X) and v (k) ≤ w (k) for all k. Then:

Tv (k) = max
0≤k′≤ f (k)

{
u
(
f (k) – k

′)
+ βv

(
k
′)}
≤ max
0≤k′≤ f (k)

{
u
(
f (k) – k

′)
+ βw

(
k
′)}

= Tw (k)

(b) (discounting) Let v ∈ C (X) and a > 0. Then:

T (v + a) (k) = max
0≤k′≤ f (k)

{
u
(
f (k) – k

′)
+ β

(
v
(
k
′)
+ a
)}

= max
0≤k′≤ f (k)

{
u
(
f (k) – k

′)
+ βv

(
k
′)}

+βa

In particular:
T (v + a) (k) ≤ Tv (k) + βa

It is possible to further characterize v and the policy function g, for that extra results are
needed.
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6.3. A general framework and the principle of optimality

The problem to be studied in terms of infinite sequences is of the form:

v⋆ (x0) = sup
{xt+1}∞t=0

∞∑
t=0
βtF (xt, xt+1) s.t. xt+1 ∈ Γ (xt) (6.1)

Corresponding to this problem is the following functional equation:

v (x) = sup
y∈Γ (x)

{
F (x, y) + βv ( y)

}
(6.2)

Above, X is the set of possible values for x, and it is not necessarily an euclidean space,
Γ : X ⇒ X is a correspondence that assigns feasible values of the choice variable and
F : Gr (Γ )→ R is a return or payoff function. β > 0 is a discount factor.

Some conditions have to be met for both problems to give the same solution, in the
sense that v (x) = v⋆ (x) and that the optimal choice of one problem is the the same as the
choice for the other. This equivalence between both problems is called the principle of
optimality. After the validity of the principle has been established the properties of the
solution to FE can be studied.

The conditions for the principle of optimality are stated below and the two propositions
that constitute the principle are shown without proof.

It will be convenient to define the set of all possible feasible sequences for x, given an
starting point x0.

Definition 6.3. The set of all possible feasible sequences starting at x0 ∈ X is:

Π (x0) =
{
{xt}∞t=0 |xt+1 ∈ Γ (xt) ∧ x0 given

}
and x = (x0, x1, x2, . . .) is an element.

Assumption A.1: . Γ is a nonempty valued correspondence.

Assumption A.2: . For all x0 ∈ X and x ∈ Π (x0) the following limit exists (although it
might be infinite):

lim
n→∞

n∑
t=0
βtF (xt, xt+1)

Remark. Assumption A.2 holds if F is bounded and β ∈ (0, 1).
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Under assumptions A.1 and A.2 Π (x0) is nonempty valued and problem (6.1) is well
posed, moreover they are enough to guarantee that the function v⋆ satisfies equation (6.2).

Proposition 6.3. Let X, Γ , F and β satisfy assumption A.1 and A.2, then v⋆ is a solution to the
FE (6.2):

v⋆ (x) = sup
y∈Γ (x)

{
F (x, y) + βv⋆ ( y)

}
For v⋆ to be the only solution to the FE an extra condition is needed.

Proposition 6.4. Let X, Γ , F and β satisfy assumption A.1 and A.2, if v is a solution to the FE
(6.2) and for all x0 ∈ X and x ∈ Π (x0) it holds that:

lim
n→∞

βnv (xn) = 0

then v = v⋆.

The previous two propositions establish equivalence between the value of the two
problems. It can also be shown that the optimizer of the SP problem also solves the FE in
the following sense:

Proposition 6.5. Let X, Γ , F and β satisfy assumption A.1 and A.2. Let x⋆ ∈ Π (x0) be a feasible
plan that attains the supremum in (6.1), then:

v⋆
(
x⋆t
)
= F
(
x⋆t , x

⋆
t+1
)
+ βv⋆

(
x⋆t+1

)
(6.3)

Again, under an extra boundedness condition a plan that solves the problem in (6.2)
also solves the problem in the SP.

Proposition 6.6. Let X, Γ , F and β satisfy assumption A.1 and A.2. Let x⋆ ∈ Π (x0) be a feasible
plan that satisfies equation (6.3) and for which lim supβtv⋆

(
x⋆t
)
≤ 0, then x⋆ attains the

supremum in (6.1) for initial state x0.

Now we can define the optimal policy correspondence as:

G⋆ (x) =
{
y ∈ Γ (x) |v⋆ (x) = F (x, y) + βv⋆ ( y)

}
We say that a plan x is generated by G if it satisfies xt+1 ∈ G (xt). The previous two
propositions imply that any optimal plan of the sequence problem is generated by G⋆ and
that if a plan is generated by G⋆ and satisfies the additional boundedness condition then it
is also optimal.

Now we can concentrate in studying the properties of the DP in (6.2).
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6.4. Bounded problems

Now we concentrate in establishing properties of the solution to the following problem:

v (x) = max
y∈Γ (x)

{
F (x, y) + βv ( y)

}
(6.4)

G (x) =
{
y ∈ Γ (x) |v (x) = F (x, y) + βv ( y)

}
where v is the value function and G the policy correspondence.

Assumptions A.1 and A.2 have to be met for the implications of this sections to be valid
on the original sequence problem. Additional assumptions are also imposed that ensure
that the previous ones are met.

Assumption A.3: . X is a a convex subset of Rl and Γ is a nonempty, compact valued and
continuous correspondence.

Assumption A.4: . The function F : Gr (Γ )→ R is bounded and continuous and β ∈ (0, 1).
Because F is bounded and continuous it is natural to think that the solution to equation

(6.4) lies in the set C (X). What follows it to establish the existence of a solution by means
of the contraction mapping theorem.

Define a mapping T : C (X)→ C (X) as:

T f (x) = max
y∈Γ (x)

{
F (x, y) + β f ( y)

}
(6.5)

The solution to (6.4) is then a v ∈ C (X) such that v = Tv. The following proposition
establishes that T is a contraction from C (X) into itself and also some properties of the
policy correspondence G.

Proposition 6.7. Let X, Γ , F and β satisfy assumption A.3 and A.4, and consider C (X) the space
of continuous bounded function on X along with the sup norm. Then:

(a) T defined in (6.5) maps C (X) into itself.

(b) T defined in (6.5) has a unique fixed point v ∈ C (X), and for all v0 ∈ C (X)∥∥Tnv0 – v∥∥ ≤ βn ∥v0 – v∥
(c) Given v the optimal policy correspondence G (x) =

{
y ∈ Γ (x) |v (x) = F (x, y) + βv ( y)

}
is

nonempty, compact valued and u.h.c.
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Proof. Each part is established separately.

(a) Under A.3 and A.4 and given f continuous and bounded the function F (x, y) + β f ( y) is
continuous in (x, y) and Γ satisfies all assumptions of the ToM, thus establishing that T f is
continuous.

Because F and f are bounded then T f is bounded as well. There existsM ≥ 0 such that –M ≤
F (x, y) + β f ( y) ≤M for all (x, y), then for all x we have: –M ≤ max

y∈Γ (x)

{
F (x, y) + β f ( y)

}
≤M

which establishes boundedness of T f .

Then T f ∈ C (X) for any f ∈ C (X).

(b) Blackwell conditions are met:

(i) (monotonicity) Let f , g ∈ C (X) and f (x) ≤ g (x) for all x. Then:

T f (x) = max
y∈Γ (x)

{
F (x, y) + β f ( y)

}
≤ max

y∈Γ (x)

{
F (x, y) + βg ( y)

}
= Tg (x)

(ii) (discounting) Let f ∈ C (X) and a > 0. Then:

T ( f + a) (x) = max
y∈Γ (x)

{
F (x, y) + β ( f ( y) + a)

}
= max
y∈Γ (x)

{
F (x, y) + β f ( y)

}
+ βa

In particular:
T ( f + a) (x) ≤ T f (x) + βa

Then T is a contraction. By the contraction mapping theorem the result follows.

(c) The properties of G follow from the ToM which applies as shown before.

Additional assumption will help to characterize v and G better. The corollary of the
contractionmapping theorem is the tool to beusednow. Firstmonotonicity canbe inherited
by the solution.

Assumption A.5: . For all y F (·, y) is strictly increasing in its first l arguments.

Assumption A.6:. Γ is monotone in the sense that if x ≤ x
′
the Γ (x) ⊆ Γ

(
x
′)
.

Proposition 6.8. Let X, Γ , F andβ satisfy assumption A.3 to A.6, and let v be the unique solution
to (6.4), then v is strictly increasing.

Proof. Let C
′
(X) ⊆ C (X) be the set of bounded, continuous and non-decreasing functions and

C
′′
(X) ⊆ C

′
(X) the set of strictly increasing functions. Clearly C

′
(X) is closed. By the corollary of

the contraction mapping theorem it suffices to show that T
(
C
′
(X)
)
⊆ C

′′
(X).
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Let f ∈ C
′
(X) and consider x < x

′
. We want to show that T f is strictly increasing. This follows

with A.5 and A.6:

T f (x) = max
y∈Γ (x)

F (x, y) + β f ( y) ≤ max
y∈Γ

(
x′
) F (x, y) + β f ( y) < max

y∈Γ
(
x′
) F (x′ , y) + β f ( y) = T f (x′)

where the first inequality follows from Γ (x) ⊆ Γ
(
x
′)
, a larger choice set implies a higher than or

equal maximum, the second inequality follows from F being strictly increasing.

It is also possible to induce convexity as follows:

Assumption A.7: . F is strictly concave in both arguments.

Assumption A.8:. Γ has a convex graph.

Proposition 6.9. Let X, Γ , F and β satisfy assumption A.3, A.4, A.7 and A.8, and let v be the
unique solution to (6.4), then v is strictly concave and G is a continuous single valued function.

Proof. Let C
′
(X) be the set of concave, bounded and continuous functions and C

′′
(X) the set of

strictly concave, bounded and continuous functions. The set C
′
(X) ⊆ C (X) is closed and that

C
′′
(X) ⊆ C

′
(X). To show that v is strictly concave we use the corollary of the contraction mapping

theorem.
We want to show that for all f ∈ C

′
(X) it follows that T f ∈ C

′′
(X) where

T f (x) = T f (x) = max
y∈Γ (x)

F (x, y) + β f ( y)

So let f be weakly concave on x, bounded and continuous. let x1, x2 ∈ X and λ ∈ (0, 1) and define
xλ = λx1 + (1 – λ) x2. Let yi ∈ G

(
xi
)
⊆ Γ

(
xi
)
and, by A.8, yλ = λ y1 + (1 – λ) y2 ∈ Γ (xλ):

T f (xλ) = max
y∈Γ (xλ)

F (xλ, y) + β f ( y)

≥ F
(
xλ, yλ

)
+ β f

(
yλ
)

≥ F
(
xλ, yλ

)
+ λβ f

(
y1
)
+ (1 – λ)β f

(
y2
)

> λF
(
x1, y1

)
+ (1 – λ) F

(
x2, y2

)
+ λβ f

(
y1
)
+ (1 – λ)β f

(
y2
)

= λT f (x1) + (1 – λ)T f (x2)

where the first inequality follows from yλbeing feasible at xλ, the second one from f being concave
and the third one from A.7. The final equality is obtained rearranging and recalling the optimality
of y1 and y2 under x1 and x2 respectively. Joining results we get

T f (xλ) > λT f (x1) + (1 – λ)T f (x2)
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Then the “image” of any concave function is a strictly concave function. This proves that T f ∈ C
′′
(X).

Then by the corollary of the contraction mapping theorem the unique fix point of T belongs to C
′′
.

That is, v is strictly concave.
Finally, consider the policy function G (x) = argmax

y∈Γ (x)
F (x, y) + v ( y). Because F and v are strictly

concave the single valuedness and continuity of G follow as an immediate consequence of the ToM
under convexity part (ii).

Finally there are conditions for v to be differentiable, allowing the use of first order
conditions.

Assumption A.9: . F is continuously differentiable on the interior of its domain, Gr (A).

Proposition 6.10. Let X, Γ , F and β satisfy assumption A.3, A.4, and A.7 to A.9, and let v be the
unique solution to (6.4). If x0 ∈ IntX and g (x0) ∈ IntΓ (x0) then v is continuously differentiable
at x0 with derivatives given by:

vi (x0) = Fi (x0, g (x0))

Proof. Stokey, Lucas, and Prescott (1989, sec. 4.2, pp. 85).
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7. Stochastic Dynamic Programming

We now want to establish the basics of dynamic programming problems where (some
of) the states are subject to stochastic variation. We want to allow the variation in the
stochastic variables to be serially correlated and for that we use the concepts developed
for Markov processes in Section 5. The results below are a summary of those in Chapter 9
of Stokey, Lucas, and Prescott (1989).

The basic problem takes one of two forms:

v (k, z) = max
k′∈[0,z f (k)]

{
U
(
z f (k) – k

′)
+ β

∫
z
v
(
k
′
, z

′)
Q
(
z, dz

′)}
(7.1)

v (k, z) = max
y∈[0, f (k)]

{
U ( f (k) – y) + β

∫
z
v
(
y – z

′
, z

′)
Q
(
z, dz

′)}
(7.2)

The key mathematical feature in the two models is the expectation over future values of
the state z taking as given the state’s current value. The conditional distribution of z

′
is

given by the transition function Q.
The key economic difference between the two problems is the degree of control over

the future value of the states. In the first problem the future value of state k is perfectly
controlled and there is only uncertainty over the future value of z. In the second problem
the value of the first state is only known until the following period. Only the choice y is
known by the decision maker, but the value of k

′
= y – z

′
depends on z

′
.

The second problem is of course more general and it also allows for more flexible
numerical methods for the solution of the functional equation. See Phelan and Eslami
(2022).

The general form of the stochastic dynamic programming problem is cumbersome
because of the required notation to take into account the stochastic process induced by
the choices of the decision maker. However, the end result is basically the same as in the
non-stochastic case of Section 6. Most importantly, the principle of optimality and the
contraction mapping theorem still apply.

In what follows we cover the basic definitions that will be useful to establish what
constitutes a solution to the stochastic dynamic programming problem. We will later use
these to construct a competitive equilibrium in decentralized economies. We will do this
for the first type of problem shown above. Even though it is less general, the basic concepts
are clearer in it and it maps better to the neoclassical growth model, leading example to
come.

We start by defining measurable spaces for the endogenous state (X,X) and the
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exogenous (stochastic) state (Z,Z), as well as their product that forms the state space of
the problem (S, S) = (X × Z,X× Z). We also impose that Q is a stationary transition
function, particularly that it satisfies the Feller property (definition 5.3) preserving
continuity and boundedness.

The decision problem consists in choosing the future value of the endogenous state,
a choice y from a feasible set characterized by the correspondence Γ : X × Z → Z. The
graph of Γ is A =

{
(x, y, z) | y ∈ Γ (x, z)

}
. The payoff function is F : A→ R and the decision

maker discounts future payoffs at a rate β ≥ 0.

7.1. The Sequential Problem

The sequential problem is where most of the notational complications arise. The decision
maker takes as given some initial state (x0, z0) and then makes contingency plans that
specify actions in future periods depending on the realization of shocks up until then (the
information available). Importantly, the plans depend only on the history of shocks (the
exogenous state) as the endogenous state, x, is chosen every period, except for the first.
The objective is to maximize the present discounted expected payoff. The expectation is
over the possible sample paths for the realization of the shocks. This requires dusting off
the notation on stochastic processes developed after definition 5.7.

Definition 7.1. (Contingency Feasible Plan) Let
(
Zt,Zt

)
be a measurable space over the

partial history of shocks in periods 1 through t. A feasible plan is a value π0 ∈ Γ (x0, z0) and
a sequence of measurable functions πt : Zt → Γ

(
πt–1

(
zt–1

)
, zt
)
. Denote by Π (s0) the set

of plans feasible given s0 = (x0, z0).

The measurability conditions over the (choice) functions πt implies that we can
compute probabilities over the outcomes (decisions) given the probabilities on paths
implied by Q. Recall that Q is a function over (Z,Z) so that, given s0, we can define the
probability measure µt (z0, ·) : Zt → [0, 1] as in definition 5.5. This function establishes
probabilities over sequences of shocks zt and allows to compute expectations over payoffs
F (·) provided that F is measurable with respect to the appropriate σ-algebra on A (defined
as A =

{
C ∈ X× X× Z|C ∈ A

}
) and that the function F is integrable (either by being

always positive or negative, or by being integrable with respect to µt given any feasible
plan π ∈ Π (s0)). These conditions allow us to define the (period-t) discounted payoffs

u0 (π, s0) = F (x0,π0, z0) ;

un (π, s0) = F (x0,π0, z0) +
n∑
t=1
βt
∫
Zt
F
(
πt–1

(
z–1
)
,πt

(
zt
)
, zt
)
µt
(
z0, dzt

)
;
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and its limit
u (π, s0) = lim

n→∞
un (π, s0) .

This finally allow us to define the sequential problem of the decision maker:

v⋆ (s) = max
π∈Π(s)

u (π, s) (7.3)

Just posing this problem is a mouthful. Solving it is even worse. First, just evaluating the
probabilities along the sample path becomes increasingly taxing. For instance, even if the
exogenous state could take only two values, there are over a thousand possible histories
after 10 periods (and the number gets prohibitively large for 100 periods). Each of these
histories has its own contingent plan, that is evaluated depending on its probability.

When the decision maker does not have perfect control over the endogenous state
variable as in the second problem in (7.2) we must also define a law of motion for the
endogenous state variable

ϕ : X × X × Z → X

so that x
′
= ϕ

(
x, y, z

′)
is the next period’s endogenous state. This law of motion interacts

with the contingent choices of the control, y, to generate a contingent plan, that is now

Definition 7.2. (Contingency Feasible Plan’) Let
(
Zt,Zt

)
be a measurable space over the

partial history of shocks in periods 1 through t. A feasible plan is a value π0 ∈ Γ (x0, z0) and
a sequence of measurable functions πt : Zt → Γ

(
xπt
(
zt
)
, zt
)
, where

xπt
(
zt
)
≡ ϕ

(
xπt–1

(
zt–1

)
,πt–1

(
zt–1

)
, zt
)
is defined as the (contingent) path of the

endogenous variable given the plan π. Denote by Π (s0) the set of plans feasible given
s0 = (x0, z0).

The implication of the changes to the problem is that we now have two stochastic
processes. One is the exogenous state variable z, that we treat just as before. In the first
type of problem this process is enough to describe the problem as it completely describes
the process of choices, y, and hence of the endogenous state x

′
= y. In this more general

casewe have to interface the process for z through the law ofmotionϕ to obtain the process
for x given a plan π.

7.2. The Recursive Problem

The alternative to the sequential problem is to exploit the Markov nature of the exogenous
(stochastic) state. Because zt follows a Markov process we do not actually have to carry
around the whole history of shocks and instead we can subsume it in its current realization
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zt. However, this is not enough to determine the choice of the decision maker. In the
sequential problem, the sequence of the exogenous state zt, along with the initial value of
the endogenous state x0, contained all the information needed to know the current state
given a contingent plan. If we drop the history of the exogenous state in favor of just its
current realization, we have to introduce the current value of x that contains the (relevant)
information about the previous shocks.

The problem is now

v (x, z) = max
y∈Γ (x,z)

{
F (x, y, z) + β

∫
v
(
y, z

′)
Q
(
z, dz

′)}
, (7.4)

with its associated policy function (or in general a correspondence)

G (x, z) =
{
y ∈ Γ (x, z) | (x, z) = F (x, y, z) + β

∫
v
(
y, z

′)
Q
(
z, dz

′)}
. (7.5)

The policy function G is the object of interest for most problems as it describes the
actions of the decision maker and, as we will discuss below, it induces a distribution over
the outcomes of the model at the core of representative and heterogeneous agent models.

In the second type of problem in (7.2) the recursive formulation introduces the law of
motion ϕ:

v (x, z) = max
y∈Γ (x,z)

{
F (x, y, z) + β

∫
v
(
ϕ
(
x, y, z

′)
, z

′)
Q
(
z, dz

′)}
. (7.6)

7.3. The Principle of Optimality

The first half of the principle of optimality comes easily. We can construct the optimal
contingency plans πt out of G. The general construction is simple but required worrying
about measurability when G is a correspondence. When G is a function we can simply
construct the contingent plans recursively as

π0 = G (s0) , . . . ,πt
(
zt
)
= G

(
πt–1

(
zt
)
, zt
)
, . . .

This construction of π is immediately feasible and measurable. It is left to show that a
contingent plan constructed this way satisfies the optimal value of the sequential problem,
v⋆. The following theorem gives conditions for this, the proof is in Theorem 9.2 of Stokey,
Lucas, and Prescott (1989).

Theorem 7.1. Let (X,X), (Z,Z), Q, F, Γ , and β be given. Γ is non-empty valued and allows for a
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measurable selection. F isA-measurable and integrable (see Assumption 9.2 in Stokey, Lucas, and
Prescott 1989). Let v⋆ be as in (7.3) and v as in (7.4) such that

lim
t→∞

∫
Zt
βtv

(
πt–1

(
zt–1

)
, zt
)
µt
(
z0, dzt

)
= 0

for all feasible plans π ∈ Π (s0) and all initial states s0 ∈ X × Z. Finally, let G be defined as in
(7.5) and suppose that it is non-empty and allows for a measurable selection.

Then, v = v⋆ and any plan π⋆ generated by G achieves the maximum in (7.3).

The result can be strengthened to show that a contingent plan is optimal if and only if
it is generated by G. But the details do not add to the intuition of these problems. It can
also be shown to apply to the more general problem in (7.2) under slight modifications to
the assumptions of the theorem.

Section 9.2 of Stokey, Lucas, and Prescott (1989) focuses on bounded problems of the
type most commonly encountered in economic applications and establishes how to apply
a version of the contraction mapping theorem that leads to the construction of solutions to
the dynamic programing problem in (7.4) and shows that the Envelope theorem applies to
these problems (under additional continuity assumptions) so as to obtain the derivatives
of the value function v in therms of the payoff function F.

7.4. Markov Processes over States

Consider again the dynamic programming problem in (7.4) and suppose that its solution is
a policy function G (single-valued). The objective is to describe the behavior and properties
of the sequence of states {st} = {(xt, zt)} as a function of the properties of the transition
function of z, Q, and the policy function G. More precisely, the objective is to show that {st}
follows itself a Markov process with some transition function P.

The main result here is

Theorem 7.2. Let (X,X) and (Z,Z) be measurable spaces with their product space (S, S) also
measurable. Let Q : Z×Z→ [0, 1] be a transition function for the exogenous state z and G : S→ X
a policy function for the endogenous state x.

If G is measurable with respect to Z then the function P : S × S→ [0, 1] defined as

P ((x, z) ,A× B) =

Q (z,B) if G (x, z) ∈ A

0 if G (x, z) /∈ A

is a transition function on the state space (S, S) defining a Markov process.
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So, out of the solution of the dynamic problem comes a stochastic process for states.
In this case the process is quite straightforward: the exogenous state evolves according
to Q (z, ·) and the endogenous state evolves deterministically because the decision maker
has full control over it

(
ϕ
(
x, y, z

′)
= y
)
. Because the evolution of the endogenous state is

deterministic it either is in a set A ∈ X, or it is not. If it is, then the transition function P
just needs to care about the conditional probability of z

′ ∈ B ∈ Z given the current value of
the exogenous state, z.

This construction of the Markov process will be crucial for the study of heterogenous
agent models in part III.

We now turn to the properties of theMarkov process characterized by P. Unsurprisingly,
P inherits its properties from Q.

Theorem 7.3. Consider the following conditions:

(a) X is a convex Borel set in Rℓ with Borel subsets X;

(b) either Z is countable with Z = 2Z its power set (set of all subsets) or Z is a compact (Borel) set
in Rkwith Borel subsets Z and Q satisfies the Feller property;

(c) G is continuous.

If all conditions are satisfied, then P satisfies the Feller property.

This result is important because, as seen in Section 5, the Feller property is key for
most results in Markov processes that we care about. All the conditions in the theorem are
used so that continuity makes sense. When Z is countable continuity is immediate on z
and so Q already satisfies the Feller property. The insistence on Borel sets plays a similar
role when the sets are uncountable.

The main offshoot of this Theorem is establishing the existing of an invariant
distribution for the states under the solution of the dynamic programming problem. This
is what we refer to as the stationary distribution of the states. See Theorem 5.4. When P also
satisfies the Monotone property the invariant distribution is unique and the distribution of
states converges to it, as in Theorem 5.5 when X and Z are rectangles in Euclidean spaces.

When the endogenous state evolves according to the law of motionϕ
(
x, y, z

′)
wemust

adjust the construction of the transition function for the states. The key difference is that
x
′
is now stochastic and the is therefore a distribution over its possible values given the

previous state (x, z). This distribution is constructed from G and Q similar to the case above.
To better understand the construction of the Markov process take a step back. The

transition function P ((x, z) ,A× B) is answering the question of how likely is it that
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(
x
′
, z

′) ∈ A× B given the values of (x, z). But the value of x′ = ϕ(x, y, z′) depends on z′.
In fact, z

′
is the only unknown given that we have (x, z). So, we can ask what is the set of

values of z
′
that would make x

′ ∈ A hold and then see if those values of z′ are also in B.
Call that set H and define it (in general as a correspondence) as

H ((x, z) ,A) =
{
z
′
∈ Z | x

′
= ϕ

(
x,G (x, z) , z

′)
∈ A

}
.

The probability that
(
x
′
, z

′) ∈ A × B given (x, z) is then the probability that z′ ∈ H ∩ B
given z, so we define the transition function as

P ((x, z) ,A× B) = Q (z,H ((x, z) ,A) ∩ B) .

Under appropriate assumptions P inherits the Feller property from Q as above.
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8. Stochastic Recursive Competitive Equilibrium

We now turn to study dynamic economies subject to shocks using the tools developed
above. The type of economies we are interested in are those in which individual agents
interact with each other throughmarkets. Themain feature of these economies is therefore
the price-taking behavior of agents. This is as opposed to models of imperfect competition
or models of search friction with bilateral trading covered later in the course.

We start by describing the Neoclassical Growth Model, which constitutes the backbone
of most models used in macroeconomics. The economy is populated by a representative
firm and a representative household.7 For now, there is no government. We first outline
the problem of the firm and the household and then discuss how to cast them recursively,
how to understand the stationary equilibrium, and how to compute the solution.

The firm produces using a constant-returns-to-scale technology that combines capital
and labor. The firm chooses capital and labor to maximize its profits every period taking
as given its current productivity (zt) the period’s prices: the rental rate of capital (rt) and
the wage rate (wt). In this formulation, the problem of the firm is static:

πt = max{
kt,ℓdt

} f (zt, kt, ℓdt ) – (rt + δ) kt – wtℓdt .
The household chooses contingent plans for consumption and labor (or equivalently

leisure) taking as given the return on their assets (rt) and the wage rate (wt). The household
owns the firms and hence receives the profits the firm generates (πt), which are also taken
as given by the household. In the deterministic case, the household problem is

max
{ct,ℓt}∞t=0

∞∑
t=0
βtu (c, ℓ) s.t. ct + at+1 = (1 + rt) at + wtℓt + πt,

for some initial value of assets a0. The solution of the household problem is complex
because the consumption and labor plans have to be contingent on any sequence of
{(rt,wt,πt)} that can arise. We will return to this problem later.

7A more formal and complete formulation of the model would introduce a continuum of agents (or
households) and firms who populate the economy. The households would be price takers and their
preferences would have to be homothetic. The price-taking assumption makes their constraints linear,
or put another way homogeneous of degree one, the homotheticity ensures that their choices are scale
free, so that the choice of an agent with half the income of another agent is to consume half as much of
every good. The firms would also be price takers and operate a technology that has constant-returns-to-scale
(homogeneous of degree one). This ensures that the production choices of the firms scale one-to-one. These
assumptions are enough for aggregation into a representative household and a representative firm.
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Equilibrium requires that markets clear along any sequence of prices, so that

ℓt = ℓdt ; at = kt; ct + at+1 = f (zt, kt, ℓt) + (1 – δ) at.

However, the variable zt is exogenous (it is not determined by any decision maker in
the economy) and random. In particular {zt} follows a Markov Process with transition
function Q and initial value z0. This requires some extra notation can help describe the
economy. To make things simpler we assume (for now) that z takes on finitely many values.
Let zt = (z0, z1, . . . , zt) be the history of shocks in the economy, taking z0 as given, and St

the space of all histories, and µt
(
zt
)
give the probability of history zt

(∑
zt∈St µ

(
zt
)
= 1
)
.

Then, the problem of the household can be formally written as

v (a0) = max
{at(·),ct(·),ℓt(·)}

∞∑
t=0

∑
zt∈Zt

βtu
(
ct
(
zt
)
, ℓt
(
zt
))
µt
(
zt
)

s.t.
∞∑
t=0

∑
zt∈Zt

pt
(
zt
) [(

1 + rt
(
zt
))

at
(
zt–1

)
+ wt

(
zt
)
ℓt
(
zt
)
+ πt

(
zt
)
– ct

(
zt
)
– at+1

(
zt
)]
,

where we abuse notation by writing a0
(
z–1
)
= k0 and pt

(
zt
)
is the price of future resources

(the stochastic discount factor).
An Arrow-Debreu equilibrium of this economy is therefore defined as sequences of

functions that depend on histories of shocks. That is, an equilibrium is a set sequences for
quantities

{
at (·) , ct (·) , ℓt (·) , kt (·) , ℓdt (·) ,πt (·)

}
and prices

{
pt (·) , rt (·) ,wt (·)

}
such that

(a) Households maximize the present discounted value of utility with {at (·) , ct (·) , ℓt (·)},
taking as given prices

{
pt (·) , rt (·) ,wt (·)

}
and transfers

{
πt
(
st
)}
.

(b) Firms maximize their period profits with
{
kt (·) , ℓdt (·)

}
taking as given prices

{rt (·) ,wt (·)}

πt
(
zt
)
= f

(
zt, kt

(
zt
)
, ℓdt
(
zt
))

–
(
rt
(
zt
)
+ δ
)
kt
(
zt
)
– wt

(
zt
)
ℓdt

(
zt
)
.

(c) Markets clear for every history

ℓt
(
zt
)
= ℓdt

(
zt
)
; at

(
zt–1

)
= kt

(
zt
)
;

ct
(
zt
)
+ at+1

(
zt
)
= f

(
zt, kt

(
zt
)
, ℓt
(
zt
))

+ (1 – δ) at
(
zt–1

)
.

(d) The initial conditions are satisfied, so that a0
(
z–1
)
= k0.
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In the Arrow-Debreu equilibrium all trading happens at time 0, taking as given (k0, z0). We
can alternatively define a sequential markets equilibrium for this economy. This definition
avoids introducing the stochastic discount factor. WE instead have the equilibrium be a
set sequences for quantities

{
at (·) , ct (·) , ℓt (·) , kt (·) , ℓdt (·) ,πt (·)

}
and prices {rt (·) ,wt (·)}

such that

(a) Households maximize the present discounted value of utility with {at (·) , ct (·) , ℓt (·)},
taking as given prices {rt (·) ,wt (·)} and transfers

{
πt
(
st
)}
.

v (a0) = max
{at(·),ct(·),ℓt(·)}

∞∑
t=0

∑
zt∈Zt

βtu
(
ct
(
zt
)
, ℓt
(
zt
))
µt
(
zt
)

s.t.
(
1 + rt

(
zt
))

at
(
zt–1

)
+ wt

(
zt
)
ℓt
(
zt
)
+ πt

(
zt
)
≥ ct

(
zt
)
at+1

(
zt
)

∀t∀zt∈Zt ,

(b) Firms maximize their period profits with
{
kt (·) , ℓdt (·)

}
taking as given prices

{rt (·) ,wt (·)}

πt
(
zt
)
= f

(
zt, kt

(
zt
)
, ℓdt
(
zt
))

–
(
rt
(
zt
)
+ δ
)
kt
(
zt
)
– wt

(
zt
)
ℓdt

(
zt
)
.

(c) Markets clear for every history

ℓt
(
zt
)
= ℓdt

(
zt
)
; at

(
zt–1

)
= kt

(
zt
)
;

ct
(
zt
)
+ at+1

(
zt
)
= f

(
zt, kt

(
zt
)
, ℓt
(
zt
))

+ (1 – δ) at
(
zt–1

)
.

(d) The initial conditions are satisfied, so that a0
(
z–1
)
= k0.

The sequential problem of the agents in this economy must therefore keep track of an
impossible large state vector because the optimal choices depend on its complete history.
Tackling this problem proves to be impractical if not impossible. Because of that we seek
to re-formulate the household’s problem in its recursive form. Doing so will also provide
us with a definition of recursive competitive equilibrium (RCE).

8.1. Recursive Competitive Equilibrium

The objective now is to cast the problem recursively. This allows us to provide a clearer
definition of equilibrium and (later) to solve the problem using the tools of dynamic
programming developed above and the computational tools introduced below.
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The main question of the recursive problem is what constitute the relevant state of the
economy. Crucially, the household is a price taker: they have no clue about the aggregate
effect of their choices. Equivalently you can think of the household as atomistic, so that
they know that their (individual) actions have no effect on the aggregates of the economy.
However, the states must provide enough information to solve the problem and to forecast
how the states themselves evolve.

In general we have st = (at, zt, Γt) be the state of the individual representative household,
it includes the household’s capital (a), the aggregate productivity (z), and the distribution
of states in the economy (Γ ). Keeping track of the distribution of states is in principle
necessary in order to compute prices. The sequential problem circumvents this problem
by making all variables (prices included) depend on the full history of exogenous shocks.
That, of course, contains all the information necessary. However, the recursive problem
cannot depend the history of states, st = (s0, s1, . . . , st).

To solve this issue we use the structure of the economy. The key is that the economy we
are studying can be aggregated. This means that the underlying distribution of households
does not matter and that only the aggregate (average) capital is relevant: Kt =

∫
atdΓt.

Because of this, an individual household only needs to keep track of aggregate capital
and not of the whole distribution. Crucially, knowing the aggregate capital is enough to
compute the relevant prices in the economy. This makes the state st = (a, z,K).8

The household’s recursive problem is then

V ( a︸ ︷︷ ︸
Ind. State

, z , K︸ ︷︷ ︸
Agg. States

) = max{
c,ℓ,a′

} u (c, ℓ) + β
∫
z′
V
(
a
′
, z

′
,K

′)
Q
(
z, dz

′)
s.t. c + a

′
= (1 + R (z,K)) a +W (z,K) ℓ + Π (z,K) ;

K
′
= Gk (z,K) .

This problem looks a lot like the dynamic programming problems we h ave discussed
before, with the exception that it has to include functions that map the aggregate states into
prices, r = R (z,K) andw = W (z,K), and profits,Π (z,K), and that incorporate the evolution
of the aggregate state, Gk (z,K). These functions are taken as given by the household and
are found as part of the equilibrium defined below.

An Recursive Competitive Equilibrium (RCE) is a set of a value function V , policy
functions gk and gℓ, updating functions Gk and price and profit functions R,W , andΠ, such

8The state is often written as (k, z,K) emphasizing the difference between the “little k” faced by an
individual household and the “big K” faced by the economy as a whole.
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that:9

(a) The value function V and policy functions ga and gℓ solve the household’s dynamic
programming problem, taking as given the updating and price functions Gk, R,W , and
Π.

(b) Thefirmsmaximize profits taking prices as given. This implies that the pricing functions
R andW satisfy the firm’s first order conditions

R (z,K) = f k (z,K,Gℓ (z,K)) – δ W (z,K) = f ℓ (z,K,Gℓ (z,K)) ,

where L = Gℓ (z,K) gives the aggregate equilibrium level of labor as a function of the
aggregate states. And profits satisfy

Π (z,K) = f (z,K,Gℓ (z,K)) – (R (z,K) + δ)K –W (z,K)Gℓ (z,K) .

Note: The price and profit functions are evaluated at the equilibrium levels of capital,
K, and labor, L = Gℓ (z,K), and not at the firms’ capital and labor demand. This already
imposes market clearing for the capital and labor markets because the aggregate
variables are consistent with households’ supply of assets and labor, as noted below.
Walras’ law then implies that the good’s market clears.

(c) Updating functions Gk and Gℓ are consistent with individual optimization

Gk (z,K) = ga (K, z,K) ;

Gℓ (z,K) = gℓ (K, z,K) .

Note: This consistency condition plays two roles. First, it acknowledges that the
household is a representative agent, so that, even though the household acts
individually without having any effect on aggregates, the household assets a are equal
to the aggregate capital K (from the point of the view of the economy, but not of an
individual household). This is captured by evaluating the policy functions of the
household in (K, z,K) and by making the evolution equation for aggregate capital Gk
9The definition of an RCE can be equivalently be done in terms of stochastic processes for the equilibrium

variables (capital, labor, prices, etc.). That is, the equilibrium is the processes for quantities and prices. These
stochastic processes are the equivalent of the sequences of quantities and prices that define a non-stochastic
equilibrium. However, defining the equilibrium in that way is cumbersome. The stochastic processes are all
constructed from the underlying Markov process for z and the policy and price functions that define the
RCE. The construction is carried out as shown in Section 7.4.
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consistent with household savings ga. Second, it acknowledges market clearing by
making the aggregate equilibrium labor L = Gℓ (z,K) be consistent with household
labor supply, gℓ.

Crucially, consistency only has to apply in equilibrium. This allows us device an algorithm
to solve for the RCE. The key is that consistency does not have to hold as you converge to
the equilibrium because the household dynamic problem can be solved given any update
functions.

Algorithm

input :Guess for updating functions (Gk,Gℓ)
output :V , gk, gℓ,Gk,Gℓ

1. Solve the DP problem of the agent given Gk,Gℓ:
(V , gk, gℓ) = T(V ;Gk,Gℓ) (a fixed point problem) ;

2. Update updating functions:
Gk(z,K) = gk(K, z,K) Gℓ(z,K) = gℓ(K, z,K) ;

3. Check convergence in updating functions ;

4. Repeat (1)-(3) until convergence ;
Algorithm 1: RCE Algorithm

Solving the problem requires solving the fixed point characterizing the solution to the
household’s Bellman equation. Unfortunately, this implies that the curse of dimensionality
applies because you have to solve the agent’s problem off-equilibrium. That is, you need
to know gk (a, z,K) for any combination of (a,K), even though in equilibrium a = K. For
efficient economies, where the first welfare theorem applies, we can avoid this problem by
focusing on the planner’s problem and then constructing the equilibrium prices. However,
most applications involve economies with market failures, or distortions (like taxes!) that
prevent us from doing this.

8.2. Stationary Equilibrium:What does it mean?

We now discuss a key property of the equilibrium. When the process for the exogenous
shocks is stationary and the problemof the firmand the household satisfy certain regularity
conditions, the equilibrium converges to a stationary equilibrium. The objective of this
subsection is to discuss what that means.

First we discuss informally what the regularity conditions are. What we want is to
establish conditions that produce “well-behaved” policy functions for the endogenous
states (capital in this case), that is, continuous and monotone. The problem must also
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satisfy standard Inada and transversality conditions that guarantee that it is effectively
bounded.

Continuity is inherited from the continuity of payoff functions (in this case u and f )
and the properties of the feasible correspondence. See the Theorem of the Maximum for
more on this. It also requires that the Markov Process for z satisfies the Feller property
(because of the expectation in the value function).

Monotonicity requires having a sense of what is “better” in the context of the problem.
We interpret z as productivity and hence it makes sense to interpret higher values of z as
being better. For the resulting solution to be monotone in the states (k, z,K) we need the
payoffs to be monotone (as we usually assume), the transition function Q to be monotone
(see Definition 5.4 and Proposition 5.5).

Crucially, the conditions imposed over theMarkov process for z already guarantee that it
is a stationary process with a unique invariant distribution to which it converges, regardless
of its initial condition, z0. The question is whether the stochastic process followed by the
equilibrium variables (capital) are also stationary and converge to an invariant distribution.
The stationary equilibrium is then just a recursive competitive equilibrium for which the
stochastic process of the endogenous variables is stationary.

The concept of the stationary equilibrium is immediate in the non-stochastic case. Then,
policy functionsmap (deterministically) a value of the endogenous state (capital) into a new
value for itself. A sequential markets equilibrium and a recursive competitive equilibrium
are defined just as in the previous subsection, except that they do not depend on the
history of shocks (as there are none). The equivalent of being stationary and having an
invariant distribution is then to have a single steady-state value that satisfies the equilibrium
conditions. Intuitively, the deterministic case is like the stochastic one with degenerate
distributions, so the invariant degenerate distribution puts full probability on a single value
of the variable. That is the steady state.

In the stochastic case, the equilibrium is composed by functions thatmap the realization
of the stochastic process for productivity (z) into values for quantities (K) and prices (r,w).
When these functions are measurable with respect to the underlying productivity process
they form themselves a stochastic processes (the sequence of the random variables for
quantities and prices). The construction of these stochastic processes is carried out as in
Section 7.4. Then, the stationary equilibrium is an endogenously determined probability
distribution over the state variables, with the properties of a Markov chain induced by the
policy functions and the exogenous process for shocks.
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8.3. Profit Maximization: A note

Remark. This sub-section reproduces lessons taught by Tim Kehoe at the University of
Minnesota.

We often assume that the production function has constant returns to scale, that is,
that it is homogenous of degree 1. This is in part for making possible the aggregation of
the economy from individual competitive firms having the same behavior (at scale) than a
representative price-taking firm. This assumption has important consequences for how
we set up the firms’ problem. The objective of this note is to make these consequences
apparent. Before tackling them, it is useful to state Euler’s theorem for homogeneous
functions.

Definition 8.1. (Homogeneous Function)A function f : RN → R is homogeneous of degree
g > 0 if f

(
λ · x⃗

)
= λg · f

(
x⃗
)
for λ > 0.

Theorem8.1. (Euler’s Theorem forHomogeneous Functions)Let f : RN → R be differentiable
function homogeneous of degree g. Then ∂ f (x)∂xi

is homogenous of degree g – 1 for all i ∈ {1, . . . ,N}
and

g f (x) =
N∑
i=1

∂ f (x)
∂xi

xi.

There are three main implications of Euler’s theorem for the equilibria of
macroeconomic models with constant returns to scale production functions.

1) Profit maximization is ill-defined. Consider the profits of a price-taking firm that
produces renting capital and hiring labor with a technology described by Y = zF

(
Kd,Ld

)
that has constant returns to scale, so that F

(
λKd, λLd

)
= λF

(
Kd,Ld

)
for λ > 0. The profits

of the firm, π, also have constant returns to scale. To see this let

π
(
Kd,Ld

)
= zF

(
Kd,Ld

)
– (r + δ)Kd – wLd

and consider an increase in the scale of the firm by a factor of λ > 0. It is immediate that

π
(
λKd, λLd

)
= zF

(
λKd, λLd

)
– (r + δ) λKd – wλLd = λπ

(
Kd,Ld

)
.

This has an important implication for firm behavior: If the firmmakes a profit when
demanding Kd units of capital and Ld units of labor, π

(
Kd,Ld

)
> 0, then it can scale up

that profit by scaling up that demand. Hence the optimal scale of the firm, and hence it
demand for inputs, would be ill-defined (it would be infinite). If the firmmakes a loss for
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all
(
Kd,Ld

)
, π
(
Kd,Ld

)
< 0, then it is optimal to set Kd = Ld = 0 and not produce. Finally

there is a knife edge case where π
(
Kd,Ld

)
= 0 for all

(
Kd,Ld

)
, but the firm’s scale and

demand for inputs is still ill-defined because the firm is indifferent between any scale of
production.

This makes the profit maximization problem ill-defined because the answer to

max{
Kd,Ld

}π(Kd,Ld)
is either 0 or infinity and there is no optimal scale for the firm (other than the case in which
the firm does not operate) .

2) Equilibrium profits must be zero. Despite the profit maximization problem being ill-
defined it does tell us that the only equilibrium outcome arises in the knife edge case of
zero profits. This is has to be the case for the firm to operate but have a finite scale, and
hence a finite demand for inputs.

Turns out that this is precisely the case that arises when prices reflect the marginal
product of inputs. The reason lies in Euler’s theorem. The constant returns to scale
technology implies that

π
(
Kd,Ld

)
= zF

(
Kd,Ld

)
– (r + δ)Kd – wLd

= zF
(
Kd,Ld

)
– zFK

(
Kd,Ld

)
Kd – zFL

(
Kd,Ld

)
Ld

= zF
(
Kd,Ld

)
– zF

(
Kd,Ld

)
= 0.

3) Firms cost minimize. The condition for zero profits above is true only if the prices
coincide with the marginal product of inputs given the firms’ input demand. How can
we guarantee this coincidence? The answer lies in the firms’ cost minimization problem.
Regardless of the scale of the firm, the firm will always minimize its cost given that scale.
So it holds true that

C (Y ) = min{
Kd,Ld

} (r + δ)Kd – wLd s.t. zF
(
Kd,Ld

)
≤ Y

The first order conditions of this problem give us

(r + δ) = µzFK
(
Kd,Ld

)
w = µzFL

(
Kd,Ld

)
,
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where µ is the Lagrange multiplier of the constraint that we can (later) normalize to one.
Euler’s theorem helps again. The marginal products are homogeneous of degree zero

because the production function is homogeneous of degree 1. Put anotherway, themarginal
products are scale-invariant. That means that we can write

(r + δ) = µzFK

(
Kd

Ld
, 1

)
w = µzFL

(
Kd

Ld
, 1

)
.

This has two important implications. First, the marginal products of inputs depend only
on their ratio and not on the their individual scale. So, the condition for zero profits only
requires that the firm input demand has the same ratio as the one implied by prices. Second,
the optimal ratio of input demand is determined by the ratio of prices, implicitly by the
following equation:

r + δ
w

=
FK
(
Kd
Ld
, 1
)

FL
(
Kd
Ld
, 1
) .

This is actually crucial, because it guarantees that, given prices r and w, the firm will
optimally choose the precise ratio of inputs that makes zero profits hold.

It is left to determine prices and the scale of production. This is done in equilibrium.
Market clearing demands that the level of output is consistent with the aggregate demand
in the economy (consumption, savings, government spending, etc.) and that the labor and
capital used in production are the same as the assets and labor supplied by households.
Then, the same equation of the ratio of prices and inputs used to determine the optimal
demand of inputs given prices, is used in the inverse manner to determine the equilibrium
ratio of prices given the supply of assets and labor. Similarly, the scale of production is
obtained by agree An equilibrium allocation equates the demand and supply of capital and
labor. The scale is then provided given Y coming from aggregate demand.

The bottom line is that, in equilibrium, the ratio of prices and the ratio of inputs are
determined by technology and the scale of production is demand-determined.

This can be seen in the definition of the RCE at the beginning of this section where
prices were obtained as

R (z,K) = f k (z,K,Gℓ (z,K)) – δ W (z,K) = f ℓ (z,K,Gℓ (z,K)) ,

with K being the aggregate assets in the economy (a state) and L = Gℓ (z,K) the aggregate
supply of labor in the economy (consistent with household optimization).
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8.4. Computing the Equilibrium: Value function iteration (the discrete case)

The objective is now to illustrate how to compute the equilibrium. We take advantage
of the fact that the the economy we described is efficient and that we can therefore use
the planner’s problem to construct all the equilibrium functions. We further simplify the
problem by getting rid of the labor choice. This simplifies the exposition. The planner’s
problem is to choose aggregate quantities subject to feasibility:

V (K, z) = max
{C,K}

u (C) + β
∫
z′
V
(
K

′
, z

′)
Q
(
z, dz

′)
s.t. C + K

′
= f (z,K) + (1 – δ)K.

The solution to the planner’s problem immediately gives us the equilibrium for individual
quantities

{
c, a, k

}
and prices {r} by setting

c = C k = a = K r = f k (z,K,L) – δ.

We can solve the problem using value function iteration. The key is that, unlike the
household problem above, we do not need to condition on the functions for prices or
aggregates.

Algorithm

Result: Fixed Point of Bellman Operator T

n = 0; V0 ∈ S; distV = 1;
while n ≤ N & distV > tol V do

Vn+1 = TVn;
distV = d

(
Vn+1,Vn

)
;

end
if distV ≤ tol V then

Obtain g from TVn;
else

You are in trouble... something went wrong;
end

Algorithm 2: Value Function Iteration
While actually solving the problem as posed can be challenging (because of the

difficulties in making continuous choices and taking expectations) it is possible to
approximate it with a related (and much simpler problem) in which the whole problem is
discretized. This is the simplest implementation of value function iteration. The key
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advantage is that there are no continuous choices (or integral), instead, the problem
consists in choosing the best value of capital from a pre-specified and fixed grid (hence its
common name of grid search).

The approximation of the (continuous) dynamic programming problem with a discrete
onedoesnot require theuse of derivatives and is robust to complications such as kinks in the
choice set, or asymmetries in the functions being used. It is also very easy to implement.
However, it is not (in general) a very precise approximation, and it has a low rate of
convergence, making it slow. This problem is compounded by the curse of dimensionality,
which bites particularly hard for discrete problems because they require large state spaces
in order to improve the accuracy of the approximation (more on how to gauge accuracy at
the end of this section).

The discrete problem is

V
(
ki, zj

)
= max
k′∈{k1,...,kI}

U
(
zj k

α
i + (1 – δ) ki – k

′)
+ β

J∑
j
′
=1

Πj j ′V
(
k
′
, z
j
′

)

where we have replaced the constraint, leaving consumption implicitly defined by the
choice of capital which is now discrete. Conveniently, everything in the problem is now a
vector or a matrix:

V =
[
Vij
]
; k⃗ =

[
k1, . . . , kI

]T ; z⃗ =
[
z1, . . . , zJ

]T ; Π =
[
Π
j j

′ = Q
(
zj ,
{
z
j
′

})]
;

U =
[
Uij h = u

(
zj k

α
i k⃗ =

[
k1, . . . , kI

]T – k′h)] ;
This allows us to solve the problem of choosing k

′ ∈
{
k1, . . . , kI

}
for every pair of

(
ki, zj

)
in two different ways. Either looping through all the pairs of states, or collapsing thematrix
of payoffs along its third dimension.

This algorithm can be sped up in many programming languages by operating directly
on matrices, instead of relying on loops. This also leads to a more concise program.

In order to evaluate the accuracy of the solution wemake use of Euler Residuals. These
are the residuals in the first order conditions of the actual problem, which should be zero
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Algorithm

Function T(V_old,k_grid,z_grid,α,β):

nk = length(k_grid)
nz = length(z_grid)
V = zeros(nk,nz); Gk p = zeros(nk,nz); Gc = zeros(nk,nz)

for i = 1:nk do
for j = 1:nz do

V_aux = zeros(nk)

for h = 1:nk do
V_aux[h] = u(k_grid[i],z_grid[ j],k_grid[h];α,β) +
βsum(Πj ,j ′V_old[h,j’])

end

V[i,j], Gk p[i,j] = findmax(V_aux)

Gc[i,j] = f(k_grid[i],z_grid[ j]) + (1-δ)k_grid[i] - k_grid[Gk p[i,j]]
end

end
return V, Gk p, Gc

Algorithm 3: Bellman Operator: Discrete grid with loops
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for the correct solution.

Res
(
k, zj |g

)
=
β
∑J
j
′
=1
Π
j j

′U
′
(
f
(
z
j
′ , g
(
k, zj

))
+ (1 – δ) k – g

(
g
(
k, zj

)
, z
j
′

)) ∂ f
(
z
j
′ ,g
(
k,zj

))
dk

U ′
(
f
(
zj , k

)
+ (1 – δ) k – g

(
k, zj

)) – 1

︸ ︷︷ ︸
% Error in Euler Equation

We can evaluate these residuals for values of capital in the grid used to solve the problem.
The Euler residuals can help diagnose if there are parts of the state space that need to be
denser (say having more grid points near low-levels of capital where the curvature of the
problem is higher) or whether the approximation to the solution is satisfactory in general.

Having approximated the solution to the dynamic programming problem we can
construct a Markov process for the states in the economy and obtain their stationary
distribution. In the special case of discrete grid search, this is facilitated by the fact that
the choice of future capital is always in the grid. We can then construct a Markov
transition matrix for the state vector of the economy. In this case, the state is s = (k, z), and
the state space can be express as a long vector

s⃗ = ((k1, z1) , (k1, z2) , . . . , (k1, zJ) , (k2, z1) , . . . , (k2, zJ) , . . . , (kI, z1) , . . . , (kI, zJ)) .

The Markov transition matrix is therefore a square matrix with I × J rows and columns.
We can build the matrix following the steps in Section 7.4. The key is that z evolves
independently following the transition matrix Π, while k evolves deterministically. The
matrix is then

Ψ(
ij ,i′ j

′) = Πj j ′χ{i′=Gk p(i,j )}.
The properties of the stochastic process for capital and productivity then follow from this
matrix. For instance, the stationary distribution is obtained from the eigenvector associated
with the matrix unit eigenvalue.

8.5. Recursive Competitive Equilibrium Example: Sovereign Default

Sovereign default models form a large literature on international economics and are
also a great example of stochastic dynamic programming. The choice to default required
dynamics in order to have an opportunity and a reason to borrow and to introduce a
relevant tradeoff around default. The model must also be stochastic in order to induce
the situations in which a decision maker borrows and then finds themselves in a situation
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where they opt to default. These models are also inherently inefficient, preventing the
use of the planner’s problem. The reason is that markets must be incomplete in order for
the decision maker not to be able to fully insure against risk. Further, the borrowing and
default decisions depend on prices, which are taken as given by the decision maker, but
that respond endogenously (in equilibrium) to the decision maker’s choices.

The basic sovereign default model follows Arellano (2008). It is a stochastic endowment
economy. Output (or income) follows an exogenous (discrete) Markov process described by
an underlying state s ∈ {s1, . . . , sN} = S. The decision maker, say the government, chooses
borrowing/saving and whether to default on debt. The decision is made taking as given a
price schedule for debt (q) that depends on the state of the economy and the debt of the
government.

The dynamic programming problem is then split in two. First there is the (discrete)
choice of whether to default. The state of the government is the pair (s, b), where s is the
exogenous state of the economy and b is the level of outstanding bonds to be paid to the
government (so b > 0 means savings and b < 0 means debt). If the government pays they
get to access the lending markets and gets a value of V (s, b) but if it defaults it is thrown
into financial autarky and gets a value VA (s) (that no longer depends on b because there is
no debt and no access no markets). The value of the government, V⋆, reflects the upper
envelope of this choice,

V⋆ (s, b) = max
d∈{0,1}

{
(1 – d (s, b))V (s, b) + d (s, b)VA (s)

}
.

The value of having access to the financial markets is

V (s, b) = max
{c,b′}

c (s, b)1–σ – 11 – σ
+ β

∑
s′∈S

π
(
s, s

′)
V⋆ (s′, b′)


s.t. c (s, b) ≤ y (s) + b – q (s, b) b

′
(s, b)

–B ≤ b
′
(s, b) [B: borrowing limit]

0 ≤ c (s, b) .

The value of going into autarky is

VA (s) =
(h ( y (s)))1–σ – 1

1 – σ
+ β
∑
s′∈S

π
(
s, s′
) (
θV⋆ (s′, 0) + (1 – θ)VA (s′)) ,

where h ( y) < y is a function that penalizes output, representing the costs of autarky.

81



There is no choice for the government as there are no markets that allow it to smooth
consumption. The government returns to the markets with probability θ ≥ 0.

There is also a sector of financial intermediaries that operate in perfect competition.
They are risk neutral and lend in an actuarially fair manner, meaning that their prices
reflect the expected costs of default and so they break even in expectation. The profits of
one of these financial intermediaries are

Pr = qb
′
–
1 – δ
1 + r

b
′
,

where δ is the (endogenously determined) probability of default taken as given by the
intermediary. This probability comes, in equilibrium, from the optimal default choice of
the government, gD (s, b), and satisfies

δ = Es′
[
gD
(
s
′
, b

′)
|s
]

where gD
(
s
′
, b

′)
=

1 if default

0 if no default
.

Free entry gives the zero profit (break even) condition that Pr = 0 and so the debt price is
(in equilibrium):

q
(
s, b′

)
=


1–
∑
s′∈S

π(s′)gD(s′,b′)

R if b′ < 0
1
R if b′ ≥ 0

A Recursive Competitive Equilibrium is then a set of value functions
{
V⋆,VA,V

}
,

policy functions
{
gc, gb, gD

}
, and a price functional

{
q
(
s, b

′)}
such that

(a) The value functions solve the Bellman equations of the government and the policy
functions achieve the maximum in those equations taking the price q as given.

(b) The price q satisfies the zero profit or break even condition of the financial
intermediaries
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Part III

Heterogeneous Agent Models
We now want to consider economies with a continuum of agents where heterogeneity
plays a role. In the models of the previous questions preferences and technology were
such that we could aggregate the behavior of agents into a representative household and
a representative firm. In sum, only the aggregate levels of variables like capital (wealth)
mattered, and not their distribution across individuals. This abstraction is appropriate for
many questions, especially those about the behavior of aggregates and business cycles,
but it comes at big costs because it essentially collapses various dimensions of relevant
heterogeneity into the behavior of aggregates.

The alternative to representative-agent macroeconomics is what Benjamin Moll calls
Distributional Macroeconomics. I encourage you to checkout his lecture notes on this
available here: Distributional Macroeconomics Notes. Moll’s notes frame the development
of macroeconomics towards a state where inequality at the micro-level matters for the
behavior of aggregates, and the behavior of aggregates matters for individual agents in
different ways.

We can think of two types of heterogeneity to include in our models:
Ex-ante heterogeneity where agents have different types that determine their possible

actions, preferences, or technology. A good example of this is models of workers and
entrepreneurs, where some agents are (always) workers while other agents are (always)
entrepreneurs. There can also be further differences within each type of agent, for
example some entrepreneurs can have permanently high- or low-productivity. See
Guvenen, Kambourov, Kuruscu, and Ocampo (2023a) for an application of these ideas.

Ex-post heterogeneity where the differences among agents arise from their endogenous
reaction to the realization of idiosyncratic and aggregate shocks they face. The differences
among agents are then seen in their states. Some are in debt, some have savings; some
have high income or human capital, some have low income or human capital; some own
housing, some rent (and some houses are larger than others).

Whether the model economy exhibits ex-ante or ex-post heterogeneity (or both),
agents are subject to shocks to their ability to generate income (say unemployment and
employment as in the original work of İmrohoroǧlu 1992), or to their age (some are young,
some are old), or to their health, etc. The distribution of these shocks along with the
endogenous response of the different agents leads to an endogenous distribution across
states. In the absence of aggregate shocks, this distribution converges to a stationary
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distribution of agents. That will be the main objective of our theory: develop models of the
distribution of agents across states.

Why do we care so much about the distribution of agents across states? The distribution
is what connects the micro-behavior of agents with the macro-aggregates of the economy.
The distribution is what allows us to explicitly aggregate individual behavior in our models.
We will devote most of our time to models where the distribution does not change in the
long run because there are no aggregate shocks. In thesemodels, the lives of individuals are
always changing as they face shocks and respond to them,moving through the distribution,
but the distribution itself is always the same because the changes in individuals’ lives are
all uncoordinated.

In terms of the machinery we have developed so far, the stationary distribution does
not describe the behavior of a single random variable across time (as it follows a
stationary stochastic process) but the cross-sectional behavior of a population. In this
context, aggregates are of course constant (as in the definition of a steady state) because
they only depend on the distribution, and not on the actions of any individual.

There is a final ingredient of these models. Critical to their working is the notion
of market incompleteness. If markets were complete, agents could perfectly insure the
idiosyncratic risk they face and there would be no differences in allocations across them
beyond those explained by preferences and technology. If all heterogeneity is ex-post
heterogeneity, complete markets would effectively do away with these ex-post differences.
The most common form of market incompleteness is the absence of state-contingent
bonds. Instead, agents can only trade in bonds (or assets) that pay the same regardless of
the realization of idiosyncratic shocks. This prevents agents from fully insuring against
income fluctuations, for instance.

9. The Income Fluctuations Model and Precautionary Savings

The basic form of the heterogeneous agent model is built to generate ex-post household
heterogeneity and to be consistent (as much as possible) with the neoclassical growth
model. However, unlike the neoclassical growth model, there are no aggregate shocks.

The economy is populated by a continuum of households who are ex-ante identical.
That means that they have the same preferences and the solve the same problem. These
households are subject to idiosyncratic income shocks. These shocks are most often
interpreted as variation in the household’s labor-income. The households have access to a
savings technology in the form of assets (or bonds) that pay the same return r in all states
(corresponding to the value of the income shocks of the households). Households are
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further subject to a borrowing constraint, so that their (net) assets have to be above a
given lower bound a.

The problem of the household is (by construction) almost identical to the household
problem in the Recursive Competitive Equilibrium of the neoclassical growth problem:

V (ϵ, a) = max{
c,ℓ,a′

} u (c, ℓ) + βE [V (ϵ′, a′) |ϵ]
s.t. c + a

′
= (1 + r) a + w f (ϵ, ℓ) a

′
≥ a

In this problem the household is subject to shocks ϵ to their earning ability, as before we
assume that ϵ follows a Markov process with transition function Q. The household can, in
principle, choose how much to work but how ϵ determines how labor is translated into
earnings. Savings take the form of assets a.

We are already setting the problem in its stationary form, as evidenced by the fact that
prices (r,w) are constant. We will formalize this idea later when we provide the notion of
equilibrium.

Precautionary Savings and the Rate of Return. An important aspect of this problem is
that, unlike that of the planner in the neoclassical growth model, the returns to assets
are constant. That is, there is no curvature in the budget constraint. This is of course a
consequence of the household being a price taker. Tied to this fact is the (newly introduced)
disconnect between the individual’s income and the return on assets. In the representative
agent economy we discussed above, wages and returns moved in response to the same
(aggregate) conditions. Here, each household’s income moves in response to idiosyncratic
factors (captured by ϵ) with prices held constant (and equal for all households).

These aspects matter because they introduce a newmotive for savings that has been
termed “precautionary savings.” To understand thismotive for savingswe start by contrasting
the heterogeneous agent model we introduce here with the neoclassical growth model and
its representative agent to then contrast them with what is happening in the new model.

Savings and returns in a representative agent world Savings in the neoclassical
growth model are determined by the inter-temporal trade-off of spending resources in
the present in order to receive returns in the future. These returns corresponded to the
marginal product of the capital being accumulated through savings. The representative
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household’s Euler equation is

uc (C,L) = (1 + r)βE
[
uc
(
C
′
,L

′)]
.

In steady state with no aggregate fluctuations (the corresponding version of the stationary
recursive competitive equilibrium we will study below) we have the standard result that
the return on assets is equal to the (inverse of the) inter-temporal rate of discount

1 + r = 1/β.

This is a no-arbitrage expression. Without any risk (exogenous variation in future values
of consumption and leisure), the household is indifferent between saving an extra unit of
goods or not. In other words, because (1 + r)β = 1 the discounted value of the returns is the
same as the present cost of the goods being saved. This indifference condition prevents
the (representative) household from engaging in arbitrage. For instance, if 1 + r < 1/β
the household would want to borrow infinitely. The linearity (lack of curvature) of the
household’s budget introduces the same forced discussed before in the context of a firm
with constant returns to scale technology. In the same way, the equilibrium level of capital
(wealth or assets) is not determined by supply (which is perfectly elastic given the no-
arbitrage condition above) but demand-determined. The curvature that sets the steady
state level of capital comes from the firm’s capital demand, that requires that

1 + r = f k (z,K,L) + 1 – δ.

Together these conditions provide the standard steady state condition for the neoclassical
growth model

f k (z,K,L) – δ =
1
β
– 1,

equating the steady state marginal product of capital with the rate of inter-temporal
discount.

Beyond determining the level of aggregates in steady state, the results above have
an important economic interpretation. The sole determinant of the level of capital in
the economy is the curvature of the production function (that determines the marginal
productivity of capital) relative to the household’s rate of discount. The household’s saving
motive is one of future use of capital. That is, capital is accumulated to be used. This logic
is transformed in the heterogeneous agent model as we see below.
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Idiosyncratic risk and the stationary rate of return The introduction of idiosyncratic
and uninsurable risk to the model (via income fluctuations and incomplete markets) results
in a new saving motive for households. They want to have savings “just in case something
happens.” Under this logic, assets are not accumulated with the objective of using them
(say for production) but rather with the object of not using them! Savings, even in non-
state-contingent assets provide a form of self-insurance against idiosyncratic income
fluctuations. Households with currently high incomes (relative to their long-run average)
accumulate assets in anticipation of potentially low incomes to come (they save hoping that
those savings won’t be needed, but knowing that they will). Households with low income
can partially insure themselves by drawing on their savings. Here is where the borrowing
constraint bites, as it prevents better insurance by limiting the debt that households can
accumulate. This turns out to be a crucial factor determining the equilibrium aggregates
in the economy.

The households’ Euler equation is

uc
(
ci, ℓi

)
= (1 + r)βE

ϵ
′
i

[
uc
(
c
′
i, ℓ

′
i

)
|ϵi
]
.

Even though prices and aggregates do not change, the expectation over future idiosyncratic
shocks is still relevant. Moreover, because households are heterogeneous (with different
asset and income levels), the Euler equation necessarily implies that some households save
while other dissave, depending on the value of their current and expected consumption.
Unlike the normal savings motives explained above, the household wants to save because
their current income is higher than their expected future income, this will happen for
some household regardless of the relationship between the rate of return and the rate of
discount. Of course, more households are willing to save if there is a higher rate of return
or a higher rate of discount, and vice-versa.

What happens then with the relationship between the rate of return and the rate of
discount in equilibrium? Aiyagari (1994) shows that it must be that case that

1 + r < 1/β.

The reason is a combination of the fact that households are heterogeneous (facing
idiosyncratic labor income risk) and that the presence of the borrowing constraint that
introduces a key asymmetry to the problem. It cannot be that 1 + r > 1/β because then the
Euler equation would imply that consumption must have an upward drift (that is, that it
must be expected to increase). This means that households want to save always. Because
households are infinitely lived, this implies that assets (and consumption) tend to infinity.
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This cannot be a solution. See Aiyagari (1994, footnote 20) for a formal argument. The
same thing occurs if 1 + r = 1/β. The reason lies in the desire for self-insurance as the
household wants to have constant (expected) marginal utility over time. Once again,
because the household is infinitely lived, they face the risk of an arbitrarily long sequence
of low-income shocks. In order to insure against that, the household needs an arbitrarily
large stock of savings. This is feasible because, with 1 + r = 1/β, it is costless for the
household to transform current consumption into savings.

Therefore, it must be that 1 + r < 1/β in equilibrium. Under complete markets this would
lead the household to accumulate infinite debt. The borrowing constraint prevents this
from happening. Instead, there is a positive mass of households who de-accumulate assets
and hit the constraint (following a series of low income shocks), while other households
accumulate assets when they have higher levels of income. The properties of the optimal
saving function in this income-fluctuation problem are explored in Huggett (1993, Theorem
I), Aiyagari (1994, Sec. III, The Individual’s Problem), and more explicitly in Achdou, Han,
Lasry, Lions, and Moll (2022).

What does this imply for the aggregate level of assets (or capital) in the economy?
Huggett (1993) and Aiyagari (1994) show that the level of assets in the
incomplete-markets/heterogeneous-agent economy must be larger than in its
complete-markets/representative agent counterpart. The additional assets (relative to
complete markets) capture the role of precautionary savings. Angeletos (2007) later
showed that, even though aggregate assets are always higher under labor-income risk,
they can be increased or decreased under capital-income risk (also called investment or
production risk), even though 1 + r < 1/β still holds.

The relationship between the rate of return and the rate of discount also has implications
for a long-standing debate on the return to equity and the return to safe assets. While the
observed risk-free interest rates (i.e. those on Treasury bills), were around 1%, the average
real return to equity was around 7%. This gap could not be matched by calibrating existing
representative-agent models. In particular, these models predicted risk-free rates and
equity premiums that were too large and too small, respectively. Huggett (1993) provides a
partial answer for the relatively low risk-free rates by introducing uninsurable income risk.
Because of the borrowing constraint, agents are restricted in the level of their indebtedness.
However, agents are not restricted from accumulating saving. A low risk-free rate is then
needed to persuade agents not to accumulate large credit balances so that the credit market
can clear, as we will see in the next section. Angeletos (2007) revisits these results in a
production economy with returns to private equity.
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Closing the model: What about production?. To close the model we need to specify where
output comes from. We will do this below looking at the two main alternatives: an
endowment economy (without firms) as modeled in Huggett (1993) and a production
economy as modeled in Aiyagari (1994). The firms are in any case kept as simple as
possible, loading all the heterogeneity into the households.

10. An Endowment Economy

Consider an economy like the one described in Huggett (1993). The economy is populated
by a continuum of households who receive a stochastic endowment of consumption goods
(say, jelly beans) every period. Denote by ϵ the amount of jelly beans received by a
household. The amount of jelly beans that a household receives follows a Markov process
with transition function Q. The jelly beans follow independent but identical processes
across households.

Sadly, jelly beans cannot be stored and thus have to be consumed the same period
they are received. This is a problem for the households because they would much rather
not have their income fluctuate every period. Nevertheless, the households can smooth
consumption by contracting with one another, that is by exchanging jelly beans among
them. This is, of course, an exchange economy (as opposed to the production economy we
study in the next section).

The contracts that households can sign are limited in two ways. First, they cannot
depend on the individual realizations of the present or future endowment of jelly beans.
That is, the contracts can only specify a fixed amount of jelly beans being transferred
today in exchange for a fixed amount in the future, regardless of how many jelly beans
the household actually has. This form of market incompleteness can reflect information
frictions, as the amount of jelly beans a household receives is their private information.
Second, credit balances (receiving jelly beans today in exchange for payment of jelly beans
in the future) are restricted, so that there is a limit to howmany jelly beans can be obtained
by a household in the market.

Therefore, the contracts take the form of saving/debt contracts, where the household
exchanges an amount a

′
of jelly beans today in exchange for (1 + r) a

′
jelly beans in the

future. When a
′
> 0 the household is saving and will receive payment in the future. When

a
′
< 0 the household is in debt and receives jelly beans today in exchange for a payment in

the future. This problem can be equivalently formulated in terms of (zero-coupon) bond
contracts with a unit bond having a price of q. Letting q = 1/1+r the problem would be
buying a bond that pays one unit of future jelly beans paying q jelly beans today. This latter
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formulation is the one used in Huggett (1993).
As explained above, it will be the case that households use financial contracts (bonds)

to smooth consumption. They save if ϵ is high and borrow if ϵ is low.
The problem of the households is then

V (ϵ, a) = max{
c,a′

} u (c) + βE [V (ϵ′, a′) |ϵ]
s.t. c + a

′
= (1 + r) a + ϵ a

′
≥ a

With respect to the workhorse model above, there is no labor choice and the “wage” is
equal to 1, making income equal to ϵ. As before, households live forever and there is no
aggregate risk. The Euler equation of a household is

u
′
(c) = βE

ϵ
′
[
Va
(
ϵ
′
, a

′)
|ϵ
]
= β (1 + r)E

[
u
′ (
(1 + r) a

′
+ ϵ

′
– ga

(
ϵ
′
, a

′))]
,

where ga is the policy function for savings.
The borrowing constraint must satisfy:

a ≥ –ϵmin/r.

This is called the natural borrowing limit. It is the highest amount of debt that can be rolled-
over forever if the household faces an infinite sequence of the lowest possible endowment
(or income shock).

Crucially, the financial contracts (bonds) are in zero net supply in this economy. This is
an immediate consequence of the jelly beans not being storable. That is, there are no actual
goods being transferred across time, only promises for future payments. The implication
of this is that one household’s savings are another household’s debt. Even though the
households trade against the market and not in bilateral meetings, the total amount of
saving and debt in this economymost coincide. If this was a representative agent economy,
there would be no trade!

Distribution of households. The fact that financial contracts are in zero net supply means
that in equilibrium the aggregate level of assets (bonds) must be zero. To calculate this
we need to define and obtain the distribution of households over states, Γ . Then we can
calculate aggregate assets as the integral over the level of assets (bonds) with respect to the
distribution of households (Γ ). This is the key equilibrium condition for this economy.

Formally, we define S as the set of exogenous states and [a, a] be the domain of assets
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(Exercise: Show that there is an endogenous upper bound for the distribution of assets.
See Huggett 1993, Theorem 2, Aiyagari 1994, footnote 18, Achdou et al. 2022, Proposition
2). Let S and A be σ-algebras over S and [a, a] respectively. The distribution of agents is a
measurable function Γ : S× A→ [0, 1] that integrates to 1.

We canupdate the distribution of households by following their actions. Let S×A ∈ S×A
be a set in the σ-algebras. We want to know if there are households coming into the set
S × A. From the Markov kernel (or transition function) of ϵ we have the probability that
ϵ
′ ∈ S:

Pr
(
ϵ
′
∈ S|ϵ

)
=
∫
ϵ
′∈S

Q
(
ϵ
′
|ϵ
)
dϵ.

Then, we define an indicator function to know if a
′ ∈ A

g (ϵ, a,A) =

1 if a
′
= ga (ϵ, a) ∈ A

0 otw
.

With this we can update the distribution for all (S,A) ∈ S×A:

Γ
′
(S,A) =

∫
S

∫
A
g (ϵ, a,A) · Pr

(
ϵ
′
∈ S|ϵ

)
︸ ︷︷ ︸
Markov Kernel:P

(
ϵ
′a′ |ϵ,a

) ·dΓ (ϵ, a) .

This is the adjoint Markov operator of the Markov kernel (or transition function) Q of
the joint process for (ϵ, a). The stationary distribution of states across households is the
fixed point of this operator (Γ such that Γ

′
= Γ ).

When the exogenous state is discrete (as is often the case) updating is simpler. We can
work with: S = {{ϵ1} , . . . , {ϵn} , . . . , {ϵN}} instead of the σ-algebra and update according to

Γ
′ (
ϵ
′
,A
)
=
∑
S

∫
A
g (ϵ, a,A) · Q

(
ϵ
′
|ϵ
)

︸ ︷︷ ︸
Markov Transition Matrix

·dΓ (ϵ, a)

Stationary recursive competitive equilibrium. A S-RCE is a set of a value function (V ), a
policy function

(
a
′)
, a distribution (Γ ), and a price (r) such that:

(a) Given r the value and policy functions solve the agent’s problem (the dynamic
programming problem above).

(b) Given the policy function, Γ is a fixed point of the adjoint Markov operator of the
endogenous Markov process defined above.
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(c) Given the distribution and policy functions the asset (or bond) market clears:∫ ∫
a
′
(ϵ, a) · dΓ (ϵ, a)︸ ︷︷ ︸

Net Supply of Assets

= 0←→
∫ ∫

c (ϵ, a) · dΓ (ϵ, a)︸ ︷︷ ︸
Demand for Goods

=
∫ ∫

ϵ · dΓ (ϵ, a)︸ ︷︷ ︸
Supply of Goods

The definition of equilibrium also gives us an algorithm to find it.

input :Guess for price (r)
output :V , a

′
, Γ , r

1. Solve the DP problem of the agent given r:
(V , a

′
) = T(V ; r) (a fixed point problem) ;

2. Find stationary distribution by iterating over the adjoint Markov operator ;

3. Check market clearing:
∑
i
∑
j a

′
(ϵ⃗i, a⃗j ) · Γ (i, j ) ;

4. Update prices to clear market
Manually by tatonnement or with a Root finder ;

5. Repeat (1)-(4) until market clears ;
Algorithm 4: S-RCE Algorithm

However, it is not a given that such an equilibrium exists. A couple of results are needed
for this presented in Theorems 1 and 2 of Huggett (1993). If you read the explanation in the
paper you will see how much of a group effort the development of these models was. The
proofs of each result build on a series of concurrent papers. Interestingly, Huggett does
not fully prove that an equilibrium exists. He conjectures that the excess supply of assets is
increasing in the interest rate r (or decreasing in the price of bonds q) and uses tatonnment
to search for an equilibrium. The conjecture is verified computationally but not proven.

11. A Production Economy

The economy in the previous section already showcases all the key ingredients of
household heterogeneity. However, there is no production and hence no way to to talk
about returns. The r in the previous model is better understood as an attribute of a
financial contract, but not a rate of return on a productive investment. This ultimately
prevents us from drawing a clear parallel between the heterogeneous agent economy
above and the representative agent economy in the neoclassical growth model, where
prices reflect the marginal productivity of factors used in generating the aggregate output
of the economy.

The economy described in Aiyagari (1994) fills the next portion of the gap between
heterogeneous agent models and the representative agent real business cycle models. The
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key is the move from an endowment to a production economy. Production is (on purpose)
just as in the neoclassical growthmodel: there is a representative firm operating a constant
returns to scale technology, Y = f (z,K,L). As it turns out, doing this greatly simplifies
market clearing. The reason is in the discussion in Section 8.3. The scale of operations of a
firm with a constant-returns-to-scale technology is undefined, and so prices have to be
such that the firm is indifferent between any scale. For this to happen, prices must reflect
the marginal product of inputs.

Aiyagari also interprets the value of ϵ as the value of “labor efficiency” instead of a
direct income endowment. Under this interpretation, income depends on labor efficiency
(ϵ) and the market wage (w). We assume for simplicity that individuals do not care about
leisure and thus supply one unit of labor inelastically. As before, ϵ is stochastic and follows
aMarkov process Q. This is the only source of variation in the economy and the realizations
of ϵ are independent across households.

The household’s problem is then

V (ϵ, a) = max{
c,a′

} u (c) + βE [V (ϵ′, a′) |ϵ]
s.t. c + a

′
= (1 + r) a + wϵ a

′
≥ a

The borrowing limit must satisfy
a ≥ –

wϵmin
r

.

The Euler equation is, as before,

u
′
((1 + r) a + wϵ) = βE

[
Va
(
ϵ
′
, a

′)
|ϵ
]
.

As above, the households take the (constant) prices as given. Their behavior induces a
Markov process over the state (ϵ, a) that is constructed in the same way as in the previous
section and results in a stationary distribution of households Γ .

The firm’s cost minimization problem implies that the demand for inputs is perfectly
elastic at equilibrium prices. Therefore, the only way to clear the market is to make
producers indifferent between any scale of production by setting

r = f k (z,K,L) – δ w = f L (z,K,L) .

Stationary recursive competitive equilibrium. A S-RCE is a set of a value function (V ), a
policy function

(
a
′)
, a distribution (Γ ), and prices (r,w) such that:
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(a) Given (r,w) the value and policy functions solve the agent’s problem (the dynamic
programming problem above).

(b) Given the policy function, Γ is a fixed point of the adjoint Markov operator of the
endogenous Markov process defined by the (exogenous) Markov process for ϵ with
Transition function Q and the (endogenous) policy function for a

′
.

(c) The capital and labor markets clear. That is, aggregate capital reflects the aggregate
assets of the households and aggregate labor demand equals the supply of “efficiency
units of labor” from the household

K =
∫ ∫

a · dΓ (ϵ, a) L =
∫ ∫

ϵ · dΓ (ϵ, a) .

(d) Prices are consistent with firm optimization (in this case cost-minimization)

r = f k (z,K,L) – δ w = f L (z,K,L) .

input :Guess for price (r)
output :V , a

′
, Γ , r

1. Solve the DP problem of the agent given (r,w):
(V , a

′
) = T(V ; r) (a fixed point problem) ;

2. Find stationary distribution method (or update dist. N times) ;
3. Update prices to ensure market clearing:

K =
∑
i
∑
j a · Γ (i, j ) −→ r = f K(z,K, 1) – δ w = f L(z,K, 1) ;

Dampen updating of prices if necessary ;
4. Repeat (1)-(3) until prices converge ;

Algorithm 5: S-RCE Algorithm

Note that the labor supply is exogenous! So, (i) we can simplify the integral because
it does not depend on the level of assets, and (ii) we can normalize the level of ϵ so that
the market clearing condition becomes: L =

∫
ϵΓϵ (ϵ) dϵ = 1, where Γϵ is the stationary

distribution of the Markov process Q having normalized the levels so that the expected
value of ϵ is 1.

Finally, the definition of equilibrium also gives us an algorithm to find it. The key is
that once we normalize the level of labor supply we realize that, just as in the neoclassical
growth model, all the economy depends only on the aggregate level of capital, K. Once K
is known it implies prices r = f k (z,K, 1) – δ and w = f L (z,K, 1). With this prices we can

94



solve the household’s problem and then arrive at at new level of K. This means that the
problem of finding an equilibrium is a fixed point problem on a single value, the value of
aggregate capital. Incidentally, a good initial condition is the steady state value of capital
in the corresponding complete-markets/representative-agent economy.

12. A Production Economy with Aggregate Risk

There is, of course one critical aspect missing from the previous models: aggregate risk. In
all of them, there is only idiosyncratic variation affectinghouseholds, but leaving aggregates
unchanged. Hence the focus on the stationary recursive competitive equilibria of those
economies.

The next step is to introduce aggregate fluctuations into the Aiyagari economy. Krusell
and Smith (1998) is the first paper to accomplish this taking (essentially) the same economy
presented in the previous question and making z, the productivity of the firm, stochastic.
Assume it follows aMarkov processwith transition functionQz.Wewill write the (recursive)
household problem later, but first we need to discuss the implications of aggregate shocks.

The re-introduction of aggregate productivity means that we are back at the problem of
Section 8, but with the added difficulty of having a time-varying distribution of households.
The key issue is, as before, determining what is the relevant state of the household problem.
The statemust (i) contain all the information needed to solve the problem, including prices,
and (ii) be updated to compute continuation values, as well as expectations over prices
and other variables.

In Section 8 this problem was solved by keeping track of the aggregate capital stock K
and imposing consistency between the transition function of the aggregate capital stock
and the savings function of the representative household (GK = ga). The key was that
the aggregate capital stock was the only object needed to compute prices and solve the
household problem.

Unfortunately, there is no longer an immediate correspondence between aggregate
capital and individual assets. Aggregate capital is still enough to compute prices (as
discussed at the end of the previous section), but to know its value we have no option but
to integrate over the asset holdings of households with respect to the (time-varying)
distribution of households

Kt =
∫ ∫

a · dΓt (ϵ, a) .

Further, in order to update the aggregate capital, it becomes necessary to update the
distribution itself Γt+1 = T⋆t Γt using the adjoint Markov operator of the process induced by
households’ saving choices.
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The outcome of this is that aggregate capital is no longer a viable state and that instead
the households need to keep track of the whole distribution Γ and its evolution. However,
the evolution of the distribution itself is state dependent as it reflects the households’ saving
choices that respond to the aggregate state of the economy.

Recursive competitive equilibrium. ARCE is a set of a value function (V ), a policy function(
a
′)
, a state-dependent transition function for the distribution (T⋆), and price functions

(R,W ) such that:

(a) Given the functions (R,W ) and the transition function for the distribution (T⋆), the
value and policy functions solve the households’ dynamic programming problem

V

 ϵ, a︸︷︷︸
Ind. State

, z, Γ︸︷︷︸
Agg. State

 = max{
c,a′

} u (c) + βE [V (ϵ′, a′, z′, Γ ′) |ϵ, z, Γ]
s.t. c + a

′
= (1 + R (z, Γ )) a +W (z, Γ ) ϵ a

′
≥ a Γ

′
= T⋆Γ

T⋆’s dependence on the aggregate state is omitted from the notation for simplicity.
Alternatively, we can write Γ

′
= H (z, Γ ) for a transition function H. We can also write

prices as functions of productivity and aggregate capital, r = R (z,K) and w = W (z,K).

(b) The transition function for the distribution of agents corresponds to the adjoint
Markov operator of the endogenous Markov process defined by the (exogenous)
Markov processes for ϵ and z with Transition function Q and Qz and the (endogenous)
policy function for a

′
.

Γ
′
(Sϵ,A) = T⋆Γ (Sϵ,A) =

∫
S

∫
A
g (ϵ, a, z, Γ ) · Pr

(
ϵ
′
∈ Sϵ|ϵ

)
︸ ︷︷ ︸
Markov Kernel:P

(
ϵ
′ ,a′ |ϵ,a;z,Γ

) ·dΓ (ϵ, a)

where

g (ϵ, a, z, Γ ,A) =

1 if a
′
= ga (ϵ, a, z, Γ ) ∈ A

0 otw
.

(c) The capital and labor markets clear. That is, aggregate capital reflects the aggregate
assets of the households and aggregate labor demand equals the supply of “efficiency
units of labor” from the household

K =
∫ ∫

a · dΓ (ϵ, a) L =
∫ ∫

ϵ · dΓ (ϵ, a) (= 1) .
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Note that the aggregate capital is a function of the distribution of households, K (Γ ).

(d) Prices are consistent with firm optimization (in this case cost-minimization)

r = f k (z,K,L) – δ w = f L (z,K,L) .

This implies
R (z,K) = f k (z,K, 1) – δ W (z,K) = f L (z,K, 1) .

The versionwith prices depending on the distribution Γ rather than on aggregate capital
makes it explicit that the underlying state determining capital is the distribution Γ .

The definition of the RCE makes the problems introduced by aggregate fluctuations
apparent. It is impossible to keep track of the whole distribution of households and
generate a state-dependent transition function that is consistent with household
optimization.

The main break-through in Krusell and Smith (1998) is providing a computational
method that can approximate the solution to the RCE. The key of the algorithm is already
present in the discussion of the RCE in Section 8 and of the S-RCE of the Aiyagari economy
above. The distribution of households is only really needed to compute the aggregate
capital level, K. Notably, this corresponds to the first moment of the wealth distribution.
The reason only aggregate capital is needed is that it is sufficient to compute prices. The
challenge is that we also need to know how aggregate capital evolves, that is, we need a
transition function for aggregate capital. However, the evolution of capital depends on the
whole distribution.

Krusell and Smith (1998) solve the problem by proposing an approximate law of motion
for capital that depends on moments of the wealth distribution. In principle, if enough
moments are taken into account they can sufficiently summarize the information in the
wealth distribution. If the approximation works the problem of keeping track of the entire
distribution can be reduced to the (much simpler) problem of keeping track of a finite set
of moments.

In practice, the rational expectation assumption is partly lifted. Instead of forming
exact expectations over the distribution of wealth with knowledge of the transition function
T⋆, households use a (log-)linear model to forecast future moments of the distribution
using its current moments and the aggregate productivity. For instance

logK
′
= f

(
z, logK, (logK)2

)
= α (z) + β (z) logK + γ (z) (logK)2 ,

where the coefficients depend on the values of z. The solutionmethodproposed in the paper
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finds coefficients that (almost exactly) match the evolution of capital. When z is discrete
there are finitely many coefficients to find. The surprising result in the implementation of
the solution is that γ (z) = 0, implying that only the first moment is required to approximate
the evolution of aggregate capital.

input :Guess for coeficients α(z), β(z)
output :V , a

′
, Γ

1. Solve the DP problem of the agent given market clearing prices (R(z,K),W (z,K))
and the transition function for K parameterized by α(z), β(z):

(V , a
′
) = T(V ;α,β) (a fixed point problem). Note that markets will clear by

construction. ;
2. Use the policy function and the Markov processes for ϵ and z to simulate a long
panel of the economy. In doing this update the distribution using the appropriate
Markov operator. Use the distribution to compute aggregate capital. Record the
time series for aggregate capital and productivity. ;
3. Regress capital on moments to update the coefficients allowing for
state-dependent coefficients by the level of productivity. ;
4. Repeat (1)-(3) until prices converge and guarantee that the R2 of the regression is
close to 1. ;

Algorithm 6: Krusell-Smith Algorithm

Approximate aggregation. The main result in Krusell and Smith (1998) is that, as it turns
out, it is sufficient to only keep track of the first moment of the wealth distribution in order
to accurately approximate the aggregate states of the model. That is, aggregate capital
is (approximately) the relevant aggregate state for the households in the economy, just
at in the neoclassical growth model of Section 8. However, we know while there is exact
aggregation in the neoclassical growth model (allowing for a representative agent), there
is no such aggregation result in the Aiyagari economy. This led Krusell and Smith to term
their result “approximate aggregation.” They write

“Our main insight is that the macroeconomic model with heterogeneity
features approximate aggregation. By approximate aggregation, we mean that,
in equilibrium, all aggregate variables—consumption, the capital stock, and
relative prices—can be almost perfectly de- scribed as a function of two simple
statistics: the mean of the wealth distribution and the aggregate productivity
shock.”

This result makes the model solvable in practice by reducing the dimensionality of the
problem.
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Where does approximate aggregation come from?Why does it work? The key is that
even with a single non-state-contingent asset the households can achieve a great deal of
insurance, effectively smoothing out the fluctuations in their marginal utility of
consumption, in the same way that a representative household would. The outcome of this
is that households in the heterogeneous agent economy behave (approximately) as
scaled-versions of the representative household (except for those that are
borrowing-constrained). Krusell and Smith (1998) explain it as follows:

“The key insight is related to earlier findings from similar models that utility
costs from fluctuations in consumption are quite small and that self-insurance
with only one asset is quite effective. Self-insurance in our model is not very
effective in terms of smoothing individual relative to aggregate consumption;
for example, the unconditional standard deviation of individual consumption
is about four times that of aggregate consumption, and the unconditional
correlation of the consumption of any two agents is very close to zero.
However, in utility terms, agents in our stationary equilibria are insured well
enough that the marginal propensity to save out of current wealth is almost
completely independent of the levels of wealth and labor income, except at
the very lowest levels of wealth. Furthermore, although some very poor agents
have substantially different marginal savings propensities at any point in time,
the fraction of total wealth held by these agents is always very small (this is
particularly true in the model with a realistic wealth distribution). Because it is
so small, higher-order moments of the wealth distribution simply do not
affect the accumulation pattern of total capital, even though these moments
domove significantly over time.” [emphasis added]

This is (at its core) the same reason behind the inability of Aiyagari economies based on
labor-income risk to generate realistic distributions of wealth, as explained in Benhabib
and Bisin (2018) and Stachurski and Akira Toda (2019, 2020). As households’ move away
from the collateral constraint, their saving functions tend to be linear. This limit behavior
means that households can be (approximately) aggregated and is what explains the similar
marginal propensity to consume referenced in the passage above.

The approximate aggregation result has also misleadingly led to thinking that
heterogeneity does not matter for aggregate fluctuations. That is not the case as shown in
Krusell and Smith (1998) and their concurrent paper Krusell and Smith (1997).
Approximate aggregation follows from the limit behavior of saving rates in the model, and
not from the irrelevance of heterogeneity. Rather, it is because the baseline Aiyagari
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economy inability to reproduce the observed levels of wealth inequality that Krusell and
Smith obtain their (in)famous irrelevance result. They write

“When the representative-agent model is altered only by adding idiosyncratic,
uninsurable risk, the resulting stationarywealth distribution is quite unrealistic:
there are too few very poor agents, and much too little concentration of wealth
among the very richest. For this reason, we consider a version of themodel with
preference heterogeneity [...] We show that this model does succeed quite well
in matching the key features of the wealth distribution. [...] in the aggregate, we
observe a significant departure from permanent income behavior, in contrast
to standard representative-agent models.”

In fact, the extended model in Krusell and Smith (1997) also attempts to better match
the observed distribution of wealth (an elusive target for the literature). They also find
a relevant role for heterogeneity in shaping the aggregates of the economy. The reason
wealth concentration matters is that it generates (endogenously) a mass of households
that act in a “hand-to-mouth” fashion. These households are not able to effectively insure
against aggregate fluctuations and behavemarkedly different from the representative agent
(that is never against the borrowing constraint and behaves like a permanent-income agent,
smoothing consumption).

Similarly, Angeletos (2007) shows that introducing capital-income risk in the form of
risky portfolios implies significant departures from the representative agent baseline. He
writes

“[S]ignificant general-equilibrium effects on savings and income are both
empirically plausible and consistent with low private-equity premia [...] the
macroeconomic effects of idiosyncratic investment risk can be both
qualitatively distinct from those of idiosyncratic labor-income risk and
quantitatively significant.”

Other papers that highlight the importance of heterogeneity for aggregate fluctuations are:
Kaplan,Moll, and Violante (2018), Ahn, Kaplan,Moll, Winberry, andWolf (2018) Kaplan and
Violante (2022). See Kaplan and Violante (2018) in the Journal of Economic Perspectives for
a non-technical summary of the HANK literature. One important aspect of these papers
is highlight the role of portfolio composition and illiquid assets in generating a group of
wealthy-hand-to-mouth households who, despite being at the top of the wealth distribution,
behave as borrowing constraint agents because their wealth is not readily accessible to
produce insurance (as is the case with housing).
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Modern solution methods. In a concurrent article, Den Haan (1997) develops an
alternative solution method that parametrizes the distribution of wealth on a standard
polynomial basis, this reduces the dimensionality of the problem. Rather than track the
infinite-dimensional distribution and its transition function, Den Haan’s method searches
for vector of parameters that approximate the functions on a given polynomial basis. One
important advantage of this method is that it does not rely on imprecise Monte Carlo
simulations of the model in order to obtain a solution. This method has been extended, for
instance in Winberry (2018).

An alternative that has proven to be effective is using Perturbation methods, as in
Reiter (2009). The best application of this is Auclert, Bardoczy, Rognlie, and Straub (2021)
which is currently the best method to solve heterogeneous agent models with aggregate
fluctuations.
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Part IV

FirmHeterogeneity
Wenow focus on thefirmproblemandone of twomainways inwhichwe can introducefirm
heterogeneity into macroeconomic models. Technically, the impediment to meaningful
firm heterogeneity lies in the combination of constant returns to scale and price-taking
(or perfect competition) behavior. These features imply that the choices of all firms are
scaled-versions of one-another, allowing for exact aggregation of firms into a representative
firm. Departing from either of these features generates curvature in the firm’s problem,
making firms of different sizes behave differently. We go over the basics of each approach.

13. Span of Control

Models following the work of Lucas (1978a) and Hopenhayn (1992) have competitive firms
that operate technologies with decreasing returns to scale and whose owners (or
managers) differ in their “managerial talent.” This is captured by differences in firms’
productivity

(
zi
)
. More “talented” managers have a larger “span of control,” that is, their

optimal firm size is larger. The decreasing returns to scale determine how differences in
talent (productivity) translate into differences in size, but they also imply that firms make
profits in equilibrium. However, these profits are not the result of market power but of the
returns to the “managerial input.” These are rents to the fixed input that the manager
owns.

While we will not cover these models in detail, we a brief description of the problem is
useful.10 I focus on Lucas (1978a). Lucas’ model is static and is concerned with explaining
the distribution of firms. Consider a firm that produces in two stages, first it combines
capital and labor with a standard constant-returns-to-scale technology, y = F (k,n), then
that output is mixed with managerial talent to produce output, so that total output is

zig
(
yi
)
= zig

(
F
(
ki,ni

))
where g is strictly increasing and strictly concave. The managerial talent zi is the fixed
input and the concavity of g implies that there are decreasing returns to scale to the firm.
The practical implication of the decreasing returns is that (unlike with constant returns to
scale) the best manager (highest z) cannot use all the resources.
10This description follows the lecturenotes byChris Edmond: http://www.chrisedmond.net/phd2014/90065_lecture1.pdf.
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We can simplify the problem by using the homogeneity of F to write output as

zig
(
yi
)
= zig

(
f
(
κi
)
ni
)
,

where κ = k/n is capital per-worker and f (x) = F (x, 1). This turns to be convenient because
we isolate the labor demand of firms as being affected directly by g. This matters because
the objective of this theory is to explain the distribution of firm size, with size measured by
employment.

The problem of a firmmanager is then to choose labor and capital-per-worker:

π (z) = max
κ,n

zg ( f (κ)n) – wn – rκn

(note that without g this problem would be linear in n, leading to corner solution in scale)
The first order conditions are

zg
′
( f (κ)n) f

′
(κ) = r

zg
′
( f (κ)n) f (κ) = w + rκ

We can use these conditions to solve for the optimal capital-per-worker. Dividing them gets
us

f (κ)
f
′
(κ)

– κ =
w
r

Recall that firms face competitive input markets, so prices w and r are common across
firms. They also operate the same technology. The only difference is in managerial talent
(z). So, this equations implicitly defines the optimal κ for all firms. Lets call that level κ⋆.

The scale of the firm is then pinned down by solving for y⋆ (z) out of

zg
′ (
y⋆ (z)

)
f
′ (
κ⋆
)
= r

once we have y⋆ (z) we can also get n⋆ (z) = y⋆(z)/ f (κ⋆).
Lucas then uses this solution to ask about the properties of g that are needed for the

distribution of firms to satisfy the patterns observed in the data. The most salient feature
is known as Gibrat’s law and it captures the fact that firm growth is independent of firm
size. In particular, as factor prices change, firms (employment) will grow (or shrink). This
growth should be independent of their (employment) size.

The size of the firm is captured by n⋆
(
zi,w, r

)
. Different firms have different z and

hence different sizes, but they all face the same prices. The total differential of the function

103



lnn⋆ as factor prices change gives us the growth rate of firm size,

d lnn⋆ (z,w, r) =
n⋆w (z,w, r)
n⋆ (z,w, r)

dw +
n⋆r (z,w, r)
n⋆ (z,w, r)

dr.

For this to be independent of size it must be that

∂ (d lnn⋆ (z,w, r))
∂z

= 0

for that to always be the case it must be that

∂

∂z

(
n⋆w (z,w, r)
n⋆ (z,w, r)

)
= 0 and

∂

∂z

(
n⋆r (z,w, r)
n⋆ (z,w, r)

)
= 0

These conditions impose restrictions over the shape of g. Lucas solves these differential
equations and finds that the only function that satisfies them is g (x) = Axα for some
constant A > 0 and a power α ∈ (0, 1). We can verify this directly. The optimal (inner)
output size is

y⋆ (z) =

(
αAz

f
′
(κ⋆)
r

) 1
1–α

and so the optimal labor demand is

n⋆ (z) =
(
αAz
r

) 1
1–α (

f
′ (
κ⋆
)) α

1–α
(w
r
+ κ⋆

)
.

Even though this expression looks daunting, it delivers the result we want immediately,
because it implies that the labor (size) of the firm is log-separable in z and the terms that
depend on prices (w, r, κ⋆).

lnn⋆ (z) =
1

1 – α
ln z + ln h (r,w)

which deliver s the result required by Gibrat’s law.
So we have a single parameter α that determines the (decreasing) returns to scale of the

firms. The scale parameter A plays no real role in these results and so we normalize to 1.
We can further model firm entry as a reflection of the managers’ occupational choice.

People have different managerial talent, but they all have the same skills as a worker. If a
person can supply their (full) time as either a worker or a manager then they will choose
whichever delivers them the highest income (absent any preferences or amenities, as is the
case in this model). The income as a worker is given by the wage, w, and is constant across
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people. The income as a manager is given by the managerial profits, π (z), and depends
on talent. There is then a cutoff for the managerial talent, above which people become
managers. That is, a z⋆ such that

π
(
z⋆
)
= w

z⋆g
(
y⋆
)︸ ︷︷ ︸

Revenue

= w︸ ︷︷ ︸
Fixed Cost

+wn⋆ – rκ⋆n⋆︸ ︷︷ ︸
Variable Costs

This is a zero profit condition for the marginal manager that takes into account their
opportunity cost of not being a worker. That constitutes the fixed cost of setting up a firm.

The work of Hopenhayn (1992) and the literature that it generated extends these ideas
to a dynamic setting. It also takes into account the role of fixed set-up costs in determining
firm entry.

A special case. We can further simply the problem if we assume that the firm operates
only with labor, so that y = n. Then the managerial technology is zinα. Because there is
no capital, the first order condition is now zg

′
(n) = w. Solving it gives us a closed-form

expression for the size of the firm as a function of managerial talent:

n⋆ (z) =
(αz
w

) 1
1–α .

If we further assume that managerial talent is distributed Pareto with a CDF 1 – z–ξ, the
distribution of firm size is also Pareto, but with a Pareto parameter ξ (1 – α).

To see this recall that the defining feature of the Pareto distribution is that its counter-
CDF has the form Bn– p, with p the Pareto parameter and B a constant. so we want to know
p from

n– p = 1 – CDF (n) = Pr (ñ > n) = Pr
(
z̃ >

w
α
n1–α

)
the last equality says that for a firm to have more than n employees (ñ > n) it must have
managerial talent z̃ above w

αn
1–α. We know the share of firms satisfying that condition:

Pr
(
z̃ >

w
α
n1–α

)
︸ ︷︷ ︸
Counter CDF of z

=
(w
α
n1–α

)–ξ
=
(w
α

)–ξ
n–ξ(1–α)

this gives us our result. The employment of firms is distributed Pareto with power p =
ξ (1 – α).

This result gives us insight over the role of the market (in this case through the returns
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to managerial talent) in amplifying differences across firms (although similar insights
apply to differences in income or wealth across individuals). First, note that all profits
in this environment are the return to the fixed (managerial) factor. The technology zinα

makes these returns to be 1 – α of total output ( just as in the general Cobb-Douglas case,

just define xi = z
1
1–α
i to write output as x1–αnα). Then, note that the returns to scale amplify

differences in scale as α → 1. That is, the more scalable the technology, the larger the
differences between firms:

lnni – lnnj︸ ︷︷ ︸
Diff. in Scale/Size

=
1

1 – α︸ ︷︷ ︸
Tech. Amplification

×
(
ln zi – ln zj

)
︸ ︷︷ ︸

Diff. in Managerial Talent

.

We should therefore expect larger differences in size (thicker right tails) in industries with
more scalable technologies (higher α).

14. Market Power

An alternative approach to introduce curvature into the firms’ problem is to acknowledge
the presence of market power in the form of price-setting behavior. The choice over
prices introduces curvature over the firms’ revenue. Under perfect competition revenue is
linear in quantities as price per unit is constant (linear pricing). Market power introduces
curvature because it takes into account the fact that the demand for goods is decreasing
in prices, and that it is therefore necessary to reduce prices to increase quantities. The
curvature is introduced into the revenue function of the firm, rather than in production.
This in turn generates differences across firms as firms with higher productivity can charge
lower prices and operate at a larger scale.

This approach also results in firms charging markups and making profits. This has
made it widely used in many areas such as the New-Keynesian literature, international
trade, and growth, where price-setting and the profit-motive play a central role.

Markups and firm heterogeneity. We abandon the price-taking assumption we have
imposed so far on firms and instead study firms that choose prices as well as inputs.

The firm’s problem is to maximize its profits taking as given an (inverse) demand curve.
There are two options for the type of competition faced by the firm: Bertrand competition
where firms choose prices ( p) and Cournot competition where firms choose over quantities
( y). In either case the firms use the demand curve they face to map the choice over one
variable into the effects on the other (say, what is the quantity demand if a given price is
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chosen). We introduce a sub-index i to denote the firm.

max pi yi – Ci
(
yi
)

s.t. pi = Di
(
yi
)

where Ci ( y) gives the cost to firm i of producing y units of the good and Di ( y) is the
(inverse) demand faced by firm i. We show a special case of the cost function below and
explore various demand systems that shape markups in the sub-sections that follow.

The optimal behavior of the firm does not depend on whether it is choosing prices à la
Bertrand or quantities à la Cournot. The optimal choice is to set prices as amarkup over the

marginal cost, with the markup determined by the elasticity of demand εi ≡ –
(
∂ log pi
∂ log yi

)–1
,

pi =
1

1 – 1
εi

C
′
i
(
yi
)
,

The markup is µmi = 1/1– 1
εi
. The difference between forms of competition is the value of the

elasticity of demand and hence markups, prices, and output levels.
The implication of this result is that the scale of production can differ across firm for

two reasons: they can have different marginal costs (as captured by differences in their
cost function Ci) or face different elasticities of demand (as captured by εi). Of course both
reasons can be active at the same time. Firms can differ in their productivity, leading to
differences in scale that can affect the elasticity of demand. The elasticity is in general not
constant and can depend on howmuch of a good is being demanded. There can also be
differences in preferences for goods that make the elasticity of one firm higher or lower
than that of other goods.

Themodels shown in the following sections incorporate these ideas intomarkets where
there is competition among producers of different varieties of goods.

Equivalence of Bertrand and Cournot competition. Lets start with Bertrand. The first
order condition of the firm is

∂

∂ pi

(
pi yi – Ci

(
yi
))
= 0

yi + pi
∂ yi
∂ pi

– C
′
i
(
yi
) ∂ yi
∂ pi

= 0

1 +
pi
yi

∂ yi
∂ pi

–
C
′
i
(
yi
)

pi

pi
yi

∂ yi
∂ pi

= 0
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1 +
(
∂ log pi
∂ log yi

)–1(
1 –

C
′
i
(
yi
)

pi

)
= 0

1 – εi

(
1 –

C
′
i
(
yi
)

pi

)
= 0

1
1 – 1

εi

C
′
i
(
yi
)
= pi

The same result arises under Cournot (but in fewer steps).

∂

∂ yi

(
pi yi – Ci

(
yi
))
= 0

pi + yi
∂ pi
∂ yi

– C
′
i
(
yi
)
= 0

1 +
yi
pi

∂ pi
∂ yi

–
C
′
i
(
yi
)

pi
= 0

1 –
1
εi
–
C
′
i
(
yi
)

pi
= 0

1
1 – 1

εi

C
′
i
(
yi
)
= pi

Cost minimization with constant-returns-to-scale. It is useful to separate the problem of
the firm into an inner-step of cost minimization that produces the cost function and an
outer-step of profit maximization that gives markups (as above).

A special case arises when the production function of the firm has constant returns to
scale. In this case the marginal cost is constant, that is, C

′
i ( y) = ci. The linearity of the cost

function is an immediate consequence of the cost function inheriting the homogeneity of
degree one of the production function.

Moreover, we can choose a single input, say labor, and express all choices of the firm
directly over that input, as the value of other inputs and of total output vary linearly with
it. This is the underlying reason for many applications to focus on simple production
functions that are linear on labor and have a marginal cost of w/z, with z being the firm’s
productivity.

Consider the problem of a firm that use multiple inputs
{
xk
}K
k=1 in addition to labor to

produce:
yi = z̃iF

(
x1, . . . , xK,ni

)
,

where the function F is strictly concave, twice continuously differentiable, and has constant
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returns to scale.
Let the prices of inputs be

{
p̃k
}K
k=1 and w̃ℓ respectively. We know from the firm’s

optimality condition that:

z̃iFk

(
x1
ni
, . . . ,

xK
ni
, 1
)
= p̃k

recalling that, because of Euler’s theorem, Fk is homogeneous of degree zero for every k.
These equations define a square system in the ratio ratio of each input xk to labor. The
system has a solution that gives the ratios in terms of parameters:

xk
nj ℓi

= gk
(
z̃j ℓi , p̃1, . . . , p̃K

)

The existence of a solution follows from the inverse function theorem applied to the
function ∇xF : RK++ → RK++, where the operator ∇x gives the first derivatives of F with
respect to the variables

{
xk
}K
k=1. Note that the Jacobian of∇F is given by the first K rows

and columns of the Hessian of F, which is negative definite for all interior points by the
strict concavity of F. The negative definiteness of the Jacobian ensures the invertibility of
∇xF.

Given the system’s solution we express the production function in terms of labor alone:

yi = z̃iF
(
x1
ni
, . . . ,

xK
ni
, 1
)
ni = zini

where we define the effective productivity of labor as zi ≡ z̃iF (x1/ni, . . . , xK/ni, 1) with the
ratios xk/ni given by the solution to the system defined above. Thus, zi is a function of
productivity z̃i and the price of the other inputs. It is now possible to use this linear
production function in labor instead of the original production function F on many inputs.

Finally, the cost of labor must take into account that other inputs react to changes in
labor according to the proportionality defined by

{
gk
}K
k=1. Then, the cost of the firm is

given by:

K∑
k=1

p̃kxk + w̃ni =

 K∑
k=1

p̃k
xk
ni
+ w̃


︸ ︷︷ ︸
Effective Labor Cost w

ni = wni

where wni represents the cost of goods sold, and w is not directly the wage, but a measure
of costs that takes into account the price of other inputs and the change in their demand in
response to changes in the firm’s labor demand.
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Finally, it is equivalent to express the problem in terms of labor or output as profits can
be written as

pi yi –
w
zi
yi︸︷︷︸

Ci( yi)

←→ pizini – wni

Accordingly, we will simplify the notation in the rest of this section and work with a linear
cost function Ci ( y) = ci y.

15. Monopolistic Competition

Wenow look atwhat is by far themost popular demand system for appliedmacroeconomics:
Monopolistic Competition. Themodel as used nowwas developed in Dixit and Stiglitz (1977)
and captures a large number of firms producing differentiated goods that are nonetheless
(imperfect) substitutes for one another, following insights from Chamberlain (1933). The
fact that the goods are differentiated means that individual producers haver market power
over their variety, but the substitutability with other products places limits on this power as
producers compete for higher demand for their individual variety of good. In the original
formulation there was a finite (but large) number of producers. We will instead use the
more common formulation of a continuum of goods indexed by i ∈ [0, 1].

At the center of the model are the preferences for the various products, or equivalently,
an aggregation technology that combines individual varieties to produce a single final good.
In the first case, demand comes from identical consumers that maximize the utility they
derive from the consumption of the different good varieties

U =

(∫ 1

0
y
ε–1
ε
i di

) ε
ε–1

.

In the second case the integral is equal to the value of the aggregate good Y . This second
version is more common in applications in international trade and New-Keynesian models
where the final good is demanded along with foreign goods or where utility also includes
leisure.

The parameter ε > 1 plays an crucial role as it determines the degree of substitutability
between goods and, as we will see later, the elasticity of demand.

The problem of the consumer (or final good producer) is to minimize the cost of their
consumption basket (or inputs) subject to some desired utility (or output) level. Notice that
the utility (or production) function has constant returns to scale and thus themaximization
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problem is ill-defined:

min
{ yi}

∫ 1

0
pi yidi – λ

(∫ 1

0
y
ε–1
ε
i di

) ε
ε–1

– Y

 ,

with λ > 0 a Lagrange multiplier and Y is the desired level of utility.
The first order conditions are, for any i,

pi = λ

(∫ 1

0
y
ε–1
ε
i di

) ε
ε–1–1

y
–1
ε
i .

Hence, optimality requires that between any pair of goods (i, j )

pi
pj︸︷︷︸
MRT

=

(
yi
yj

)–1
ε

︸ ︷︷ ︸
MRS

−→
yi
yj

=

(
pi
pj

)–ε
.

From this we see that ε = log yi
log pj

is the elasticity of substitution between goods i and j .11

Moreover, the elasticity of substitution is constant across pairs. This is what gives its name
to the aggregator as the Constant-Elasticity-of-Substitution (CES) aggregator.

Going back to the demand for good i we can write

pi
λ
=
( yi
Y

)–1
ε

after noting that optimality will have the constraint satisfied with equality. We can then
use this to obtain a price index

Y =

(∫ 1

0
y
ε–1
ε
i di

) ε
ε–1

1 =
∫ 1

0

(( yi
Y

)–1
ε

)1–ε
di

1 =
∫ 1

0

( pi
λ

)1–ε
di

11A better definition has the elasticity be the change in relative demand in response to changes in relative

prices: ε =
∂ log yi/yj
∂ log pi/pj

.
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λ =

(∫ 1

0
p1–εi di

) 1
1–ε

This gives us an interpretation of λ = P, the (ideal) price index of the composite good Y , or
the price of a unit of utility (also obtained as such from the envelope theorem).

Further, notice that

P Y =
∫ 1

0
pi yidi

=
∫ 1

0
P
( yi
Y

)–1
ε yidi

=
P

Y
–1
ε

∫ 1

0

(
yi
)ε–1

ε di

=
P

Y
–1
ε

Y 1–
1
ε

= P Y

This property also follows directly from the aggregator having constant returns to scale, so
that the cost function has to be linear.

So, what does this imply for the demand faced by an individual producer? Returning to
the first order condition we can now write the inverse demand curve of any given variety i
as a function of aggregate prices and quantities:

pi =
( yi
Y

)–1
ε P or yi =

( pi
P

)–ε
Y .

Recall that the actions of no individual producer can affect Y or P, so this equation is all the
producer needs to solve its profit maximization problem. We can do this using the results
from the previous section by noting that the elasticity of demand is

εi = –
(
∂ log pi
∂ log yi

)–1
= ε,

so that all producers face the same elasticity of demand (equal to the elasticity of
substitution across varieties). The markup is therefore constant across firms:

µ =
1

1 – 1
ε

=
ε

ε – 1
,
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and profits are
πi = (µ – 1) ci yi.

We can further solve for the price index in terms of the marginal costs ci = C
′
i
(
yi
)
:

P =
ε

ε – 1︸︷︷︸
Agg. Markup

×

(∫ 1

0
c1–εi di

) 1
1–ε

︸ ︷︷ ︸
Agg. Mrg. Cost

(
C
)
.

Bertrand and Cournot in monopolistic competition. We can also get this result directly,
which also allow us to see the curvature in the firm’s problem. In the case of Bertrand
competition

max pi yi – Ci
(
yi
)
= max

pi

( pi
P

)1–ε (
P Y
)
– Ci

(( pi
P

)–ε
Y
)
.

The first order condition gives

(1 – ε) p–εi

(
1
P

)1–ε (
P Y
)
+ ε p–ε–1i C

′
i

(( pi
P

)–ε
Y
)( 1

P

)–ε
Y = 0

(1 – ε) + ε
1
pi
C
′
i
(
yi
)
= 0

pi =
ε

ε – 1
C
′
i
(
yi
)

In the case of Cournot competition

max pi yi – Ci
(
yi
)
= max

yi

( yi
Y

)ε–1
ε (P Y) – Ci ( yi) .

The first order condition gives

ε – 1
ε

y
ε–1
ε –1
i

(
1
Y

)ε–1
ε (

P Y
)
– C

′
i
(
yi
)
= 0

ε – 1
ε

( yi
Y

)– 1ε P – C′
i
(
yi
)
= 0

pi =
ε

ε – 1
C
′
i
(
yi
)

This establishes that under monopolistic competition with constant elasticity of demand
Bertrand and Cournot competition are equivalent.
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Firms’ production scale. Markups are constant and so the differences between firms
come from differences in marginal costs. More productive firms have lower costs and
therefore charge lower prices. This translates into more productive firms operating at a
larger scale, determined by the solution to

( yi
Y

)–1
ε P =

ε

ε – 1
C
′
i
(
yi
)
.

In the special case of constant marginal costs and replacing by the aggregate price we have

yi =
(
ci
C

)–ε
Y ,

so that firms with lower marginal costs produce more, with elasticity ε of equilibrium
output relative to marginal costs.

The scale of the problem is given by Y that is for now taken as given. In a complete
equilibrium model P Y must equal the income of the household (if there are no other
expenses in the economy).

15.1. Taste for variety

The original use of this model as well as many current uses in growth and trade theory has
to do with the concept of taste for variety. The idea is that individuals like having choice.
This is captured by allowing there to be more varieties of goods.

Let there be (a continuum of) N goods and assume that all the firms are identical and
have a constant marginal cost of ci = c. Then, all firms set the same price

pi =
ε

ε – 1
c.

Even though all firms set the same price, the aggregate price does not satisfy P = pi.
This comes from the fact that there are now N varieties and so

Y =

(∫ N

0
y
ε–1
ε
i di

) ε
ε–1

and P =

(∫ N

0
p1–εi di

) 1
1–ε

The price index is now
P = N

–1
ε–1

ε

ε – 1
c

which is decreasing in the number of varieties! So, the more varieties there are the lower
the price per unit of utility (or output) despite the price of each variety being the same.
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This is the effect of the taste of variety.
This effect of varieties over the price index has implications for individual firms. Their

output depends on the number of varieties

yi = N
–ε
ε–1Y ,

as do their profits

πi = pi yi – c yi =
1
ε – 1

c yi =
1
ε – 1

cN
–ε
ε–1Y .

Whether output and profits are increasing or decreasing in N depends on the effect of
N on total demand

(
Y
)
. When embedding this problem into a more complete model the

level of utility (or output) Y will also respond to the number of varieties as the price per
unit

(
P
)
decreases. This is a pecuniary price externality that works through changes in the

aggregate price P: higher N lower P and that has an effect on Y .
Crucially, individual firms take the number of varieties as given. In particular, when

making entry decisions, firms do not take into account their effect on the profits of other
firms or on welfare. This means that the taste for variety introduces an externality into the
model and so the equilibrium solution is in general not efficient.

We can see this better by adding one assumption. There is a total amount of income I to
be spent in goods. If the amount of expenditure is constant that means that the aggregate
demand for goods

(
Y
)
has unit elasticity. So we know that

I =
∫ N

0
pi yidi = P Y ,

so that as P decreases, Y must increase. Under this fixed-expenditure assumption we get to
set the scale of Y as

Y =
(
1 –

1
ε

)
I
c
N

1
ε–1 .

Replacing into the output of individuals firms this implies

yi =
(
1 –

1
ε

)
I
c
N–1

so that output and profits decrease with variety. This result is, of course, not general.
For most problems aggregate demand is more than unit-elastic and so total expenditure
increases when the price decreases.
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Equilibrium and entry. Consider an economy with an infinite number of firms that
produce differentiated goods using a linear technology in labor and that differ in their
productivity, as captured by their constant marginal costs, ci = w/zi with w the market wage.
The index of the firm reflects their marginal costs and so ci < cj if and only if i < j . Opening
a firm to produce has a fixed cost of ψ ≥ 0. The demand for differentiated goods comes
from a representative agent with preferences for the composite good

Y =
(∫ ∞

0
y
ε–1
ε
i di

) ε
ε–1

captured by the demand curve Y = P–η with constant elasticity of demand η.
There are three stages in the economy.

(a) Potential entrants simultaneously decide whether or not to enter and pay the fixed cost
ψ > 0. Let N be the number of firms that enter to produce.

(b) Each entrant i simultaneously choose prices pi.

(c) Consumers observe prices of the differentiated goods s and make consumption
decisions. Let yi be the demand of entrant i.

We focus on sub-game perfect equilibria. An equilibrium is an entry decision for each firm
i, a price function

{
pi
}
, and a demand function

{
yi
}
such that

(a) Entry is profit maximizing, so that firms enter if and only if they make non-negative
profits after taking into account fixed costs.

(b) Firms set prices to maximize profits taking as given the prices of other firms and the
demand for their variety.

(c) The demand for each variety is chosen to minimize costs of the consumer taking as
given the prices of the consumers.

(d) Total demand for the composite good satisfies the demand Y = P–η.

We already know the price setting behavior of firms. Their profits are non-decreasing in
their index as higher i corresponds to (weakly) lower marginal costs. That is, we want an
index N such that

πN (N) = (µ – 1) cN yN = ψ −→ yN =
ψ

(µ – 1) cN

The equilibrium is given by the value of N that solves this equation.
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We can go further by recalling the demand function

yN =
( pN
P

)–ε
Y =

(
µ
cN
P

)–ε
P–η.

We also know that
P = N

–1
ε–1µC,

where C is the average marginal cost (already divided by the number of firms to cancel
variety effects). Replacing gives

N
η–ε
ε–1

(
cN
C

)–ε (
µC
)–η = ψ

(µ – 1) cN

In the case of constant marginal costs we further have

N =
(
µηcη–1

ψ

µ – 1

) ε–1
η–ε

.

Efficiency of equilibrium. Lets focus on the case treated in Dixit and Stiglitz (1977). Firms
are symmetric with constant marginal cost c. There is some fixed income I to be spent
across varieties, so the (aggregate) demand for goods has an elasticity of one (η = 1).

In this case we have (from symmetry and the fixed income) that

pi = p = µc and yi = y =
I
N p

=
I

Nµc
.

We also have (from aggregation)

Y = N
ε
ε–1 y and P = N

1
1–ε p.

Free entry implies the equilibrium number of varieties

( p – c) y = ψ(
1 –

1
µ

)
I
N
= ψ(

1 –
1
µ

)
I
ψ
= N⋆

1
ε

I
ψ
= N⋆
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and thus the output of each firm

y⋆ = (ε – 1)
ψ

c
.

We now compare this solution to a constrained social optimum, where the allocation
must have firm make non-negative profits. The unconstrained optimum can have firm
price below average cost (because of the presence of fixed costs) and therefore implicitly
requires lump-sum transfers to firms.

The constrained optimum should have all active firms be identical (as there are no
technology- or preference-based differences between them). They also must be making
exactly zero profits. The problem is to choose the number of firms as well as firm quantities
and prices to maximize Y (the utility level). The resource constraint implies that Y = I/P,
and so, with fixed income, we know that the utility is maximized as we minimize aggregate
prices.

From the definition of the price index and the symmetry across firms we can then
express the problem as one of minimizing the price index subject to the zero profit
condition of firms

min
p,N

N
1
1–ε p s.t. ( p – c)

I
N p

= ψ.

The first order conditions are

N
1
1–ε =

c
p2

I
N
λ

1
ε – 1

N
1
1–ε–1 p = ( p – c)

I
N2 p

λ

The ratio between them gives
p =

ε

ε – 1
c.

This is the same optimal pricing choice as in the decentralized equilibrium. The number
of firms is also the same as in the market’s solution. Therefore the solution is constrained-
efficient.

The unconstrained equilibrium is not subject to the zero-profit condition, but instead
must acknowledge the effect of fixed costs on disposable income (now that firmprofits need
not cover them). The solution still requires firms to behave symmetrically. The problem is
then to maximize Y subject to resources

max
y,N

N
ε
ε–1 y s.t. I = N (c y +ψ)
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The first order conditions are

N
ε
ε–1 = Ncλ

ε

ε – 1
N

ε
ε–1–1 y = (c y +ψ) λ

The ratio between them gives the unconstrained optimum’s output per firm:

y = (ε – 1)
ψ

c
.

We can get the number of active firms from the constraint:

N =
1
ε

I
ψ
.

These are the same number of varieties and output per firm as in the equilibrium. However,
this turns out to be a knife-edge case in which the equilibrium is efficient due to the fixed
income (expenditure) assumption. Dixit and Stiglitz (1977) show that the unconstrained
number of varieties is larger than the equilibrium level when the expenditure in the
differentiated goods responds to their (aggregate) price.

16. Variable Markups

We now study another dimension of firm heterogeneity: variable markups. Firms of
different sizes can differ in the markups they charge. This is not the case in the
monopolistic competition framework above because of two reasons. First, the demand
faced by each producer had constant elasticity, and so the markup was constant. Recall
that optimal markups are µ = 1/

(
1– 1ε

)
. Second, there were no strategic interactions

between firms. The number of firms (or products) was assumed to be large enough to
make no firm have an effect on the aggregate. If firms are large enough to internalize their
effect on others larger firms gain market power and can thus charge larger markups.

The objective in this section is to go over the basics of these two approaches. Each has
extensive applications in the economics of misallocation, monetary policy, and
international trade.
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16.1. Variable Elasticity of Demand and Variable Markups

We start extending the framework of Dixit and Stiglitz (1977) to allow for a demand system
with variable elasticity of demand. In this we follow Kimball (1995).12

In order to have variable elasticity of demand we need a new formulation of the
aggregator. There is an aggregate (or composite) good Y that is produced by a competitive
producer. Production combines a continuum of differentiated goods

{
yi
}
. The

aggregation technology is implicitly defined by

1 =
∫
Υ
( yi
Y

)
di.

The properties of the demand for the differentiated goods yi depend on the function Υ.
The function Υ is either strictly increasing and strictly concave (case where the goods are
gross substitutes) or strictly decreasing and strictly convex (case where the goods are gross
complements). Note that the function is homogeneous of degree 1 by construction.

This function includes the constant-elasticity-of-substitution (CES) aggregator used
above when we let Υ (x) = x

ε–1
ε . Other functional forms allow for variable-elasticity of

demand. To see this more clearly we need to solve the problem of the aggregator.
The problem of the aggregator is to minimize its cost subject to a minimum level of

output Y :

min
{ yi}

∫
pi yidi s.t. 1 =

∫
Υ
( yi
Y

)
di

The first order conditions are (for each variety)

pi = Υ
′
( yi
Y

) λ
Y
,

where λ is the Lagrange multiplier. We need to solve for the multiplier. To do this, multiply
both sides of the first order condition by yi and sum across varieties to obtain

λ =
∫
pi yidi∫

Υ′
(
yi
Y

)
yi
Y di

.

Then, define the price of the aggregate good, P, so that it satisfies P · Y =
∫
pi · yidi. Finally,

replace λ into the first order condition and divide both sides by P to obtain the inverse
12Other formulations are reviewed by Costas Arkolakis and Monica Morlacco, see their notes on variable

elasticity of demand.
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demand curve for variety i expressed in terms of relative prices and relative output:

pi
P
=

Υ′
(
yi
Y

)
∫
Υ′
(
yi
Y

)
yi
Y di

.

We can also define implicitly the aggregate price. For this it is convenient to denote
D =

∫
Υ′
(
yi
Y

)
yi
Y di and then we define a set of two equations that jointly determine D and

P using the definition of the price index and the aggregator:

P =
∫

pi ·
(
Υ′
)–1 (D pi

P

)
di and 1 =

∫
Υ
((
Υ′
)–1 (D pi

P

))
di,

where
(
Υ′
)–1 (x) is the inverse function of the first derivative of Υ.

While this looks complicated the key is in realizing that the behavior of the monopolists

producing each variety depends only on the elasticity of demand εi = –
(
∂ log pi
∂ log yi

)–1
. As

before, the key is that the actions of a single producer cannot affect the value of aggregate
output or prices. The elasticity is

εi = –
(
yi
pi

∂ pi
∂ yi

)–1

= –

 yi
pi

∂Υ′
(
yi
Y

)
P
D

∂ yi

–1

= –
(
yi
pi
Υ′′
( yi
Y

) P
D
1
Y

)–1
= –
( yi
Y

)–1 Υ′ ( yiY )
Υ′′
(
yi
Y

)
So, knowing the properties of the first two derivatives of Υ is enough to know the behavior
of firms.

When goods are substitutes we have Υ′ (x) > 0 and Υ′′ (x) < 0. When they are
complements we have Υ′ (x) < 0 and Υ′′ (x) > 0. So we know that the elasticity is positive
(recall we fixed the sign, the demand curve is downward sloping). The key question is
whether it is increasing or decreasing in the variety’s (relative) output.

In practice, we work with aggregators that imply a decreasing elasticity of demand for
larger firms, capturing the fact that larger firms have more market power and charge a
higher markup. For example, the aggregator proposed by Klenow and Willis (2016) implies

121



that

εi = ε ·
( yi
Y

)–θε
with ε, θ > 0 parameters, so that as the relative output increases the elasticity decreases.

In equilibrium, more productive firms have lower marginal costs and hence can charge
lower prices. This leads them to operate in more inelastic portion of their demand curves
and charge higher markups. So, higher markups coexist with lower prices.

16.2. Oligopolistic Competition and Variable Markups

Finally, we consider the case of oligopolistic competition, where finitely many firms
compete à la Cournot or à la Bertrand in a market. In this setup, it is the strategic
interactions between firms that give rise to market power for the more productive firms
who end up being larger in equilibrium. These firms charge higher markups. This setup is
developed in Atkeson and Burstein (2008) and used in a variety of papers in international
trade and misallocation.

Consider a market with N producers of a differentiated goods competing à la Cournot
(so monopolists choose quantities taking quantities of other monopolists as given). Firms
are heterogeneous in their marginal cost, ci. The demand for the goods comes from a
competitive final good producer that aggregates individual goods using a CES technology

Y =

 N∑
i=1

y
ε–1
ε
i

 ε
ε–1

.

The final good producer is a price taker and the demand for final goods has constant
elasticity of demand η, so that Y = P–η. We assume that η < ε. This means that the varieties
are more substitutable between them than the total output is for other (potential) goods
that can be in the economy. This is the case when we have a model with many markets,
being aggregated with an (outer) CES aggregator with elasticity η.

Just as before, the cost minimization problem of the final good producer implies a
demand for variety i of

pi
P
=
( yi
Y

)– 1ε ,
where

PY =
N∑
i=1

pi yi and P =

 N∑
i=1

p1–εi

 1
1–ε

.
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What changes is the behavior of themonopolists. The key is that the elasticity of demand
they face depends on how their output affects aggregates. We now have

ε–1i = –
∂ log pi
∂ log yi

= – yi
∂ log

(
yi
Y

)–1
ε P

∂ yi
= – yi

∂ log
(
yi
Y

)– 1ε Y– 1η
∂ yi

=
∂ log y

–1
ε
i Y

1
ε–

1
η

∂ yi
,

so that we can break the elasticity into two terms, the effect of a change in the variety’s
elasticity and the effect on aggregate production,

ε–1i =
1
ε︸︷︷︸

Elast. of Subs.

+
(
1
η
–
1
ε

)
yi
Y
∂Y
∂ yi︸ ︷︷ ︸

Elast. of Agg. Output

.

The elasticity of the aggregate output is with respect to variety i is

yi
Y
∂Y
∂ yi

=
yi
Y

∂

(∑N
i=1 y

ε–1
ε
i

) ε
ε–1

∂ yi
=
yi
Y

 N∑
i=1

y
ε–1
ε
i

 ε
ε–1–1

y
ε–1
ε –1
i =

y
ε–1
ε
i∑N

i=1 y
ε–1
ε
i

=
( yi
Y

)1– 1ε
This gives us the result. But if we observe this expression in detail we can see that we

can also express it as
yi
Y
∂Y
∂ yi

=
( yi
Y

)– 1ε yi
Y
=
pi yi
PY

= si

which is the sales-share of producer i. This is a key result. The elasticity of demand is
increasing in the firm’s market share. The sign follows from the assumption that η < ε.

Replacing back we get that the demand elasticity of variety i is a weighted average
between the elasticity of its own variety and the demand elasticity of the market:

1
εi
=
1
ε

(
1 – si

)
+
1
η
si.

If the firm is small
(
si → 0

)
, it behaves like in the monopolistic competition setup and only

cares about the elasticity of its own variety, taking aggregates as given. As the firm grows
large

(
si → 1

)
, it behaves like a true monopolist, caring about the elasticity of demand for

the market output (Y ) and not for the competition with other varieties.
The markup is then

µi =
1

1 – 1
εi

=
1(

1 – 1
ε

) (
1 – si

)
+
(
1 – 1

η

)
si
.
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It is again the case that larger firms have largermarkups, reflecting the decrease in elasticity
as market shares increase.

Aggregatingmarkups. The averagemarkup in amarket, µ̄, is defined as the ratio between
the market’s price P and the market’s marginal cost c,

µ =
P
c
.

This is equivalent to defining it as the ratio of the market’s revenue PY and the market’s
total cost, which, under constant returns-to-scale, is

∑
i ci yi.

Because the market aggregator has constant-returns-to-scale, the market’s marginal
cost is equal to the output-weighted average of the individual marginal costs, that we label
ci ≡ C

′
i
(
yi
)
,

c =
N∑
i=1

ci
yi
Y
.

Then, themarket’s markup is obtained as a sales-weighted harmonicmean of individual
markups

µ =
P
c
=

 N∑
i=1

ci
yi
PY

–1 =
 N∑
i=1

1
µi
si

–1 =
Nm∑
i=1

(
1 –

1
εi

)
si

–1 = 1
1 – 1

ε

,

where ε is the (weighted-harmonic) average elasticity in the market,

ε ≡

 N∑
i=1

1
εi
si

–1 .
In this way the market’s average markup has the same expression as the individual markup
with the corresponding market elasticity.

In the case of Cournot competition we can go further using the expression derived
above for the elasticity of each firm:

1
ε
=

N∑
i=1

1
εi
si =

N∑
i=1

(
1
ε

(
1 – si

)
+
1
η
si

)
si =

1
ε

 N∑
i=1

si –
N∑
i=1

s2i

 +
1
η

N∑
i=1

s2i

where we take advantage of the fact that
∑
si = 1 and that the sum of square shares is the

definition of the Herfindahl-Hirschman index of concentration (HHI). This index gives the
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probability that two random dollars spent in the market are spent in the same firm. The
result is a direct link between concentration in the market and average markups

1
ε
=
1
ε
(1 – HHI) +

1
η
HHI and

1
µ
=

η – 1
η︸ ︷︷ ︸

Monopoly Markup

+
(
1
η
–
1
ε

)
(1 – HHI)︸ ︷︷ ︸

Concentration Markup

.

17. Aggregation andMisallocation

Once we have a theory of firm heterogeneity we can start asking questions about
misallocation of resources and hence of economic activity. The question is the same of the
welfare theorems: is the market equilibrium efficient? Here we will focus on efficiency in
terms of production. The exposition here follows the review of the literature in
Hopenhayn (2014).

17.1. Aggregation, and Efficiency

Lets start by revisiting the span of control model. As we have seen already, the key for
firm heterogeneity is to introduce decreasing returns to scale. This can be done from the
technology side as in Lucas (1978a) or from the demand side as in Dixit and Stiglitz (1977).
Both setups deliver similar results and so we start with the span of control problem in its
simpler form. We show that both setups are efficient.

There is a population ofN workers with preferences for good consumption (no disutility
from labor). There is amassM of firms that differ in their productivity distributed according
to Γ . The firms’ production technology uses only labor and is

yi = zin
α
i .

There are no operational costs.
The notation changed relative to the one above to make results more comparable, so

that yi is the quantity produced by firm i.

Market Economy. Markets are competitive. The wage rate is w, the price of the final good
is normalized to 1. We know that the optimal size is

n⋆ (z) =
(αz
w

) 1
1–α and y⋆ (z) = z

1
1–α
(α
w

) α
1–α .
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To clear the labor market we need that

N =
∫ M

0
n⋆
(
zi
)
di =

( α
w⋆

) 1
1–α
∫ M

0
z

1
1–α
i di,

so the equilibrium wage is

w⋆ = α

(∫ M

0
z

1
1–α
i di

)1–α
Nα–1.

Thus, the equilibrium firm size is

y⋆
(
zi
)
= z

1
1–α
i

 N∫M
0 z

1
1–α
j dj


α

and total output is

Y =
∫ M

0
y⋆
(
zi
)
di =

(∫ M

0
z

1
1–α
i di

)1–α
︸ ︷︷ ︸
Agg. Productivity

Nα.

Therefore, this economy has an aggregate production function that looks the same as the
individual production function of a firm but with an aggregate productivity given by the
distribution of firms. This production function has decreasing returns to scale if we take
as firms as a fixed production factor.

We can get a different and more informative expression if we focus on the distribution
of firm productivity and separate from the number of firms:

Y =
Avg. Prod.︷︸︸︷

Z M1–α︸ ︷︷ ︸
Firm Scale

Nα.

Here, Z is the average productivity across firms in the economy, we define it as

Z =
(
E
[
z

1
1–α
i

])1–α
=
(∫

z
1
1–αdΓ (z)

)1–α
.

Seen this way, aggregate production has constant returns to scale, and is increasing in the
number of firms. This is, unsurprisingly, the same result as in the taste for variety explored
above. Another important result is that the decreasing returns to scale make the harmonic
mean the way to aggregate
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Efficient Allocation. The planner’s objective is to maximize output as that maximizes
utility, so,

max
{ni}

∫ M

0
zin

α
i di s.t. N =

∫ M

0
nidi.

The market economy is efficient. To see this, note that the efficient allocation equates
average products across firms

αzin
α–1
i = λ
yi
ni

=
λ

α

This already happened in themarket solutionwith λ = w. Hence, firm size and the aggregate
results above hold unchanged in the efficient allocation. There is no misallocation in this
economy.

Connection to The Monopolistic Competition Case. Under monopolistic competition we
have constant returns to scale technology

(
yi = zini

)
but curvature in demand (with

constant elasticity) we know that the market solution has

yi =

 ci(∫M
0 c1–εi di

) 1
1–ε


–ε

Y =

 zi(∫M
0 zε–1i di

) 1
ε–1


ε

Y ,

To clear the labor market the wage must be such that

N =
∫ M

0
nidi =

yi
zi
di =

∫ M

0
zε–1i

(∫ M

0
zε–1i di

) –ε
ε–1

Ydi =

(∫ M

0
zε–1i di

) –1
ε–1

Y

Therefore, aggregate output (or utility) is

Y =
Avg. Prod.︷︸︸︷

Z M
1

ε–1︸ ︷︷ ︸
Taste for Variety

N,

where Z =
(
E
[
zε–1

]) 1
ε–1 =

(∫
zε–1dΓ (z)

) 1
ε–1 is the average productivity.

This is the same result we had above once we adjust for the curvature of the problem.
Notice that aggregation is linear (as above) for a monotone transformation of output

Ỹ = Y
ε–1
ε and ỹi = y

ε–1
ε
i . In this case the aggregation gives the same result as in the span of
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control model

Ỹ =

Avg. Prod.︷︸︸︷
Z̃ M

1
ε︸︷︷︸

Taste for Variety

N
ε–1
ε

with α = ε–1ε and Z̃ = Z
ε–1
ε .

We already know that entry is (constrained) efficient in this setup.
The planner’s problem is (for the monotone transformation) is

max
{ni}

∫ M

0

(
zini

)ε–1
ε di︸ ︷︷ ︸

Ỹ

s.t. N =
∫ M

0
nidi.

Optimality requires

ε – 1
ε

(
zi
)ε–1

ε n
ε–1
ε –1
i = λ

ỹi
ni

=
ε

ε – 1
λ

so all firms have the same average product (as before). This condition is satisfied in
equilibrium because the pricing choice implies

pi =
ε

ε – 1
w
zi

y
ε–1
ε
i
ni

=
ε

ε – 1
w
P
Y
1
ε

ỹi
ni

=
ε

ε – 1
w
P
Y
1
ε

So, the market solution is efficient as average products are dutifully equalized across firms.

17.2. Wedges andMisallocation

The key for the efficiency of the models above is that firms in the market economy had
the same marginal product of labor as they are all responding to the same costs (in the
case of the examples above, the same wage rate). Equating the marginal products across
firms is precisely what you need if you want to maximize output. This is not the case in the
data. The discrepancies come from firm-specific frictions that distort the firm problem.
For example, some firms can be subject to certain forms of taxation while some others are
not (or just evade taxes).
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Example: Labor wedge. Consider an example with firm-specific labor taxes (or
equivalently, additional labor costs that vary across firms):

max zin
α
i –
(
1 + τi

)
w.

In this case the optimal labor choice and output of a firm become

n⋆
(
zi
)
=

(
αzi(

1 + τi
)
w

) 1
1–α

and y⋆
(
zi
)
= z

1
1–α
i

(
α(

1 + τi
)
w

) α
1–α

.

When we aggregate we can see the role of the distortions. Market clearing now requires
the wage to be

w⋆ = α

(∫ M

0

(
zi

1 + τi

) 1
1–α

di

)1–α
Nα–1,

and aggregate output becomes

Y =



Weighted Distortion︷ ︸︸ ︷∫ (
zi
1+τi

) 1
1–α

∫ ( zi
1+τi

) 1
1–α dΓ

(
zi
)

︸ ︷︷ ︸
ωi Distorted Prod. Weights

(
1 + τi

)
dΓ
(
zi
)

(∫ (

zi
1 + τi

) 1
1–α

dΓ
(
zi
))1–α

︸ ︷︷ ︸
Distorted Productivity

M1–αNα

where the distortions affect the problem twice, once distorting productivity and then also
as an average distortion weighted by productivity.

An important implication of this result is that distortions must vary across firms for
them to actually distort. If τi = τ we can easily see that it cancels out of the expression
above.

TFPR. In the one input case studied so far (say, only labor) misallocation comes from
differences in marginal product or average products. When there are several inputs this
is not necessarily the case. Instead, for a production function yi = zi

(
f
(
x⃗i
))α with f a

constant returns to scale function in inputs x⃗ = (x1, . . . , xN), what must be equated across
firms is the ratio

yi
f
(
x⃗i
) = TFPR

This ratio is called the total factor productivity of revenue.
We can see how the TFPR determines the importance of distortions by focusing in
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the one-input case again. In that case TFPRi =
yi
ni
. The efficient (planner’s) choice would

have been to have κ =
y pi
n pi

= TFPR p and so variation in TFPR captures misallocation in this

model.
We can see the effect of distortions as the ratio of themarket’s allocation to the planner’s

labor choice:

θi =
ni
n pi

=
y pi
n pi

ni
yi

yi
y pi

=
κ

TFPRi

(
ni
n pi

)α
=

κ

TFPRi
θαi =−→ θi =

(
TFPRi
κ

) –1
1–α

So the variation in TFPR goes hand in hand with the distortions to the allocation, captured
by θ.

In the context of the example above with a wedge for labor costs we get θi ∝
(
1 + τi

) 1
1–α ,

so we can obtain the distortion as function of wedges as well. The advantage of TFPR is
that, unlike wedges, we can often measure it.

We can now relate the allocation distortions
{
θi
}
and the TFPR to productivity. Total

output in the distorted economy is

Yd =
∫ M

0
zin

α
i di =

∫ M

0
θαi

(
zi
(
n pi
)α)

di =
∫ M

0
θαi y

p
i di = κ

∫ M

0
θαi n

p
i di

But, notice that κ is the average labor productivity in the undistorted (planner’s) economy.
So it must be true that Y p = κN. Replacing we get

Yd

Y p
=
∫ M

0
θαi

n pi
N︸︷︷︸

Efficient Labor Weights

di

Moreover, this ratio is also equal to the ratio of TFP between the distorted and the
undistorted economies because the total labor input is the same (recall from the problem
above that the only difference between the aggregate production functions is in
productivity). This gives

TFPd

TFP p
=
∫
θαdN (θ) ,

where N (θ) =
∫
{i|θi<θ}

n pi
N di is the distribution of employment in the efficient allocation of

firmswith distortions θi < θ. However, this expression still depends on unknown quantities.
This formula is nevertheless useful because it highlight an important property of

distortions. In the words of Hopenhayn:
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Notice that this formula is silent about the productivity of the firms
underlying these distortions, so whether they are correlated is not important
per se. Correlation matters for a different reason. For example, consider two
groups of firms m1 and m2 with productivities z1 < z2 and optimal
employments n1 < n2. Suppose further that optimal total employment in both
groups is identical, i.e.,m1n

p
1 = m2n

p
2 . Then the impact on productivity from

shifting a fixed number of workers from one group to the other is the same
regardless of whether they are shifted from the lower- to higher-productivity
group or vice versa.

Finally, to see the role of TFPR we can write the TFP gap between the efficient and the
market allocation using only measured quantities. Specifically, we can write (inverse of)
the TFP gap as a curved harmonic mean of the relative TFPR of firms, weighted by their
employment (or labor share). This is not obvious. We can construct the formula in steps.
First, the employment share of a firm is

ni
N

(
=
wni
wN

)
=
(
1 + τi

)– 1
1–α

z
1
1–α
i∫M

0

(
zi
1+τi

) 1
1–α di

.

Second, the relative TFPR is defined as

TFPRi
TFPR

=
yi/ni
Y/N

=
(1+τi)w
α
Y
N

=
(
1 + τi

)∫ M

0

(
zi
1+τi

) 1
1–α

∫M
0

(
zi
1+τi

) 1
1–α di

(
1 + τi

)
di


–1

.

Finally, we can bring them together to express

TFP p

TFPd
=

(∫ M

0

(
TFPRi
TFPR

) 1
1–α ni

Y
di

)1–α
=

(∫M
0 z

1
1–α
i di

)1–α
∫M0

( zi
1+τi

) 1
1–α

∫M
0

( zi
1+τi

) 1
1–α di

(
1 + τi

)
di

(∫M0 (
zi
1+τi

) 1
1–α di

)1–α .

Notice that this is the inverse to the expression above. A higher value implies more
misallocation.
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17.3. Application: Financial Frictions

Consider the economy described in Guvenen, Kambourov, Kuruscu, Ocampo, and Chen
(2023b) that follows the derivations in Hsieh and Klenow (2009).

Entrepreneurs differ in productivity (zi > 0) and produce a differentiated good according
to a linear technology:

xi = ziki,

where ki is the final good used in production by entrepreneur i at age h. The final good, Y ,
is produced according to a Cobb-Douglas technology:

Y = QαL1–α,

where Q is the CES composite of intermediate inputs:

Q =
(∫

xµi di
)1/µ

.

To distinguish Q from the unadjusted capital stock, K =
∫
kidi, we refer to the former

as the “quality-adjusted capital stock,” since its level depends on the allocation of capital
across entrepreneurs. Total Factor Productivity in the intermediate goods sector can be
written as

TFPQ =
Q
K
,

where TFPQ captures the extent of misallocation of capital. We write total output as a
Cobb-Douglas function of K and L: Y = TFP · KαL1–α, where TFP ≡ TFPαQ is the aggregate
TFP of the economy.

The final good producing sector is competitive, so the profit maximization problem is

max
{xi},L

(∫
xµi di

)α/µ
L1–α –

∫ (
p
(
xi
)
× xi

)
di – wL.

The first-order optimality conditions yield the inverse demand (price) function for each
intermediate input and for the market wage:

p (x) = αQα–µL1–αxµ–1 w = (1 – α)QαL–α.

The economy is distorted because of the existence of financial frictions in the form of
collateral constraints:

ki ≤ ϑ
(
zi
)
× ai,
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This makes the entrepreneurial problem be

π (a, z) = max
k≤ϑ(z)a

{
p (zk)× zk – (r + δ) k

}
,

where δ is the depreciation rate. The price of the differentiated good can be written as
p (zk) = R× (zk)µ–1 , where R ≡ αQα–µL1–α, yielding the solution

k (a, z) = min

[(
µRzµ

r + δ

) 1
1–µ

, ϑ (z) a

]
.

However, this makes it difficult to aggregate because the level of capital (and hence the
scale of each entrepreneurial firm) depends on the distribution of wealth. Nevertheless,
We can measure the effects of these distortions on aggregate TFP and output, following
a large and growing literature that frames the discussion on misallocation in terms of
various wedges, such as capital, labor, and output wedges. In particular, we follow Hsieh
and Klenow (2009) and compute measures of misallocation for this economy.

Instead of modeling and capturing the effect of a particular distortion, or distortions,
we infer the underlying distortions and wedges in the economy by studying the extent to
which the marginal revenue products of capital and labor differ across firms. This is based
on the insight that without any distortions, the marginal revenue products of capital and
labor have to be equalized across all firms.13

TFP in the Q sector.. We will first focus on the intermediate goods sector. Under the
alternative capital-wedge approach, the problem of each intermediate goods producer is

πi = maxki
p
(
ziki
)
ziki –

(
1 + τi

)
(R + δ) ki ,

where τi is a firm-specific wedge. There are no collateral constraints. There is only one
input and, as a result, only one wedge can be identified.

The revenue TFP in sector Q for each firm i is

TFPRQ,i ≡
p
(
xi
)
xi

ki
=
1
µ

(
1 + τi

)
(R + δ) .

13This is the case in themonopolistic competitionmodels, such as inHsieh andKlenow (2009). Alternatively,
in environments like the ones in Lucas (1978b) and Restuccia and Rogerson (2008), in which firms feature
decreasing returns to scale but produce the same homogeneous good, the marginal products of capital and
labor have to be equalized in the non-distorted economy
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The aggregate TFP in sector Q can be expressed as

TFPQ ≡
Q
K
=

∫
i

(
zi
TFPRQ
TFPRQ,i

) µ
1–µ

di


1–µ
µ

,

where the average TFPRQ is

TFPRQ =

(∫
1

TFPRQ,i

p
(
xi
)
xi

pqQ
di

)–1
.

In the non-distorted economy, without capital wedges, the level of TFP in the Q sector is

TFP⋆Q =
(∫

i

(
zi
) µ
1–µ di

) 1–µ
µ

≡ z.

Therefore, we can measure the improvement in TFP in the Q sector, ΩQ, as a result of
eliminating the capital wedges, or equivalently, as a result of eliminating the collateral
constraints:

ΩQ ≡ 1 –
TFPQ
TFP⋆Q

= 1 –

∫
i

(
z
zi

TFPRQ,i
TFPRQ

) µ
1–µ

di


µ–1
µ

.

This measure does not capture the aggregate effect on the economy because (i) it applies
only to the Q sector and not to the production of the final good, and (ii) it does not take
into account changes in aggregate capital in the efficient economy with respect to the
equilibrium of the distorted economy. In the benchmark calibration of Guvenen et al.
(2023b) this variable has value of ΩQ = 0.35, implying TFP gains of 35% in the Q sector
coming from eliminating the collateral constraints.

Aggregate TFP.. The final goods producers operate competitively and face no constraints
or distortions, so there is no labor misallocation in the model. Because of this, the only
source of misallocation and TFP losses is the Q sector. We can therefore write output as

Y = TFP · KαL1–α,

where TFP ≡ TFPαQ captures the aggregate TFP of the model. Similarly, we can define the
efficient TFP level of the economy as TFP⋆ ≡ (TFP⋆)α and the aggregate TFP gain from
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eliminating distortions in the economy as

ΩY ≡ 1 –
TFP
TFP⋆

= 1 –

(
TFPQ
TFP⋆Q

)α
. (17.1)

In the benchmark calibration, the total productivity gain from eliminating the collateral
constraints in the Q sector amounts to 16% higher TFP.
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Part V

Stochastic Calculus
This part of the course develops the mathematical tools necessary to study how random
variables affect optimization problems. We start with an overview of the most relevant
stochastic processes that we will encounter in the applications to come. The most
important result is Ito’s Lemma, which defines the way in which we can take derivatives of
functions that depend on diffusions. Then we can apply Ito’s Lemma to problems of
dynamic optimization, with special attention to stopping time problems. Finally we apply
it to the characterization of the distribution of a random variable. This is done by means of
the Kolmogorov forward equation.

All these sections follow closely Dixit and Pindyck (1994), with some portions adapted
from Stokey (2009).

136



18. Stochastic Processes

18.1. Definitions

The idea now is to study sequences of random variables. A stochastic process is similar
to a random variable, with the difference that it also depends on time. Adding the time
dimension adds notation, but it does not change any of the main ideas. For convenience
we will first go over the definition of a random variable.

Definition 18.1. (Random variable) Let (Ω,A,P) be a probability space and x : Ω→ R a
real valued function. x is a random variable if and only if x is measurable, that is, if and
only if x–1 (B) ∈ A for all B ∈ B, where B is the Borel σ-algebra on R. We further establish
the same notation:

(a) An outcome is an elementω ∈ Ω.

(b) An event is a measurable subset ofΩ: A ∈ A.

(c) The real number x (ω) is a realization of the random variable.

(d) The probability measure for x is then: µ (B) = P
(
x–1 (B)

)
= P
({
ω ∈ Ω|x (ω) ∈ B

})
, for

B ∈ B.

(e) The distribution function for f is: G (b) = µ
(
(–∞, b

])
, for b ∈ R.

Now we can work on adding the time dimension to the definition of a random variable.
In general time can be discrete or continuous, but in what follows we will assume that
time is continuous starting at 0 and going on forever, so t ∈ [0,∞). Intuitively a stochastic
process is formed by function x : [0,∞)×Ω→ R that gives a realization for every outcome
and time. At every point in time the random variable takes a variable, the sequence of
those values forms the realization (path) of the stochastic process.

The question is on how to measure the possible outcomes of the random variable
through time. We need a way of determining where the random variable is at a certain
point in time, and where it has been, but that does not provide information about the value
of future realizations. This is achieved using a filtration.

Definition 18.2. (Filtration) Let A be a σ-algebra. The set A =
{
At |t ≥ 0

}
is a filtration if

At ⊆ A and As ⊆ At for all t ≥ 0 and s ≤ t. At is the set of events known at time t.

Now we can define a stochastic process as a function that is measurable in a filtered
space.

137



Definition 18.3. (Stochastic Process) Let (Ω,A,P) be a filtered probability space with a
time index t ∈ R+, and let B+ be the Borel sets of R+. A stochastic process is a function
x : [0,∞)×Ω→ R that is measurable with respect toB+×A (that is, x is jointlymeasurable
in (t,ω)). Moreover:

(a) For all t ∈ R+ andω ∈ Ω, x (t,ω) is measurable with respect to At, where At is in the
filtration A.

(b) For all t ∈ R+, x (t, ·) : Ω→ R is an ordinary random variable on the probability space
(Ω,At,Pt).

(c) For all ω ∈ Ω, x (·,ω) : R+ → R is a Borel measurable function. This is called the
sample path of x.

18.2. Discrete time examples

It is not hard to come up with examples of discrete time stochastic processes. They are
often used to model the behavior of many stationary economic variables by means of
ARMA(p,q) representations, as well non-stationary variables usually related to random
walks.

To fix ideas we start with the simple example of a (fair) coin toss. There are two possible
outcomes, soΩ = {H,T}, when tossing the coin is always possible to know which outcome
occurred, and whether or not the coin was tossed, this gives: A =

{
{H} , {T} , ∅,Ω

}
. Finally

the probability distribution P assigns values to sets in the σ-algebra A:

P ({H}) = P ({T}) =
1
2

P (∅) = 0 P (Ω) = 1

Now we can define a random variable ϵ : Ω → R as: ϵ (H) = 1 and ϵ (T) = –1. ϵ is a
random variable with respect to the probability space (Ω,A,P). As will be the case almost
always we can dispense of the outcome spaceΩ for most applications and just refer to the
random variable and the probability distribution induced over its values. In this way we
have: ϵ ∈ {–1, 1} with Pr (ϵ = 1) = Pr (ϵ = –1) = 1/2.

Furthermore we can extend this example to define the stochastic process that comes
up from the repeated coin toss. In this case time is discrete and finite t ∈ {1, 2, 3} and at
each time a coin is tossed, then the random variable variable ϵt is defined as the value of
ϵ given the outcome of the tth coin toss. The sequence {ϵt}3t=1 is a stochastic process with
respect to the filtered probability space (Ω,A,P), where:

Ω = {(H,H,H) , (H,H,T) , (H,T,H) , (H,T,T) , (T,H,H) , (T,T,H) , (T,H,T) , (T,T,T)}
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A = 2Ω P (ω) =
1
8
∀ω∈Ω

The filtration is established taking into account that at each point in time only the outcome
of current and past tosses is known:

A1 =
{
∅,Ω, {(H,H,H) , (H,H,T) , (H,T,H) , (H,T,T)} , {(T,H,H) , (T,T,H) , (T,H,T) , (T,T,T)}

}

A2 =
{
∅,Ω, {(H,H,H) , (H,H,T)} , {(T,H,H) , (T,H,T)} , {(H,T,H) , (H,T,T)} , {(T,T,H) , (T,T,T)}

}
A3 = A

So, in the first σ-algebra all outcomes for which the first toss comes up heads are
indistinguishable from each other, in the second σ-algebra one can distinguish between
outcomes that have the sequence {H,T} and {H,H}, but no information is given about the
outcome of third toss. This same ideas apply if time goes on forever, so we can define our
stochastic process over t ∈ N.

In the previous example the stochastic process obtained satisfies the property of being
iid (identically and independently distributed). The values of the stochastic process at
each point in time are independent from its previous values, and they all have the same
probabilities of occurring.

We now use our stochastic process {ϵt} to define a random walk. Random walks are
particularly useful to understand the behavior of continuous time stochastic processes. As
we will see the building block of most of them is the continuous time approximation of a
random walk.

Example 18.1. (RandomWalk Process) Consider a stochastic process x. Denote by xt the
value of x at time t, and fix the initial value x0. xt is assumed to evolve according to:

xt = xt–1 + ϵt for t ≥ 1

ϵt is a random variable that can take two values {–1, 1}, and its probability distribution is
independent of time, so that: Pr (ϵt = 1) = Pr (ϵt = –1) = 1

2 .
Given the starting value x0 the variable xt can only take on discrete values. For

instance, for x0 = 0 and t odd they are {–t, . . . , –1, 0, 1, . . . , t}, and for t even they are
{–t, . . . , –2, 0, 2, . . . , t}. These values tell you which paths of the process cam be known at
time t.

Finally, this process has no drift. Given an initial value x0 the expected value of xt
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for any t is x0 (E [xt] = x0), this follows from the expected value of each change being
E [xt – xt–1] = E [ϵt] = 0.

This process can be generalized in many ways. The most useful one for our purposes is
to allow for drift, which can be done by changing the probabilities of the random variable
ϵt, letting Pr (ϵt = 1) = p and Pr (ϵt = –1) = 1 – p achieves the desired result. If p > 1/2 the
process will have positive drift.

18.3. Brownianmotion (Wiener processes)

A Brownian motion, or Weiner process, is a continuous time stochastic process (W (t)) that
satisfies three properties:

(a) W (t) has continuous sample paths.

(b) W (t) has stationary independent increments.

(c) Increments ofW (t) over a finite interval of time are normally distributed with variance
that increases linearly in time.

The first property implies that a Brownian motion has no jumps, so as the time interval
goes to zero the change in the processmust also go to zero. The second and third properties
imply that the change inW (t) over some interval of length ∆t must satisfy:

∆W = ϵt
√
∆t ϵt ∼ N (0, 1)

which we write as dW = ϵt
√
dt as ∆t → 0. This implies that:

E
[
dW
]
= E [ϵt]

√
dt = 0 V

[
dW
]
= E
[
ϵ2t
]
dt = dt

Moreover we assume that ϵt is serially uncorrelated, i.e., E [ϵtϵs] = 0 for t ̸= s, so the values
of dW for any two different time intervals are independent.

Its easy to note the relation between the Brownian motion and the random walk
processes. In discrete time we had ∆xt = xt – xt–1 = ϵt∆t, where ∆t = 1. We will use this
fact when approximating Brownian motions using random walks as ∆t → 0.

To see that this representation implies the third property consider a time interval that
starts at t and ends at T, and divide into n intervals of length ∆t = T/n. Then we have:

W (t + T) –W (t) =
n∑
i=1
ϵi
√
∆t
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What we want to show is that W (t + T) – W (t) ∼ N (0, t). To prove this we can use the
Central Limit Theorem:

Theorem 18.1. (Central Limit Theorem) If {ϵ1, ϵ2, ϵ3, . . .} are iid (but not necessarily normal)

with E
[
ϵi
]
= µ <∞ and V

[
ϵi
]
= σ2 <∞, then Zn =

√
n

n∑
i=1
ϵi–nµ

σ → N (0, 1) as n→∞.

Note that ϵi already satisfies being iid and E
[
ϵi
]
= 0 and V

[
ϵi
]
= 1, so Zn =

√
n
n∑
i=1
ϵi.

Then we can write:
W (t + T) –W (t) =

√
TZn

By the CLT this converges to a N (0,T) as n→∞.
A Brownian motion can be generalized to have drift µ and variance σ2. This is done by

adjusting the way the increments of the stochastic process work:

dx = µdt + σdW

In this case the increments are given by a non-stochastic component µdt, which indicates
that the process will drift by µ per unit of time deterministically if there are no shocks, and
by a stochastic component σdW , where σ is scaling the variance of the increments of the
Weiner processW . This process satisfies:

E
[
dx
]
= µdt V

[
dx
]
= σ2dt

18.3.1. Randomwalk approximation of a Brownianmotion

As mentioned above we can use the similarities between the increments of a Brownian
motion and the increments of a random walk to approximate continuous time processes
using discrete time ones. This is important because of two reasons: it helps explain the
mechanics of the continuous time model, and it provides an algorithm for simulation in
the computer.

Our objective is to approximate the a Brownian motion with drift:

dx = µdt + σdW

Wewill approximatewith a discrete time process ywhose increments are hwith probability
p and –h with probability 1 – p. This gives:

E
[
∆ y
]
= ph – (1 – p) h = (2 p – 1) h

141



V
[
∆ y
]
= E
[
(∆ y)2

]
–
(
E
[
∆ y
])2 = (1 – (2 p – 1)2) h2

In order to get the approximation we need to choose values for h, p and ∆t so that:

µ∆t = (2 p – 1) h

σ2∆t = 4 p (1 – p) h2

Solving for p we get:

p2 – p +
σ2

4
(
σ2 + µ2∆t

) = 0
The roots of these equation are:

p =
1
2

(
1±

√
1 –

σ2(
σ2 + µ2∆t

))

=
1
2

(
1± µ

√
∆t√

σ2 + µ2∆t

)
≈ 1
2

(
1± µ

σ

√
∆t
)

where the approximation follows if ∆t is small enough relative to σ2/µ2, because we are
taking ∆t close to zero this assumption is satisfied. We further choose only the “+” root
because that way p ≥ 1/2 when µ ≥ 0.

Now we can find a value for h:

σ2∆t = 4 p (1 – p) h2

σ2∆t = 2
(
1 +
µ

σ

√
∆t
)(

1 –
1
2

(
1 +
µ

σ

√
∆t
))

h2

σ2∆t =
(
1 +
µ

σ

√
∆t
)(

1 –
µ

σ

√
∆t
)
h2

σ2∆t =
(
1 –
(µ
σ

)2
∆t
)
h2

σ2∆t ≈ h2

σ
√
∆t ≈ h

As before we can disregard the term
(µ
σ

)2
∆t as long as ∆t is small enough relative to σ2/µ2.

As an exercise can verify that the first equation also holds:

µ∆t = (2 p – 1) h
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µ∆t = (2 p – 1)σ
√
∆t

µ

σ

√
∆t = 2 p – 1

1
2

(
1 +
µ

σ

√
∆t
)
= p

In order to simulate a Brownian motion with parameters (µ,σ) we can do as follows:

(a) Set a ∆t small relative to σ
2

µ2
.

(b) Set p = 1
2

(
1 + µσ

√
∆t
)
and h = σ

√
∆t.

(c) Simulate the increments of x by drawing realization of a random variable ϵt that takes
value h with probability p and –h with probability 1 – p.

18.4. Ito processes

Ito processes are the generalization of Brownian motions. Their drift and variance is
allowed to depend on the level of the process and the time:

dx = µ (x, t) dt + σ (x, t) dW (18.1)

where the functions µ and σ give the value of the mean and standard deviations of the
increments of the process x:

µ (x, t) = lim
∆→0+

1
∆
E
[
x (t + ∆) – x (t) |x (t) = x

]
(σ (x, t))2 = lim

∆→0+
1
∆
E
[
(x (t + ∆) – x (t))2 |x (t) = x

]
For future reference note that an Ito process can also be represented as:

x (t) = x (0) +
∫ t

0
µ (x, s) ds +

∫ t

0
σ (x, s) dW (s)

where the last term is a stochastic integral. Stochastic integrals play an important role in
the theory of stochastic processes, for now it suffices to state the following result.

Proposition 18.1. Let x (t) be an integrable function, then E
[∫ t
0 x (s) dW (s)

]
= 0.

This proposition states that the expected value of a stochastic integral is identically
zero. The derivation of the result, along with other properties can be found in Stokey (2009,
Sec. 3.2).

Two Ito process are of particular importance. They are presented in the examples below.
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Example 18.2. (Geometric Brownian notion) A Geometric Brownian motion is an Ito
process with µ (x, t) = µx and σ (x, t) = σx, so:

dx = µxdt + σxdW

Ageometric Brownianmotion can be thought of as a Brownianmotionwhere the properties
apply to percentage increments instead of increments:

dx
x
= µdt + σdW

So the percentage increment, dx/x, are normally distributed with mean µ∆t and variance
σ2∆t.

Example 18.3. (Ornstein-Uhlenbeckprocess)Unlike the previous processes anOUprocess
is mean reverting, similar to an AR(1) process in discrete time. An OU process is an Ito
process with µ (x, t) = µ (x – x) and σ (x, t) = σ. If x > x then the process drifts down, and if
x < x the process drifts up.

dx = µ (x – x) dt + σdW

18.5. Jump processes - Poisson Processes

Jump processes are a type of stochastic process that has discontinuous paths. Jump process
change by discrete amounts when a certain outcome occurs. The most important Jump
process is the Poisson process, which is just a jump process such that the time of the jumps
follows a Poisson distribution. To define it let λ be the mean arrival rate of a jump and u
the size of the change of the process (usually u = 1, but in general u can be itself a random
variable). Then for some process q we have:

dq =

0 with prob. 1 – λdt

u with prob. λdt

We can now define a more general process that depends on the Jump process q:

dx = f (x, t) dt + g (x, t) dq (18.2)

where absent a jump x evolves deterministically according to the function f , and when
there is a jump it moves according to function g,

E
[
dx
]
= f (x, t) dt + λEu

[
g (x, t)u

]
dt.
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19. Ito’s Lemma

We are often concernedwith the behavior of functions of stochastic processes, in particular
the differentials of those functions. The number one example at hand is to know how the
value of an asset (or an option) evolves over time. Ito’s Lemma gives a way to compute those
differentials. This relates the functions we are interested in to the stochastic differential
equation that governs the underlying stochastic process.

Consider a function F (x, t) that depends on a stochastic process x. x is assumed to be
an Ito process following:

dx = µ (x, t) dt + σ (x, t) dW (19.1)

Normal calculus rules would give the differential of F as:

dF =
∂F
∂x
dx +

∂F
∂t
dt

Although not always clear, one of the reasons for expressing the differential without
resorting to higher order terms is that those terms depend on dt2, dt3 . . .. As dt → 0 all
higher order terms go to zero faster, and are hence ignored. But stochastic process add a
new factor because their components depend of time through

√
dt, so square terms like

(dx)2 must also be considered.
A second order Taylor expansion of F gives:

dF =
∂F
∂x
dx +

∂F
∂t
dt +

1
2

(
∂2F
∂x2

(dx)2 +
∂2F
∂t2

(dt)2 +
∂2F
∂t2

(dx) (dt)

)

As shown in Øksendal (2003, Sec. 4.1) dWdt = dt2 = 0, they can be safely ignored because
they depend on terms of order higher than dt. That leaves us with:

dF =
∂F
∂x
dx +

∂F
∂t
dt +

1
2
∂2F
∂x2

(dx)2 (19.2)

From the definition of our Ito process we get:

(dx)2 =
(
µ2 (x, t) (dt)2 + 2µ (x, t)σ (x, t) dtdW + σ2 (x, t) (dW )2

)
= σ2 (x, t) (dW )2

We can again drop the terms involving (dt)2 and (dtdW ), and also show that (dW )2 = dt
(recall that E

[
(dW )2

]
= dt). The proof is not hard and can be found in Øksendal (2003, Sec.
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4.1). Replacing:

dF =
(
∂F
∂x
dx +

∂F
∂t
dt
)
+
1
2
∂2F
∂x2

(
σ2 (x, t) dt

)
dF =

(
∂F
∂t

+ µ (x, t)
∂F
∂x

+
1
2
σ2 (x, t)

∂2F
∂x2

)
dt + σ (x, t)

∂F
∂x
dW (19.3)

This derivation (Ito’s Formula) means that y = F (x, t) is itself an Ito process with
µ y (x, t) =

(
Ft + µ (x, t) Fx + 1

2σ
2 (x, t) Fxx

)
and σ y (x, t) = σ (x, t)Fx as parameters.

Unsurprisingly, the expected value of y is µ y (x, t) and its variance is σ y (x, t) dt.

19.1. Application to geometric brownianmotion

We can use Ito’s Lemma to obtain the properties of different stochastic processes. For
instance the Geometric Brownian motion can be shown to be the exponential of a
standard brownian motion, or equivalently it can be shown that the logarithm of a
geometric brownian motion is a brownian motion.

Let x be a geometric brownian motion satisfying:

dx = µxdt + σxdW

and y = ln x. By Ito’s Lemma:

d y =
(
µx · 1

x
+
1
2
σ2x2 ·

(
–1
x2

))
dt + σx · 1

x
dW

=
(
µ –

1
2
σ2
)
dt + σdW

thus y is a brownian motion with parameters µ y = µ – 1
2σ

2 and σ y = σ. The drift of y is
lower than the drift of x, because the logarithm is a concave function Jensen’s inequality
implies that the expected value of the log is lower.

We can also obtain the expected value of x by noting that:

x (t) = x (0) +
∫ t

0
µx (s) ds +

∫ t

0
σx (s) dW (s)

taking expectations gives:

E [x (t)] = x (0) +
∫ t

0
µE [x (s)] ds
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recalling that the third term is a stochastic integral, and hence has expected value equal to
zero. From this equation we can derive a first order differential equation for the expected
value of x:

dE [x] = µE [x] dx

The solution for this equation, given the boundary condition E [x (0)] = x (0) is:

E [x] = x (0) eµt

Finding the variance (and other moments) works in the same way. For the variance we
want to obtain an expression for x2, so first consider the function f (x) = x2. By Ito’s Lemma
we get:

d f =
(
2µx2 + σ2x2

)
dt + 2σx2dW

x2 = f (x) = x20 +
(
2µ + σ2

)∫ t

0
x2 (s) ds + 2σ

∫ t

0
x2 (s) dW (s)

We can now take expectations to obtain:

E
[
x2
]
= x20 +

(
2µ + σ2

)∫ t

0
E
[
x2 (s)

]
ds

which leads to a differential equation for E
[
x2
]
:

dE
[
x2
]
=
(
2µ + σ2

)
E
[
x2
]

E
[
x2
]
= x2 (0) e

(
2µ+σ2

)
t

the variance is then:

V [x] = E
[
x2
]
– E [x]2

= x2 (0) e
(
2µ+σ2

)
t – x2 (0) e2µt

= x2 (0) e2µt
(
eσ

2t – 1
)

Some applications are shown below:

Example 19.1. Consider an asset that gives flow payoffs x that evolve according to a
geometric brownian motion

dx = µxdt + σxdW
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we can compute the expected discounted value of holding that asset easily using the results
above:

E
[∫ ∞

0
e–ρtx (t) dt

]
=
∫ ∞
0

e–ρtE [x (t)] dt =
∫ ∞
0

x (0) e–(ρ–µ)tdt =
x0
ρ – µ

Example 19.2. Now consider an agent that receives flow consumption of x, which evolves
again as a geometric brownian motion. The agent’s utility is CRRA, so that u (x) = x1–θ

1–θ . We
want to know the expected present value of utility.

E
[∫

e–ρtu (x (t)) dt
]
=
∫
e–ρtE [u (x (t))] dt

To know it we need to compute E [u (x (t))]. From Ito’s Lemma we have:

du =
(
µx · x–θ + 1

2
σ2x2 ·

(
–θx–θ–1

))
dt + σx · x–θdW

du = (1 – θ)
(
µ –

θ

2
σ2
)
x1–θ

1 – θ
dt + (1 – θ)σ

x1–θ

1 – θ
dW

du = (1 – θ)
(
µ –

θ

2
σ2
)
udt + (1 – θ)σudW

Thus, u is itself a geometric brownian motion (actually if x is a brownian motion xk is a
geometric brownian motion). Using our previous results we have:

E [u] = u (x (0)) e
(1–θ)

(
µ–θ2 σ

2
)
t

So we have:

E
[∫

e–ρtu (x (t)) dt
]
=
∫
e–ρtE [u (x (t))] dt =

(x (0))1–θ

(1 – θ)
(
ρ – (1 – θ)

(
µ – θ2σ2

))
19.2. Poisson Processes

Similar, and simpler, results can be obtained if x follows a Poisson process:

dx = f (x, t) dt + g (x, t) dq

andwe have a functionH (x, t) that depends on x. Unlike the Ito Process the Poisson process
does not depend on

√
dt, so higher order terms in the Taylor expansion can be ignored
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altogether to get:

dH = Htdt +Hxdx

= (Ht + f (x, t)Hx) dt + g (x, t)Hxdq

The expected value of this change must take into account the probability of a jump in q
(given by λdt), so we have:

E
[
dH
]
= (Ht + f (x, t)Hx) dt + λEu

[
H (x + ug (x, t) , t) –H (x, t)

]
dt (19.4)

it follows, by using the identity function that E
[
dx
]
= f (x, t) dt + λEu

[
ug (x, t)

]
dt.

We can apply this result to a couple examples taken from Dixit and Pindyck (1994):

Example 19.3. Consider an individual that lives forever and receives a wage w (t) at each
point in time. The wage increases by ϵ at random times, following a Poisson process with
arrival rate λ, so:

dw = ϵdq

The individual wants to know the expected discounted value of taking the job we need to
compute:

V (w) = E
[∫ ∞

0
e–ρtw (t) dt

]
The function V (a value function) has a recursive representation, this is easier to see in the
discrete time approximation. Consider a period of length ∆t, then:

V (w (t)) = w (t)∆t +
1

1 + ρ∆t
E [V (w (t + ∆t))]

(1 + ρ∆t)V (w (t)) = (1 + ρ∆t)w (t)∆t + E [V (w (t + ∆t))]

ρ (∆t)V (w (t)) = (1 + ρ∆t)w (t)∆t + E [V (w (t + ∆t)) – V (w (t))]

ρV (w (t)) = (1 + ρ∆t)w (t) +
E [∆V ]
∆t

Taking the limit as ∆t → 0 we get:

ρV = w +
E
[
dV
]

dt
(19.5)

Staying in the job works just like an asset, with a normal return at rate ρ being equal to the
sum of the dividend (in this case given by the wage) and the expected capital gains (from
changes in the wage). In the expression above E[dV]

dt = lim∆t→0 1
∆tE [∆V ]
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We can apply the formula from above:

E
[
dH
]
= (Ht + f (x, t)Hx) dt + λEu

[
H (x + ug (x, t) , t) –H (x, t)

]
dt

where H = V , x = w, f (x, t) = 0 and g (x, t) = ϵ and u = 1 with certainty:

E
[
dV
]
= λ (V (w + ϵ) – V (w)) dt

= λϵ
(∫ ∞

0
e–ρtdt

)
dt

=
λϵ

ρ
dt

This leaves us with an explicit solution for V :

V =
w
ρ
+
λϵ

ρ2

V is equal to an asset that pays the current wage forever plus the capitalized value of the
average raise in wages per unit of time.

Example 19.4. Consider now a firm that produces using capital. As long as capital is
operational a flow profit of π is obtained, but capital becomes obsolete when new
technologies arrive. These innovations occur at random times following a Poisson process
with arrival rate λ. Once the innovation arrives and the capital becomes obsolete the firm
goes out of business forever.

The value of the firm follows a process:

dV = –Vdq

The return can be found as before:

ρV = π +
1
dt
E
[
dV
]

To find E
[
dV
]
we can again use our formula with H = V , the identity function:

E
[
dV
]
= –λVdt

replacing we get
ρV = π – λV or V =

π

ρ + λ
.
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Which this is equivalent to solving:

V =
∫ ∞
0

e–(ρ+λ)tπdt

This should not be a surprise. Consider the case where there are no shocks and the firm
can operate forever with certainty. Then V is:

V =
∫ ∞
0

e–ρtπdt =
π

ρ

Now the firm shuts down with a certain probability, given by the arrival of the Poisson
shock. Then:

V = E
[∫ ∞

0
e–ρtπdt

]
=
∫ ∞
0

Pr
[
No shock until time t

]
e–ρtπdt

The probability of there being no shocks is known:

Pr
[
No shock until time t

]
= e–λt

Replacing gives the desired result.
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20. Dynamic Programming

In dynamic programming we aim to develop tools for solving problems that involve actions
through time, that in turn affect the total value obtained by the agent takin the decisions.
The key of dynamic programming is that it focuses on the current decision being taken
and its effect on the continuation value for the agent, rather than try to solve for the whole
sequence of actions at once.

20.1. Discrete time overview

Dynamic Programming

To build up to the concepts of dynamic programming in continuous time we will first
consider a simple discrete time problem of a firm that must invest a fixed amount I to set
up the operation of the firm. Once the firm is operational the firm produces one unit of
good every period.The current price of the good is known and given by p0, in the second
period the price can go up or down:

p1 =

(1 + u) p0 with prob. q

(1 – d) p0 with prob. 1 – q

After that the price is constant. Hence, the firm’s decision is whether to invest in the first
period, in the second, or not to invest at all. It makes no sense to wait any longer because
no new information will arrive after the initial change in price. The firm discounts future
payments with an interest rate r.

We can solve the problem by tracing the decisions that the firm can take. In the second
period, once the price is known and assuming that the firm is not yet in operation, the firm
can either invest or not. If the firm does not invest it gets zero payoff, if it invests it gets:

F1
(
p1
)
= p1 +

p1
1 + r

+
p1

(1 + r)2
= p1

∞∑
i=0

1
(1 + r)i

=
1 + r
r

p1

The payoff of the firm is then:

V1
(
p1
)
= max

{
F1
(
p1
)
– 0, 0

}
Knowing this is relevant because if the firm does not invest in the first period it can always
do so later, so V1 constitutes the continuation payoff of the firm. The payoff to the firm if it
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does not invest in the first period is then:

1
1 + r

E
[
V1
(
p1
)]
=

1
1 + r

(
qV1

(
(1 + u) p0

)
+ (1 – q)V1

(
(1 – d) p0

))
If the firm invests in the first period the payoff is:

F0
(
p0
)
= p0 +

1
1 + r

E
[
F1
(
p1
)]

= p0 +
1

1 + r
(
qF1

(
(1 + u) p0

)
+ (1 – q) F1

(
(1 – d) p0

))
= p0 +

(
q
r
(1 + u) p0 +

1 – q
r

(1 – d) p0

)
=
1
r
(1 + r + q (u + d) – d) p0

So, the value of the firm is:

V0
(
p0
)
= max

{
F0
(
p0
)
– I,

1
1 + r

E
[
V1
(
p1
)]}

In this example we already see the basics of dynamics programming, splitting the
problem into the decision at hand (invest or not invest) and the continuation value that they
entail. The example also highlights one of the recurring topics of the course: option value.
The firm has an option that allows it to invest any of the two dates. Waiting in this problem
has value, because investing in the future also means to invest with better information. In
fact we can compute the value of this option (to wait) by comparing the value that the firm
would have if it was forced to take a decision in the first period:

Ω0
(
p0
)
= max

{
F0
(
p0
)
– I, 0

}
with the value that includes the possibility of action in the second period:

V0
(
p0
)
–Ω0

(
p0
)

We can now extend this simple model to allow for action in many periods (more than
two). Consider a firm that operates for T <∞ periods. In each period the firm will choose
the value of a control variable u that affects (potentially) the per-period payoffs of the firm,
namely the profits, and the evolution of a random variable x. x is assumed to follow a
Markov process so that the CDF of xt+1 is Φt (xt+1|xt,ut). The random variable x is also
allowed to affect payoffs, so per-period payoffs are: π (ut, xt).
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The firm discounts the future at rate 1
1+ρ and receives a final payoff pfΩT (xT) in the

last period. The objective is:

V0 (x0) = max
{ut}T–1t=0

E

[T–1∑
t=0

(
1

1 + ρ

)t
π (ut, xt) +

(
1

1 + ρ

)T
ΩT (xT)

]
(20.1)

dynamic programming allows us to write the problem recursively. In the last period we
have:

VT–1 (xT–1) = maxuT–1
π (uT–1, xT–1) +

(
1

1 + ρ

)
E
[
ΩT (xT) |xT–1,uT–1

]
(20.2)

For all other periods we can use the notion of continuation payoffs to obtain:

Vt (xt) = maxut
π (ut, xt) +

(
1

1 + ρ

)
E
[
Vt+1 (xt+1) |xt,ut

]
(20.3)

The problem can then be solved by backwards induction, choosing contingent plans for
ut (xt) one period at a time, instead of tackling the more complicated problem of choosing
the whole sequence of {ut}.

When time is not finite, there is no terminal date, and we cannot use backwards
induction to solve the problem. In this case the value of the firm itself is also independent
of time, because each period is just like the next. We then have:

V (x) = max
u
π (u, x) +

(
1

1 + ρ

)
E
[
V
(
x
′)
|x,u

]
(20.4)

the problem is now to find a function V that satisfies the equation above. The details behind
the solution to this problem can be found in Stokey, Lucas, and Prescott (1989).

This setup is very versatile and can be applied to firm problems as the one above, but it
is also at the core of modern macroeconomic theory. The following examples make this
point in a non-stochastic version of the model.

Example 20.1. Consider an economy in which the representative consumer lives forever.
There is a good in each period that can be consumed or saved as capital as well as labor.
The consumer’s utility function is

V
(
k0
)
=
∞∑
t=0
βt log ct

Here 0 < β < 1. The consumer is endowed with 1 unit of labor in each period and with
k0 units of capital in period 0. Capital fully depreciates each period. Feasible allocations
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satisfy
ct + kt+1 ≤ θkαt l 1–αt

Here θ > 0 and 0 < α < 1. We can formulate the problem of maximizing the representative
consumer’s utility subject to feasibility conditions as a dynamic programming problem.
The appropriate Bellman’s equation is:

V (k) = max
c,k′,l

{
log c + βV

(
k′
)}

s.t. c + k′ ≤ θkαl 1–α

c, k′ ≥ 0

0 ≤ l ≤ 1

To solve it we guess that the value function has the form a0 + a1 log k and solve for the
decisions of the consumer. The constraint will hold with equality because the utility
function is strictly increasing in consumption, also production increases with labor and
there is no disutility of it, hence there is a corner solution for labor indicating l = 1, so
with the guess the problem becomes

a0 + a1 log k = max
k′∈
[
0,θkαl 1–α

] log(θkαl 1–α – k′) + β (a0 + a1 log k′)
Then the FOC is

1
θkαl 1–α – k′

=
βa1
k′

solving for k′

k′ = βa1
(
θkαl 1–α – k′

)
=
βa1

(
θkαl 1–α

)
1 + βa1

Then plugging this back into the value function you get

a0 + a1 log k = log

θkαl 1–α – βa1
(
θkαl 1–α

)
1 + βa1

 + β

a0 + a1 log
βa1

(
θkαl 1–α

)
1 + βa1
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Collection terms with k you get

a1 log k = α log k + βa1α log k

a1 (log k – βα log k) = α log k

a1 =
α

1 – βα

which means the policy function is

k′ =
β α
1–βα

(
θkαl 1–α

)
1 + β α

1–βα
= βαθkαl 1–α

l = 1

c = θkαl 1–α – βαθkαl 1–α

Optimal Stopping Time

There is another type of problem that deserves special treatment. Optimal stopping time
problems are at the core of the continuous time applications in the rest of the course. In
these problems the agent faces a binary choice (instead of a continuous choice as in the
example above), they resemble the example of the firm at the beginning of the Section
where the firm has to choose whether or not to invest. This problems are characterized
by the inaction of the agent, because the agent usually acts just once, and most of the
time the optimal choice is to do nothing. To characterize these problems letΩ (x) be the
termination payoff received once the action is taken (and time is stopped). It depends on
the value of state x. The Bellman equation is now:

V (x) = max
{
Ω (x) ,max

u
π (u, x) +

(
1

1 + ρ

)
E
[
V
(
x
′)
|x,u

]}
(20.5)

We can now define a stopping time as a random variable that signals the decision to stop
and take the termination payoffΩ (x). So:

T⋆ =
{
x|Ω (x) ≥ max

u
π (u, x) +

(
1

1 + ρ

)
E
[
V
(
x
′)
|x,u

]}
(20.6)

In general T⋆ can take many forms, but in most (if not all) of the relevant economic
applications it will take the form: T⋆ = [x,∞), T⋆ = (–∞, x] or T⋆ = (–∞, x] ∪ [x,∞). As an
example we apply these ideas to the problem of search and unemployment, the McCall
search model.
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Example 20.2. Consider the following infinite horizon model. An agent searches for a job.
Each period the agent receives a wage offer from a distribution F (w) with bounded support
W =

[
0,W

]
. If accepted the agent will remain employed at that wage forever. If rejected

the worker receives unemployment benefits b. Wage offers are iid over time. The worker
preferences are

∑
βtct. Assume no borrowing or lending.

We first set up the workers decision as a dynamic programming problem:

VE (w) =
w
1 – β

VU = b + β
∫
max

{
VE (w̃) ,VU

}
dF (w̃)

The decision of a worker when facing a wage offer w is to accept it or reject it, the worker
will accept if VE (w) > Vu and reject otherwise. Then the value of the worker is:

V (w) = max
[
VE (w) ,VU

]
V (w) = max

[
w
1 – β

, b + β
∫
V (w̃) dF (w̃)

]
Now we need to show that the decision to take action (accept a job offer) is given by
T⋆ = [w,∞), where w is the reservation wage. To show this, note that VU is independent of
the wage and that VE is increasing in wages. The reservation wage satisfies:

w
1 – β

= b + β
∫
V (w̃) dF (w̃)

This implies that V is constant for w < w, because the offers are rejected, and it is equal to
VE for w ≥ w:

V (w) =

 w
1–β if w < w
w
1–β if w ≥ w

It is left to find w. To do this we should first solve for VU :

VU = b + β
∫
max

{
VE (w̃) ,VU

}
dF (w̃)

= b + β
∫ w

0

w
1 – β

dF (w̃) + β
∫ W

w

w̃
1 – β

dF (w̃)

= b +
β

1 – β

(∫ w

0
wdF (w̃) +

∫ W

w
w̃dF (w̃)

)
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= b +
β

1 – β

(
w –

∫ W

w
wdF (w̃) +

∫ W

w
w̃dF (w̃)

)

= b +
β

1 – β

(
w +

∫ W

w
(w̃ – w) dF (w̃)

)

The agent knows she is guaranteed to have w forever, finding a job just adds to the value
with the wage in excess of w.

Turning back to determining w we can replace VU to get:

w = b +
β

1 – β

∫ W

w
(w̃ – w) dF (w̃)

This equation is guaranteed to have a solution for w ∈
[
c,W

]
. The LHS is increasing in w,

while the RHS is decreasing in w.

20.2. Continuous time dynamic programming

We can now turn to develop a general framework to solve dynamic problems in continuous
time. To start consider the problem developed in the previous section with periods of
length ∆t. The agent receives a payoff π (u, x)∆t every period (where π is the payoff flow),
and discounts the future at a rate ρ per unit of time, so the effective discount rate for the
period of length ∆t is: 1

1–ρ∆t . This leads to the following Bellman-type equation

V (x) = max
u
π (u, x)∆t +

(
1

1 + ρ∆t

)
E
[
V
(
x
′)
|x,u

]
(20.7)

Rearranging we get:

ρV (x) = max
u

(1 + ρ∆t)π (u, x) +
E
[(
V
(
x
′)
– V (x)

)
|x,u

]
∆t

(20.8)

Taking the limit as ∆t → 0 we get our continuous time Bellman equation:

ρV (x) = max
u
π (u, x) +

1
dt
E
[
dV (x) |x,u

]
(20.9)

where
E
[
dV
]

dt
= lim
∆t→0

1
∆t
E [∆V ]

Equation (20.9) works just like a non-arbitrage condition. We can thing of the agent as
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holding an asset with value V . The LHS gives the normal rate of return per unit time that
the agent requires to hold the asset, given the discount rate ρ. The RHS gives the effective
payoff of the asset, composed by the immediate flow payoff π, and the expected capital
gains (brought up by changes in the value of the asset).

We can further characterize the problem given knowledge of the stochastic process
that x follows. This will allow us to evaluate the expectation in (20.9). If x follows an Ito
process, as in equation (18.1), then Ito’s Lemma gives the following result:

dV =
(
µ (x, t)V

′
+
1
2
σ2 (x, t)V

′′
)
dt + σ (x, t)V

′
dW

E
[
dV
]
=
(
µ (x, t)V

′
+
1
2
σ2 (x, t)V

′′
)
dt

Replacing we get the Hamilton-Jacobi-Bellman equation:

ρV (x) = max
u
π (u, x) + µ (x, t)V

′
(x) +

1
2
σ2 (x, t)V

′′
(x) (20.10)

We can take FOC with respect to u and then get a differential equation for V that we can
solve.

If x follows a Poisson process, like the one in equation (18.2), we can obtain a similar
result. From equation (19.4) we can compute E

[
dV
]
:

E
[
dV
]
=
(
f (x, t)V

′
(x)
)
dt + λEu

[
V (x + ug (x, t)) – V (x)

]
dt

Optimal Stopping Time and the Smooth Pasting Condition

We now go back to the stopping time problem reviewed in Section 20.1. Consider then the
problem of an agent that is engaged in some activity (say running a firm). The agent gets a
flow payoff of π (x) if she continues with the activity, andΩ (x, t) if she quits the activity
(stops). The value of the agent is:

V (x, t) = max
{
Ω (x, t) ,π (x)∆t +

1
1 + ρ∆t

E
[
V (x + dx, t + ∆t)

]}
(20.11)

where x follows a diffusion process and in equation (18.1). We assume thatΩ is continuous
and weakly increasing in x.

In order to solve the problem we need to find regions of x where it is best for the agent
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to continue and those for which it is best to stop. If x is in the continuation region then:

V (x) = π (x)∆t +
1

1 + ρ∆t
E
[
V
(
x
′)]

From above we know that this implies that for x in the continuation region we have (by
applying Ito’s lemma):

ρV (x, t) = π (x) + Vt (x, t) + µ (x, t)Vx (x, t) +
1
2
σ2 (x, t)Vxx (x, t)

For simplicity we assume now that the continuation region has the form x ≥ x⋆ (t). It is
only for x ≥ x⋆ (t) that the equation above holds. In order to solve it we need to impose
certain boundary conditions.

By assumption we know that V (x) = Ω (x, t) for x < x⋆ (t), then, by continuity we can
impose that:

V
(
x⋆ (t) , t

)
= Ω

(
x⋆ (t) , t

)
this is called “value-matching”. Continuity at x⋆ is actually necessary for a solution. Suppose
for a contradiction that it is optimal to stop for x < x⋆ (t), but that V (x⋆ (t) , t) < Ω (x⋆ (t) , t),
because V has to be continuous in the domain x ≥ x⋆ (t) (because it is the solution to a
differential equation), and Ω is continuous by definition, then it holds that for x to the
right of x⋆ (t), but sufficiently close to x⋆ (t) it also holds that V (x, t) < Ω (x, t), which
contradicts x ≥ x⋆ (t) being the continuation region. A similar argument applies for the
other inequality.

But this condition is not sufficient to solve the problem, because the value of x⋆ (t) is
still unknown. The condition that allows us to solve the problem (of jointly finding V and
x⋆) is to impose further smoothness to our value function, it must not only be continuous,
but continuously differentiable. This condition is called “smooth pasting” and it requires
the first derivative of the value function to be continuous, that is:

Vx
(
x⋆ (t) , t

)
= Ωx

(
x⋆ (t) , t

)
The reason behind the smooth pasting condition is not at all evident. I will illustrate it

below, but I recommend checking Appendix C of Chapter 4 in Dixit and Pindyck (1994), or
Stokey (2009, Prop 6.4 pg 124).

To see why the smooth pasting condition arise consider the following case built for a
contradiction: the value matching condition holds, but the smooth pasting condition fails,
hence V andΩmust meet at a kink. There are two options:
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(a) There is an upward kink (forming a concave function). If this is the case then, by
continuity, Ω would be higher than F for some value x > x⋆. Contradicting that the
continuation region starts at x⋆.

(b) There is a downward kink (forming a convex function). If this is the case then x⋆ cannot
be a point of indifference either. There is a better strategy, namely continuing for some
time ∆t and then choosing what to do. This strategy give higher (expected) payoff.
To see this recall the random walk formulation of the brownian motion, in a time lapse
∆t x can either go up by hwith probability p or down by –hwith probability 1– p, where:

h = σ
√
∆t p =

1
2

(
1 +
µ

σ

√
∆t
)

Then the agent can continue if the step is upward and stop if it is downward. The
expected payoff of this strategy is:

V
(
x⋆ (t) , t

)
= π

(
x⋆ (t) , t

)
∆t+

1
1 + ρ∆t

[
pV
(
x⋆ (t) + h, t + ∆t

)
+ (1 – p)Ω

(
x⋆ (t) – h, t + ∆t

)]
We can take a Taylor expansion around (x⋆ (t) , t) to approximate the value of
V (x⋆ (t) + h, t + ∆t) andΩ (x⋆ (t) – h, t + ∆t):

V
(
x⋆ (t) + h, t + ∆t

)
≈ V

(
x⋆ (t) , t

)
+ Vx

(
x⋆ (t) , t

)
h + Vt

(
x⋆ (t) , t

)
∆t

Ω
(
x⋆ (t) – h, t + ∆t

)
≈ Ω

(
x⋆ (t) , t

)
–Ωx

(
x⋆ (t) , t

)
h +Ωt

(
x⋆ (t) , t

)
∆t

Replacing gives:

V
(
x⋆ (t) , t

)
= π

(
x⋆ (t) , t

)
∆t +

1
1 + ρ∆t

(
V
(
x⋆ (t) , t

)
+
1
2
[(
Vx
(
x⋆ (t) , t

)
–Ωx

(
x⋆ (t) , t

))
h +
(
Vt
(
x⋆ (t) , t

)
+Ωt

(
x⋆ (t) , t

))
∆t
])

where we use the value matching condition and the fact that ph ≈ 1
2σ
√
∆t and

p∆t ≈ 1
2∆t.

What matters for evaluating the strategy is the continuation value, and that ∆t is of
order h2, so the first two terms in the continuation value(
V (x⋆ (t) , t) + 1

2h (Vx (x
⋆ (t) , t) –Ωx (x⋆ (t) , t))

)
will dictate the behavior of the gain as

∆t → 0 (or equivalently h → 0). These terms are positive as long as
Vx (x⋆ (t) , t) > Ωx (x⋆ (t) , t), which is the case if there is a downward kink.
Then there cannot be a downward kink, because it would contradict the optimality of
the strategy of stopping at x⋆ (t).

Example 20.3. Consider a firm that has flow revenues of ext , and that can be closed at any
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time and sold for a valueΩ > 0. The owner of the firm is risk neutral and discounts the
future at a rate ρ > 0. xt follows:

dxt = µdt + σdW

The problem of the firm’s owner is then:

V (x) = max
{
Ω, ex∆t +

1
1 + ρ∆t

E
[
V (x + dx)

]}
where continuation is optimal for x ≥ x⋆. This problem is independent of time.

As long as x is in the continuation region the value function satisfies the HJB equation:

ρV (x) = ex + µVx (x) +
1
2
σ2Vxx (x)

This is a second order ordinary differential equation with constant coefficients. Then we
know that the solution has the form:

V (x) = VP (x) + A1H1 (x) + A2H2 (x)

where VP is a particular solution to the differential equation, H1 and H2 are homogenous
solutions, and A1and A2 are constants to be determined.

The particular solution is easy to obtain. We can solve for the value of never stopping:

VP (x) = E
[∫ ∞

0
e–ρtexdt

]
We can solve this expectation using the results in example 19.1. We get:

VP (x) =
x

ρ –
(
µ + 1

2σ
2
)

we assume that ρ –
(
µ + 1

2σ
2
)
> 0 in order to guarantee the existence of this solution.

The homogenous solutions are obtained from the homogenous equation:

ρH (x) = µHx (x) +
1
2
σ2Hxx (x)

by guessing that H (x) = eξx and replacing we get:

ρeξx = µξeξx +
1
2
σ2ξ2eξx
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0 = –ρ + µξ +
1
2
σ2ξ2

our guess is verified for ξ a root of the equation above. There are two roots:

ξ2 = –
µ +

√
µ2 + 2σ2ρ
σ2

ξ2 =
–µ +

√
µ2 + 2σ2ρ
σ2

,

where ξ1 < 0 < 1 < ξ2, this follows from ρ > 0 and the assumption ρ –
(
µ + 1

2σ
2
)
> 0. Joining

we get the solution for our HJB equation:

V (x) = VP (x) + A1eξ1x + A2eξ2x

Now we must determine the values of A1 and A2. To do so we first need to impose certain
conditions on our value function.

(a) From optimality in exit it must be that: V (x) ≥ Ω.

(b) From feasibility it must be that: V (x) ≤ VP (x) +Ω.

(c) Value matching implies: V (x⋆) = Ω.

We will show that A2 = 0. Suppose for a contradiction that A2 > 0, then as x →∞ we have
eξ1x → 0 (because ξ1 < 0), and eξ2x → ∞ (because ξ2 > 0), because A2 > 0 this implies
that V violates its upper bound. Now suppose for a contradiction that A2 < 0, as before
eξ1x → 0 and eξ2x → ∞, because ξ2 > 1 the last term will grow faster than the first one,
thus violating the lower bound (the value goes to –∞). Then it must be that A2 = 0.

Then we can obtain A1 from the value matching condition:

V
(
x⋆
)
= VP

(
x⋆
)
+ A1eξ1x

⋆(
Ω – VP

(
x⋆
))
e–ξ1x

⋆
= A1

with this the solution is complete, given a value for x⋆. It is left to find such value, for that
we make use of the smooth pasting condition:

Vx
(
x⋆
)
= 0

VPx
(
x⋆
)
+ A1ξ1eξ1x

⋆
= 0

1

ρ –
(
µ + 1

2σ
2
) +

Ω –
x⋆

ρ –
(
µ + 1

2σ
2
)
 ξ1 = 0
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1
ξ1
+
(
ρ –
(
µ +

1
2
σ2
))

Ω = x⋆
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21. The Kolmogorov Forward Equation

The last section of this part of the course develops the Kolmogorov Forward Equation,
which describes the dynamics of the probability distribution of a random variable (given
its initial value). Moreover, it characterizes the stationary distribution of the variable if
such distribution exists. This is of particular importance for models with heterogenous
agents because the distribution of the agents in the economy is obtained via the KFE.

Given some initial conditions x0 and t0 the objective is to characterize the probability
distribution function φ (x, t):

Pr
(
xt ∈

[
a, b
])
=
∫ b

a
φ (u, t) du

In order to characterizeφwe first need to impose a process for x, and then use the random
walk approximation. For simplicity:

dx = µdt + σdW

In the random walk approximation the process varies in a period of length ∆t by a
magnitude of h, it increases with probability p or decreases with probability 1 – p, where:

h = σ
√
∆t p =

1
2

(
1 +
µ

σ

√
∆t
)

From time t – ∆t to time t the process can reach a value x either by growing from x – h
or by decreasing from x + h. Then the probability (or more intuitively the fraction of the
mass) at point x at time t is given by:

φ (x, t) = pφ (x – h, t – ∆t) + (1 – p)φ (x + h, t – ∆t)

We can approximate the elements of the right hand side with a second order Taylor
expansion:

φ (x ± h, t – ∆t) ≈ φ (x, t) – ∆t
∂φ (x, t)
∂t

± h∂φ (x, t)
∂x

+
1
2
h2
∂2φ (x, t)
∂x2
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Terms of order higher than ∆t are ignored. We can replace to get:

0 = –∆t
∂φ (x, t)
∂t

+ (1 – 2 p)
(
h
∂φ (x, t)
∂x

)
+
1
2
h2
∂2φ (x, t)
∂x2

0 = –∆t
∂φ (x, t)
∂t

–
µ

σ

√
∆t
(
σ
√
∆t
∂φ (x, t)
∂x

)
+
1
2
σ2∆t

∂2φ (x, t)
∂x2

0 = –
∂φ (x, t)
∂t

– µ
∂φ (x, t)
∂x

+
1
2
σ2
∂2φ (x, t)
∂x2

which gives the KFE:
∂φ (x, t)
∂t

= –µ
∂φ (x, t)
∂x

+
1
2
σ2
∂2φ (x, t)
∂x2

If x follows a more general diffusion process we can change the argument above to get:

∂φ (x, t)
∂t

= –
∂ [µ (x, t)φ (x, t)]

∂x
+
1
2

∂2
[
σ (x, t)2φ (x, t)

]
∂x2

The KFE is specially useful for finding the stationary distribution of the process. In this
case the distribution does not depend on time so the KFE is:

0 = –
∂ [µ (x, t)φ (x)]

∂x
+
1
2

∂2
[
σ (x, t)2φ (x)

]
∂x2

This equation can be integrated once to get:

c1 = –2µ (x, t)φ (x) +
∂
[
σ (x, t)2φ (x)

]
∂x

where c1 is a constant of integration (to be determined later). Then we can use the
integrating factor:

s (x) = e
–
∫ x 2µ(z,t)

σ2(z,t)
dz

By multiplying both sides by the integrating factor we get:

s (x) c1 = e
–
∫ x 2µ(z,t)

σ2(z,t)
dz
–2µ (x, t)φ (x) + ∂

[
σ (x, t)2φ (x)

]
∂x
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The RHS can be rewritten noting that:

d
dx

[
s (x)σ2 (x, t)φ (x)

]
=
d
dx

[
e
–
∫ x 2µ(z,t)

σ2(z,t)
dz
σ2 (x, t)φ (x)

]

=
d
dx

[
e
–
∫ x 2µ(z,t)

σ2(z,t)
dz
]
σ2 (x, t)φ (x) + s (x)

d
dx

[
σ2 (x, t)φ (x)

]
= –

2µ (x, t)
σ2 (x, t)

σ2 (x, t)φ (x) + s (x)
d
dx

[
σ2 (x, t)φ (x)

]
= –2µ (x, t)φ (x) + s (x)

d
dx

[
σ2 (x, t)φ (x)

]
Then we get:

s (x) c1 =
d
dx

[
s (x)σ2 (x, t)φ (x)

]
Integrating again:

c1
∫ x

s ( y) d y + c2 = s (x)σ2 (x, t)φ (x)

rearranging gives:

φ (x) =
1

s (x)σ2 (x, t)

(
c1
∫ x

s ( y) d y + c2
)

where
∫ x f (ξ) dξ = F (x), being F the antiderivative of f .

Example 21.1. Dynamics and Barriers Consider a brownian motion with two reflecting
barriers x and x. The process behaves as dx = µdt + σdW for x ∈ (x, x), but is kept in those
bounds by force. In terms of the random walk representation that means that starting at
x – h the process stays at x – h with probability p, instead of taking a step up, and goes
down to x – 2h with probability 1 – p. Similarly for x + h.

The KFE applies for any point in the interior of the domain, so for x ∈ (x, x) we have:

∂φ (x, t)
∂t

= –µ
∂φ (x, t)
∂x

+
1
2
σ2
∂2φ (x, t)
∂x2

Moreover, because we are interested in the stationary behavior of the process we know
that the distribution does not depend on time, which results in:

0 = –µ
∂φ (x)
∂x

+
1
2
σ2
∂2φ (x)
∂x2

or better:

φ
′
(x) =

1
2
σ2

µ
φ

′′
(x)
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We can solve this equation:
φ (x) = Aeγx + B

where γ = 2µ
σ2
and A and B are constants to be determined. To find them we can make use

of the boundary conditions implied by the barriers.
From the random walk approximation we can derive the following equation for the

upper bound:

φ (x – h) = pφ (x – h) + pφ (x – 2h)

(1 – p)φ (x – h) = pφ (x – 2h)

Using now a second order Taylor expansion around x – h:

(1 – p)φ (x – h) = p
(
φ (x – h) – hφ

′
(x – h) +

1
2
h2φ

′′
(x – h)

)
(1 – 2 p)φ (x – h) = – phφ

′
(x – h) + p

1
2
h2φ

′′
(x – h)

–
µ

σ

√
∆tφ (x – h) = –

1
2

(
1 +
µ

σ

√
∆t
)
σ
√
∆tφ

′
(x – h) +

1
4

(
1 +
µ

σ

√
∆t
)
σ2∆tφ

′′
(x – h)

–
2µ
σ2
φ (x – h) = –

(
1 +
µ

σ

√
∆t
)
φ

′
(x – h) +

1
2

(
1 +
µ

σ

√
∆t
)
σ
√
∆tφ

′′
(x – h)

taking ∆t → 0 we get:

2µ
σ2
φ (x) = φ

′
(x)

γφ (x) = φ
′
(x)

Replacing for the solution of φ we find that B = 0. Then A is found to guarantee that φ
integrates to one. This results in:

φ (x) =
γeγx

eγx – eγx
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22. Application: Real Options

Consider the problem of a firm that is thinking about investing in a new project. The payoff
that the project generates varies stochastically, but its cost is fixed. To be precise: the firm
can, at any point in time, pay a fixed cost I to invest on a project that will have a payoff
x (t). Firm’s investment opportunity is a perpetual call option, that is, the right but not the
obligation to buy a share of some asset at a pre-specified price.

The payoff is assumed to follow a geometric brownian motion, so that:

dx = µxdt + σxdW

The firm discounts the future at a rate ρ, so the problem of the firm is:

V (x0) = maxT
E
[
(x (T) – I) e–ρT |x (0) = x0

]
To fix ideas we can first solve for the deterministic case. For this we set σ = 0, which

implies that x (T) = x0eµt, for some initial value x0. Then:

V (x0) = maxT

(
x0eµT – I

)
e–ρT

The following results follow:

(a) If µ ≤ 0 then the payoff x is decreasing (or constant), so it is better to invest immediately
if x0 > I, or never to invest if x0 ≤ I. This implies that:

V (x0) = max {x0 – I, 0}

(b) If 0 < µ ≤ ρ then x is growing, so the value of the firm (the value of holding the option
to invest) is positive, even if initially x0 < I . Eventually x > I.

(i) The optimal time is given by:

∂
(
x0eµT – I

)
e–ρT

∂T
= 0

– (ρ – µ) x0e–(ρ–µ)T + ρIe–ρT = 0
1
µ
ln

ρI
(ρ – µ) x0

= T

T = max
{
1
µ
ln

ρI
(ρ – µ) x0

, 0
}
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(ii) In some cases it is best to invest immediately. This happens if:

1
µ
ln

ρI
(ρ – µ) x0

≤ 0

ρI
(ρ – µ) x0

≤ 1

x⋆ =
ρI
ρ – µ

≤ x0

Higher µ increases the threshold value of x0. Thus inducing longer waits.

(iii) Joining we get:

V (x0) =

 µ
ρ–µI

(
(ρ–µ)x0
ρI

)ρ
µ if x0 ≤ ρI

ρ–µ

x0 – I otw

(c) If µ > ρ then the payoff grows faster than the firm discount of the future, which implies
that the firm wants to wait forever.

Now we can solve the stochastic version of the problem. It is no longer possible to find
T⋆ directly, but we can still find the threshold value x⋆. To do it we first define the HJB
equation, recall from equation (20.9) that:

ρVdt = E
[
dV
]

(noting that the instantaneous payoff before investing is zero). We can use Ito’s lemma to
expand the RHS:

ρV = µxV
′
+
1
2
σ2x2V

′′

There are three boundary conditions that must hold:

V (0) = 0 V
(
x⋆
)
= x⋆ – I V

′ (
x⋆
)
= 1

The first one follows from 0 being an absorbing state (because of the properties of the
geometric brownianmotion). The second one is valuematching and the third one is smooth
pasting.

We guess that the solution is of the form:

V (x) = Axβ

for some A and β to be found later. This clearly solves the HJB equation. Replacing we can
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solve for β:

ρV = µxV
′
+
1
2
σ2x2V

′′

ρAxβ = µβAxβ +
1
2
σ2Aβ (β – 1) xβ

ρ = µβ +
1
2
σ2β (β – 1)

0 = –ρ +
(
µ –

1
2
σ2
)
β +

1
2
σ2β2

β is then found from the roots of this equation:

β1 =
1
2
–
µ

σ2
+

√(
1
2
–
µ

σ2

)2
+ 2

ρ

σ2
> 1

β2 =
1
2
–
µ

σ2
–

√(
1
2
–
µ

σ2

)2
+ 2

ρ

σ2
< 0

There are two distinct roots so the solution to the HJB equation is in general:

V (x) = A1xβ1 + A2xβ2

But in order for the first boundary condition to hold we need that A2 = 0, because, with
β2 < 0, we could not evaluate the function otherwise. This leaves us with only one root,
which we denote β, and one constant A that we find below.

Replacing on the value matching and smooth pasting conditions we get:

A
(
x⋆
)β = x⋆ – I βA

(
x⋆
)β–1 = 1

Solving for A = (x⋆)1–β
β and replacing on the first equation we get:

x⋆ = βx⋆ – βI

x⋆ =
βI
β – 1

which also gives the value of A.
In the optimal strategy the firm does not invest when x⋆ is equal to I (when the net

present value of investing becomes positive), but instead there is wedge between the cost
of investing and the value of investing. The wedge is given because the firm has to be
compensated for giving up the option to wait and see if the value increases even further.
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Comparative Statics [Optional]

The threshold value x⋆ depends on the parameters of the model through β. Although we
have an explicit solution for β in this case, that is not always the case. Nevertheless we can
use the quadratic equation that gives rise to β to run comparative statics.

Let Q be the quadratic equation, so that:

Q = –ρ +
(
µ –

1
2
σ2
)
β +

1
2
σ2β2

we want to know how β depends on σ. Taking total differentials we get:

dQ
dσ

=
∂Q
∂β

dβ
dσ

+
∂Q
∂σ

= 0

where the derivatives are evaluated at the positive root β found above. This expression
gives:

dβ
dσ

= –

(
∂Q
∂σ

)
(
∂Q
∂β

)
Signing the numerator is easy, because ∂Q∂σ = σβ (β – 1) > 0, we know it is positive because
the positive root β is higher than 1. Signing the denominator requires us to know the shape
of Q. It can be easily shown that Q is increasing at β1:

∂Q
∂β

= µ –
1
2
σ2 + σ2β = σ2

√(
1
2
–
µ

σ2

)2
+ 2

ρ

σ2
> 0

Then:
dβ
dσ

< 0

Thismeans that higher variance (more uncertainty over the payoff of investing) reduces
β, which in turn increases β

β–1 . So the wedge between x
⋆ and I increases with uncertainty,

in other words the firm will need a larger return on the investment in order to invest.
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23. Application: Menu cost Stokey (2009, Ch. 7)

Consider a firmwhose profit flow at any date t depends on its relative price, that is: the ratio
of its own nominal price to an aggregate (industry-wide or economy-wide) price index,
where the latter is a geometric Brownian motion. Recall that if the price follows a GBM
then its log follows a brownian motion. It is then convenient to work with the prices in log
form. Let p (t) be the log of the firm’s nominal price and p (t) the log of the aggregate price
index. Then:

d p = –µdt + σdW p

The initial value for the firm’s (log) nominal price p0 is given. The firm can change its
nominal price at any time, but to do so it must pay a fixed adjustment cost c > 0. This cost
is constant over time and measured in real terms. Because control entails a fixed cost, the
firm adjusts the price only occasionally and by discrete amounts.

The problem of the firm is to choose when to adjust the price, and by howmuch. One
can see this as a problem of choosing the (random) times at which to adjust the price, or of
choosing an inaction region, such that the price is adjusted when some condition is met.

The problem can be formulated in terms of that one state variable because the profit
flow at any date depends only on the firm’s relative price. Let:

z (t) = p (t) – p (t)

When the firm adjusts its price the variable z jumps. Part of the problem will be to find the
optimal value z⋆ to which z is set when the firmdecides to take action. Between adjustments
z evolves only with p, so we have (for any time at which there is no adjustment):

dz = µdt + σdW

where dW = –dW p.
The profit flow of the firm, π (z), is a stationary function of its relative price z, and

profits are discounted at a constant interest rate r. The following restrictions on π, r, c and
the parameters µ, σ2 insure that the problem is well behaved:

(a) r, c,σ2 > 0

(b) π is continuous everywhere, strictly increasing on (–∞, 0) and strictly decreasing on
(0,∞).

(i) The location of the peak of π at 0 is arbitrary.
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We will assume that π takes the following form:

π (z) =

π0eη+z if z ≥ 0

π0eη–z if z < 0

where η+ < 0 < η–.
These assumptions imply that it is optimal to change the price if z gets too low or too

high. Then the inaction region is: (z, z̄).
The HJB equation for z ∈ (z, z̄) is:

ρV (z) = π (z) + µV
′
(z) +

1
2
σ2V

′′
(z)

The boundary conditions for V are value matching and smooth pasting at z and z:

V (z) = V
(
z⋆
)
– c

V (z) = V
(
z⋆
)
– c

V
′
(z) = 0

V
′
(z̄) = 0

while z⋆ is optimally found to maximize V . So it must satisfy:

V
′ (
z⋆
)
= 0

The solution to the HJB equation is, just as before:

V (z) = V p (z) + A1eξ1z + A2eξ2z

where V p is a particular solution andH (z) = eξz is a solution to the homogeneous equation.
Finding the particular solution is not trivial. Stokey proposes the following solution:

W (z) = E

[∫ T

0
e–rtπ (z (t)) dt

]

where T is the (random) time at which the price will be adjusted.W gives then the expected
discounted value of the profits until the next adjustment. This function is difficult to deal
with, because T is not a real number, but instead a random variable. It is however possible
to exploit this to expressW as an integral over values of z. This goes beyond what we are
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covering, the details are available in Stokey (2009, Sec. 3.5). Critically it can be shown that:

W (z) = W (z̄) = 0

because there is no time until the next adjustment. It will occur in that instant.
This simplifies the value matching conditions to:

A1eξ1z + A2eξ2z = V
(
z⋆
)
– c

A1eξ1z + A2eξ2z = V
(
z⋆
)
– c

Unfortunately we cannot further solve this problem.
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