The Evolution of U.S. Retail Concentration

Dominic Smith

Sergio Ocampo

Bureau of Labor Statistics University of Western Ontario

November, 2023

Disclaimer: Any opinions and conclusions expressed herein are those of the authors and do not necessarily represent the views of the U.S. Census Bureau. All results have been reviewed to ensure that no confidential information is disclosed. References to specific companies are based on public information and do not imply the company is in the confidential data.

The U.S. retail sector

Changes in the aggregate structure of retail

- ↑ national concentration (Hortascu and Syverson 2015; Autor, Dorn, Katz, Patterson, Van Reenan 2020)
- Growth of Walmart, Target, etc.
- Exit of small firms (Basker 2005; Jia 2008; Foster, Haltiwanger, Klimek, Krizan, Ohlmacher 2016)
- Effect on consumers? (Markups, Market Power, Costs)

The U.S. retail sector

Changes in the aggregate structure of retail

- ↑ national concentration (Hortascu and Syverson 2015; Autor, Dorn, Katz, Patterson, Van Reenan 2020)
- Growth of Walmart, Target, etc.
- Exit of small firms (Basker 2005; Jia 2008; Foster, Haltiwanger, Klimek, Krizan, Ohlmacher 2016)
- Effect on consumers? (Markups, Market Power, Costs)

Retail markets are local

- Negative effects of concentration operate through local markets
- What does increasing in national concentration imply for local markets?

- 1. Measure local retail concentration with Census data 1982-2012
 - Product sales data for all U.S. retail establishments
 - Measure concentration directly for product markets
 - Relevant measure for competition in retail

1. Measure local retail concentration with Census data 1982-2012

- Product sales data for all U.S. retail establishments
- Measure concentration directly for product markets
 - Relevant measure for competition in retail

Result:

- National and local concentration increase in parallel over 30 years
- Local increases widespread across markets, products, and industries
 - Results robust to role of online retail until 2012

1. Measure local retail concentration with Census data 1982-2012

- Product sales data for all U.S. retail establishments
- Measure concentration directly for product markets
 - Relevant measure for competition in retail

Result:

- National and local concentration increase in parallel over 30 years
- Local increases widespread across markets, products, and industries
 - Results robust to role of online retail until 2012

Contribute to understanding of local markets using Census data

(Rossi-Hansberg, Sarte, Trachter 2021; Benkard, Yurucoglu, Zhang 2021; Rinz 2022)

2. Link national and local trends through single- and multi-market retailers

- New decomposition based on probabilistic interpretation of HHI
- Disentangle role of consolidation and expansion of retailers

2. Link national and local trends through single- and multi-market retailers

- New decomposition based on probabilistic interpretation of HHI
- Disentangle role of consolidation and expansion of retailers

Result:

- Expansion of multi-market retailers explains 89% of increase in national HHI 1992-2012. Consolidation explains 40% of increase 1997-2007.
- Single-market firms have negligible effect on national concentration

2. Link national and local trends through single- and multi-market retailers

- New decomposition based on probabilistic interpretation of HHI
- Disentangle role of consolidation and expansion of retailers

Result:

- Expansion of multi-market retailers explains 89% of increase in national HHI 1992-2012. Consolidation explains 40% of increase 1997-2007.
- Single-market firms have negligible effect on national concentration

Make explicit the relationship between national and local trends

- National firms' expansion (Rossi-Hansberg, Hsieh 2023; Cao, Hyatt, Mukoyama, Saeger 2020) particularly in groceries (Basker 2007; Holmes 2011)

3. Effects of increasing local concentration on consumers

- Standard link between HHI and markups under Cournot Competition (Tirole, 1988; Atkeson & Burstein, 2008)
- Key: \uparrow Local concentration $\rightarrow \uparrow$ Markups $\rightarrow \downarrow$ Passthrough of cost savings

3. Effects of increasing local concentration on consumers

- Standard link between HHI and markups under Cournot Competition (Tirole, 1988; Atkeson & Burstein, 2008)
- Key: \uparrow Local concentration $\rightarrow \uparrow$ Markups $\rightarrow \downarrow$ Passthrough of cost savings

Result:

- Markups ↑ 1.6–2.1pp between 1992-2012 (~1/4–1/3 of ↑ in ARTS markups)

3. Effects of increasing local concentration on consumers

- Standard link between HHI and markups under Cournot Competition (Tirole, 1988; Atkeson & Burstein, 2008)
- Key: \uparrow Local concentration $\rightarrow \uparrow$ Markups $\rightarrow \downarrow$ Passthrough of cost savings

Result:

- Markups ↑ 1.6–2.1pp between 1992-2012 (~1/4–1/3 of ↑ in ARTS markups)

Local concentration explains part of increase in markups

- Room for other channels (Bornstein 2018; Brand 2020)

Census Data on U.S. Retailers

Measuring National and Local Concentration

Linking National and Local Concentration

Effect of Local Concentration on Markups

Store-level sales data

- Census of Retail Trade (CRT)
 - All retail stores in the U.S. (with at least one employee)
 - 1982-2012 Years ending in 2 and 7
- Sales by 20 product categories (clothing, groceries, etc.)

Store-level sales data

- Census of Retail Trade (CRT)
 - All retail stores in the U.S. (with at least one employee)
 - 1982-2012 Years ending in 2 and 7
- Sales by 20 product categories (clothing, groceries, etc.)
- Location: Commuting Zone, Zip Code, County, MSA.
 - Also observe national e-commerce share.
- Industry: 6-digit NAICS (perform no transformation of materials)
 - Exclude auto dealers and gasoline stations (ownership issues) and non-store retailers (measurement)

Definition of markets - Industry vs Product

- Problems at high levels of aggregation (NAICS-3):

Definition of markets - Industry vs Product

- Problems at high levels of aggregation (NAICS-3):

Definition of markets - Industry vs Product

- Problems at high levels of aggregation (NAICS-3):

- Similar problems with disaggregated industries (NAICS-6).

Census Data on U.S. Retailers

Measuring National and Local Concentration

Linking National and Local Concentration

Effect of Local Concentration on Markups

Measuring concentration

Herfindahl-Hirschman Index (for a product market j)

$$HHI^{j} = \sum_{i=1}^{N} \left(\boldsymbol{s}_{i}^{j} \right)^{2} \qquad \boldsymbol{s}_{i}^{j}$$
: Sales share of firm **i** in product **j**

Measuring concentration

Herfindahl-Hirschman Index (for a product market *j*)

$$HHI^{j} = \sum_{i=1}^{N} (s_{i}^{j})^{2}$$
 s_{i}^{j} : Sales share of firm **i** in product **j**

What does the HHI mean?

- Probability two random dollars (x, y) are spent at the same firm (i)

$$HHI = \Pr\left(i_x = i_y\right)$$

National U.S. retail concentration

Local U.S. retail concentration

- Steady increase of $\sim 3pp$

Local U.S. retail concentration

- Steady increase of $\sim 3 \rho p$
- Parallel increase with national concentration
- Similar across geographies
- Similar for Top 4 Shares

- 1. Concentration changes across products
 - Concentration increases in almost all products (clothing)

- 1. Concentration changes across products
 - Concentration increases in almost all products (clothing)
- 2. Changes across locations
 - Majority of locations increase concentration (~60% of markets, ~70% of dollars)

details

- 1. Concentration changes across products
 - Concentration increases in almost all products (clothing)
- 2. Changes across locations
 - Majority of locations increase concentration (\sim 60% of markets, \sim 70% of dollars)
- 3. Effect of e-commerce (non-store retailers)
 - Derive bounds on effect on local concentration
 - Small effects until 2012

details

- 1. Concentration changes across products
 - Concentration increases in almost all products (clothing)
- 2. Changes across locations
 - Majority of locations increase concentration (~60% of markets, ~70% of dollars)
- 3. Effect of e-commerce (non-store retailers)
 - Derive bounds on effect on local concentration
 - Small effects until 2012
- 4. Concentration changes in retail industries
 - Larger increases in concentration (8.7pp Nat. 12.6pp Local)
 - General Merchandisers local concentration **† 28pp**

details

Census Data on U.S. Retailers

Measuring National and Local Concentration

Linking National and Local Concentration

Effect of Local Concentration on Markups

What links national and local concentration?

- As local concentration increases so does national concentration
 - Consumers in the same market buying from the same firms
 - Consolidation of single- and multi-market retailers

What links national and local concentration? example

- As local concentration increases so does national concentration
 - Consumers in the same market buying from the same firms
 - Consolidation of single- and multi-market retailers
- As firms expand across markets they increase national concentration
 - Consumers in different markets buying from the same firms
 - We call this Cross-Market Concentration

What links national and local concentration? example

- As local concentration increases so does national concentration
 - Consumers in the same market buying from the same firms
 - Consolidation of single- and multi-market retailers
- As firms expand across markets they increase national concentration
 - Consumers in different markets buying from the same firms
 - We call this Cross-Market Concentration

Objectives:

- 1. Decompose role of single- and multi-market retailers
- 2. Decompose role of expansion and consolidation

- Use probabilistic interpretation of the HHI: $HHI = Pr(i_x = i_y)$ Probability two random dollars (x, y) are spent at the same firm (i)

- Use probabilistic interpretation of the HHI: $HHI = Pr(i_x = i_y)$ Probability two random dollars (x, y) are spent at the same firm (i)
- Key: Law of Total Probability
 - Local HHI: Probability conditional on dollars spent in the same market $(m_x = m_y)$

- Use probabilistic interpretation of the HHI: $HHI = Pr(i_x = i_y)$ Probability two random dollars (x, y) are spent at the same firm (i)
- Key: Law of Total Probability
 - Local HHI: Probability conditional on dollars spent in the same market $(m_x = m_y)$

$$HHI^{N} = \underbrace{P(m_{x} = m_{y})}_{\text{Av. Local HHI}} \underbrace{P(i_{x} = i_{y} | m_{x} = m_{y})}_{\text{Av. Local HHI}} + (1 - P(m_{x} = m_{y})) \underbrace{P(i_{x} = i_{y} | m_{x} \neq m_{y})}_{\text{Av. Cross-Market HHI}}$$

- Use probabilistic interpretation of the HHI: $HHI = Pr(i_x = i_y)$ Probability two random dollars (x, y) are spent at the same firm (i)
- Key: Law of Total Probability
 - Local HHI: Probability conditional on dollars spent in the same market $(m_x = m_y)$

$$HHI^{N} = \underbrace{P(m_{x} = m_{y})}_{\text{Av. Local HHI}} \underbrace{P(i_{x} = i_{y} | m_{x} = m_{y})}_{\text{Av. Local HHI}} + (1 - P(m_{x} = m_{y})) \underbrace{P(i_{x} = i_{y} | m_{x} \neq m_{y})}_{\text{Av. Cross-Market HHI}}$$

- Collocation $< 0.02 \longrightarrow$ National HHI reflects cross-market concentration
- Consumers in different markets shop at the same (multi-market) firms
- 350 largest retailers * Nat. share 34 \rightarrow 58% while local share 3.2 \rightarrow 3.2%
- Hints at expansion over consolidation

- 350 largest retailers * Nat. share 34 \rightarrow 58% while local share 3.2 \rightarrow 3.2%
- Hints at expansion over consolidation

Distinguish expansion and consolidation by fixing market structure

- 1. Fix the list and rank of active firms in some year t_0
- 2. Assign sales share of firms in year t according to rank in year t_0
 - If there is net-entry, assign remaining shares to largest new firms
 - If there is net-exit, smaller firms get zero sales

- 350 largest retailers * Nat. share 34 \rightarrow 58% while local share 3.2 \rightarrow 3.2%
- Hints at expansion over consolidation

Distinguish expansion and consolidation by fixing market structure

- 1. Fix the list and rank of active firms in some year t_0
- 2. Assign sales share of firms in year t according to rank in year t_0
 - If there is net-entry, assign remaining shares to largest new firms
 - If there is net-exit, smaller firms get zero sales

Counterfactual concentration keeps local HHI unchanged explains national concentration through consolidation

Census Data on U.S. Retailers

Measuring National and Local Concentration

Linking National and Local Concentration

Effect of Local Concentration on Markups

Consequences of increasing concentration

- Key Question:

Effect of increase in concentration on passthrough of lower costs

- Firms with higher market shares can charge higher markups Standard result under Cournot competition (Tirole, 1988)
- Aggregate markups linked to **local HHI**

Generalizes to model of oligopolistic competition (Atkeson & Burstein, 2008)

Markups and market shares

- Firm's problem:

$$\max_{q_i} P(Q) q_i - c_i q_i.$$

- Optimal pricing (markups):

$$P(Q) = \left[1 - \frac{s_i}{\varepsilon}\right]^{-1} c_i,$$

 $\varepsilon^{-1} \equiv -Q/P\partial P/\partial Q$ is demand elasticity and $s_i \equiv Pq_i/PQ$ is market share.

- Market's gross margins:

$$\mu \equiv \frac{\text{Revenue}}{\text{Cost of Goods Sold}} = \frac{\sum c_i q_i}{PQ} = \left[1 - \frac{\text{HHI}}{\varepsilon}\right]^{-1}$$

.

Local HHI and change in markups

	Products ($\Delta \mu$)				
	$\varepsilon = 1.5$ $\varepsilon = 3$ $\varepsilon = 0$				
Commuting Zone	1.63	0.77	0.38		
Zip Code	1.29	0.52	0.24		

- Change is at most 1/4 of that in ARTS
- Oligopolistic competition model implies 2.1 pp increase
- Gross margins \uparrow 6 pp, 1993-2012, in ARTS

Local concentration accounts for 1/4–1/3 of markups in retail

products

Conclusion

- Direct measurement of local concentration at product level
 - Retail firms compete in products across industries (e.g. General Merchandisers)
- Both local and national concentration rising the retail sector
 - They rise for different reasons
 - 99% of national concentration is cross market
- Expansion of multi-market retailers links national+local trends
- Higher local concentration increased markups 1.6pp (1992-2012)
 - Explains about 1/4 of the rise in markups.

Appendix

Comparison to RST

Three main differences:

- Data source Census vs NETS
 - Census covers universe of retailers
 - Administrative records
- Market definition Product vs (detailed) Industry
 - Industry markets miss cross-industry competition
 - Problem is worse for detailed industries
- Aggregation methodology
 - RST aggregate change in local concentration with end-of-period weights
 - Bias towards decrease in concentration
 - We report changes in cross-sectional concentration

Each difference explains about 1/3 of discrepancy

Weighting Comparison

- Growing markets less concentrated
- RST find decreasing concentration w/ no change in cross section

Comparison to RST

RST Comparison

National Concentration							
Level Change from 1992							
	1992 1997 2002 200						
RST	N/A	0.020	0.030	0.050			
NAICS-based	0.029	0.017	0.056	0.076			
Select NAICS	0.046	0.034	0.097	0.136			

Zip Code Concentration - End-of-Period Weights							
	Level Change from 1992						
	1992	1997 2002 2007					
RST	N/A	-0.070	-0.100	-0.140			
NAICS-based	0.507	0.024	-0.018	-0.019			
Select NAICS	0.552	-0.021	-0.018	-0.015			

Zip Code Concentration - Current Period Weights

	Level	Change from 1992			
NAICS-based	0.507	0.022	0.057	0.072	
Select NAICS	0.552	0.026	0.067	0.083	

Map of Commuting Zones

Constructing sales by product category

Data: Census of Retail Trade

- Observe store sales for entire sample
- Sales by product line for 80 percent of sales
- Aggregate lines into product categories
- Impute for stores with missing data Details

Imputing Data

- 1. Data collection with Census of Retail Trade (every 5 years)
 - Sales data by product for 80% of sales
- 2. Aggregation to product categories
 - Goal: Aggregate so industries primarily sell one category

Broad Line	Product Category
Footwear	Clothing
Curtains	Clothing
Sewing	Clothing
Drugs, health aids, etc	Health
Optical goods	Optical Goods

- 3. Imputation depending on data availability use
 - Sales of other stores of the same firms
 - Sales of the store in other years
 - Industry, kind of business, and multi-unit status

Back

Local Concentration Increases

Local Concentration: Top 4 Shares

	1982	1987	1992	1997	2002	2007	2012
Commuting Zone	0.35	0.37	0.38	0.38	0.41	0.42	0.42
MSA	0.31	0.33	0.34	0.35	0.38	0.40	0.39
County	0.43	0.45	0.45	0.45	0.47	0.47	0.47
Zip	0.70	0.71	0.72	0.72	0.72	0.70	0.68

Notes: Results come from the Census of Retail Trade. The market share of the 4 firms with the greatest sales in each product category and location in each year are summed. These results are then aggregated using a weighted average of the sales share of each product and location in a year.

Local Concentration Across Products

Changes in Concentration Across Locations - I

Changes in Concentration Across Locations - II

Accounting for Non-Store Retailers

- Non-store retailers (e-commerce, catalogue) only report national sales
- Historically online sales are low for most product categories
 - Moderately important by 2012 (2.7% of sales $1992 \rightarrow 9.5\%$ in 2012)
 - Low share in most products (Groceries $1.3\% \rightarrow 0.7\%$)
 - High share in some products (Electronics and Appliances 7.5% \rightarrow 20.9%)

Accounting for Non-Store Retailers

- Non-store retailers (e-commerce, catalogue) only report national sales
- Historically online sales are low for most product categories
 - Moderately important by 2012 (2.7% of sales 1992 \rightarrow 9.5% in 2012)
 - Low share in most products (Groceries $1.3\% \rightarrow 0.7\%$)
 - High share in some products (Electronics and Appliances 7.5% \rightarrow 20.9%)
- Use national numbers for e-commerce shares to obtain bounds
 - Assumption: Online sales proportionally distributed across markets

$$\underbrace{HHI}_{\text{Lower Bound: Diluted Sales}}^{2} \text{ HHI}_{BM} \text{ and } \underbrace{HHI}_{Upper Bound: Concentrated Sales}^{2} HHI_{BM} + s_{NS}^{2}$$

Bounds on Local Concentration

Non-Store Retailers Share by Product

Average Industry Concentration

National Concentration							
	1992	1997	2002	2007	2012		
Product Based	0.013	0.019	0.031	0.042	0.043		
Industry Based	0.029	0.046	0.085	0.105	0.116		
Commuting Zone Concentration							
Product Based	0.064	0.066	0.078	0.086	0.086		
Industry Based	0.177	0.199	0.263	0.287	0.303		
Zip Code Concentration							
Product Based	0.264	0.277	0.288	0.286	0.277		
Industry Based	0.530	0.552	0.603	0.611	0.615		

Local Concentration Across Industries

Local Concentration Products vs Industries

What does national concentration imply about local?

Scenario 1: Increasing national, local unchanged

Scenario 2: Increasing national and local

Scenario 3: Increasing national, decreasing local

Contribution of Local HHI to National HHI

Collocation Across Products

0.00

0.05

0.15

0.20

0.10

Collocation
Decomposition Equation - Local HHI

- Results depend on entry timeframe
- Entrants within past 10 years play small role in Local HHI
- Entrants within the past 20 years play a large role
- Recently importance of continuers increasing

Decomposition Equation - Cross Market HHI

- Entrants within past 10 years play small role in Cross Market HHI
- Entrants within the past 20 years play a large role
- Recently importance of continuers increasing

Model of firms' markups

- Market: product-location pair
 - J products in L locations
 - $I(j, \ell)$ firm compete in quantities (Cournot) in a market
- **Demand:** product demand is CES (ε_j)
- **Pricing:** market-specific pricing $(p_i^{j\ell})$
- Technology: firms vary in market-specific marginal cost $(\lambda_i^{j\ell})$

Pricing to market: Cournot competition

$$p_{i}^{j\ell} = \mu_{i}^{j\ell} \lambda_{i}^{j\ell} \qquad \qquad \mu_{i}^{j\ell} = \frac{\varepsilon_{j}}{\varepsilon_{i} - 1} \left[1 - s_{i}^{j\ell} \right]^{-1}$$

Markup μ_i^{jm} depends on firm *i*'s sales share in product-market (s_i^{jm}) :

- Higher share \longrightarrow Higher markup
- Higher share \longrightarrow Lower prices, Higher productivity

Pricing to market: Cournot competition

$$\boldsymbol{p}_{i}^{j\ell} = \boldsymbol{\mu}_{i}^{j\ell} \boldsymbol{\lambda}_{i}^{j\ell} \qquad \boldsymbol{\mu}_{i}^{j\ell} = \frac{\varepsilon_{j}}{\varepsilon_{i} - 1} \left[1 - \boldsymbol{s}_{i}^{j\ell} \right]^{-1}$$

Markup μ_i^{jm} depends on firm *i*'s sales share in product-market (s_i^{jm}) :

- Higher share \longrightarrow Higher markup
- Higher share \longrightarrow Lower prices, Higher productivity

Key: Aggregate to equation linking Local HHI and markups (Grassi, 2017)

$$\mu_{j} = \frac{\varepsilon_{j}}{\varepsilon_{j} - 1} \left[1 - HHI_{j} \right]^{-1} \qquad \left(HHI_{j} = \sum_{\ell} s_{\ell}^{j} \cdot HHI_{j}^{\ell} \right)$$

Details

Data: Concentration and Markups

- Data from the Annual Retail Trade Survey (ARTS: 1993-2012)
 - Gross margin (revenue/cost-of-goods-sold) by retail industry
- Estimate markups by product category from ARTS
 - Make markups consistent with share of general merchandisers
- Estimate ε_i to match 1993 markups given measured local HHI

details

Data: Concentration and Markups

- Data from the Annual Retail Trade Survey (ARTS: 1993-2012)
 - Gross margin (revenue/cost-of-goods-sold) by retail industry
- Estimate markups by product category from ARTS
 - Make markups consistent with share of general merchandisers
- Estimate ε_i to match 1993 markups given measured local HHI

Results:

- Obtain implied markups from change in local concentration
- Change in local HHI implies 2pp increase in markups
- 1/3 of increase 1993-2012 increase in ARTS data

details

details

Model details

- Economy has L locations and J products
- Without loss, there are *I* firms in each market (j, ℓ)
- Firms produce using only labor: $y_i^{j\ell} = z_i^{j\ell} n_i^{j\ell}$
 - Firms differ in productivity $z_i^{j\ell}$
 - Labor is immobile across locations
 - Location specific wage w_{ℓ} such that: $\sum_{i} \sum_{i} n_{i}^{j\ell} = N_{\ell}^{S}$
 - Firm's marginal cost: $\lambda_i^{j\ell} = w_\ell/z_i^{j\ell}$
- CES demand for varieties of product *j* in location ℓ : elasticity ϵ_j
- Cobb-Douglas aggregators:
 - Products in location ℓ Match product share by location
 - Retail output across location Match location share

Functional forms: Aggregation

- Aggregate retail output:

$$Y = \prod_{m=1}^{M} (y_m)^{\beta_m} \qquad \sum_{m=1}^{M} \beta_m = 1$$

- Market retail output:

$$\mathbf{y}_m = \prod_{j=1}^J (\mathbf{y}_j^m)^{\gamma_j^m} \qquad \sum_{j=1}^J \gamma_j^m = 1$$

- Product output (market *m*):

$$\mathbf{y}_{j}^{m} = \left(\sum_{i=1}^{N} \left(\mathbf{y}_{i}^{jm}\right)^{\frac{\epsilon_{j}-1}{\epsilon_{j}}}\right)^{\frac{\epsilon_{j}}{\epsilon_{j}-1}} \quad \epsilon_{j} > 1$$

Functional forms: Demand and prices

- Demand for market *m* and aggregate price *p*:

$$p_m y_m = \beta_m P \cdot Y$$
 $P = \theta \prod_{m=1}^M (p_m)^{\beta_m}$ where $\theta = \prod_{m=1}^M (\beta_m)^{-\beta_m}$

- Demand for product *j* in market *m* and market *m*'s price:

$$p_j^m y_j^m = \gamma_j^m p_m y_m$$
 $p_m = \Gamma \prod_{j=1}^J (p_j^m)^{\gamma_j^m}$ where $\Gamma = \prod_{j=1}^J (\gamma_j^m)^{-\gamma_j^m}$

- Demand for firm *i*'s product *j* in market *m* and product *j*'s price in market *m*:

$$\boldsymbol{y}_{i}^{jm} = \left(\frac{\boldsymbol{p}_{i}^{jm}}{\boldsymbol{p}_{j}^{m}}\right)^{-\epsilon_{j}} \boldsymbol{y}_{j}^{m} \qquad \boldsymbol{p}_{j}^{m} = \left(\sum_{i=1}^{N} \left(\boldsymbol{p}_{i}^{jm}\right)^{1-\epsilon_{j}}\right)^{\frac{1}{1-\epsilon_{j}}}$$

Aggregating markups - I Average product markup: Ratio of price p_i^{ℓ} to marginal cost λ_i^{ℓ} .

- CRS imply λ_i^{ℓ} is also the average cost:

$$\lambda_j^{\ell} \equiv \frac{\sum_i \lambda_i^{j\ell} \mathbf{y}_i^{j\ell}}{\mathbf{y}_j^{\ell}} = \sum_i \lambda_i^{j\ell} \frac{\mathbf{y}_i^{j\ell}}{\mathbf{y}_j^{\ell}}$$

- Replacing on markups:

$$\mu_j^{\ell} \equiv \frac{p_j^{\ell}}{\lambda_j^{\ell}} = \left[\sum_i \lambda_i^{j\ell} \frac{y_i^{j\ell}}{p_j^{\ell} y_j^{\ell}}\right]^{-1} = \left[\sum_i \left(\frac{\lambda_i^{j\ell}}{p_j^{j\ell}}\right) \left(\frac{p_i^{j\ell} y_j^{j\ell}}{p_j^{\ell} y_j^{\ell}}\right)\right]^{-1}$$

- (Weighted) harmonic mean of individual markups:

$$\mu_j^\ell = \left[\sum_i \left(\mu_i^{j\ell}
ight)^{-1} s_i^{j\ell}
ight]^{-1}$$

Aggregating markups - II Relationship to local HHI:

$$\mu_{j}^{\ell} = \left[\sum_{i} \left(\frac{\varepsilon_{j}}{\varepsilon_{j}-1} \left[1-s_{i}^{j\ell}\right]^{-1}\right)^{-1} s_{i}^{j\ell}\right]^{-1} = \frac{\varepsilon_{j}}{\varepsilon_{j}-1} \left[\sum_{i} \left(1-s_{i}^{j\ell}\right) s_{i}^{j\ell}\right]^{-1}$$
$$= \frac{\varepsilon_{j}}{\varepsilon_{j}-1} \left[1-\sum_{i} \left(s_{i}^{j\ell}\right)^{2}\right]^{-1} = \frac{\varepsilon_{j}}{\varepsilon_{j}-1} \left[1-\mathsf{HHI}_{j}^{\ell}\right]^{-1}$$

Relationship to product's gross margins:

$$\mu_{j} \equiv \frac{\sum_{\ell} \mathcal{P}_{j}^{\ell} \mathcal{Y}_{j}^{\ell}}{\sum_{\ell} \lambda_{j}^{\ell} l_{j}^{\ell}} = \frac{\sum_{\ell} \mathcal{P}_{j}^{\ell} \mathcal{Y}_{j}^{\ell}}{\sum_{\ell} \frac{\lambda_{j}^{\ell}}{\mathcal{P}_{j}^{\ell}} \mathcal{P}_{j}^{\ell} \mathcal{Y}_{j}^{\ell}} = \left[\sum_{\ell} \left(\mu_{j}^{\ell}\right)^{-1} \mathbf{s}_{j}^{\ell}\right]^{-1} = \frac{\varepsilon_{j}}{\varepsilon_{j} - 1} \left[1 - \mathsf{HHI}_{j}\right]^{-1}$$

back

Matching markups from ARTS

- 1. Identify main industry of each product category (e.g., Clothing NAICS 448)
- 2. Assume that General Merchandisers charge a **product markup** proportional to that of product's industry:

$$\mu_{GM}^{j} = \lambda \cdot \mu_{j}^{ARTS}$$

3. Estimate λ to be consistent with General Merchandiers's markup:

$$\mu_{GM}^{ARTS} = \sum_{j} \omega_{GM}^{j} \mu_{GM}^{j} = \lambda \sum_{j} \omega_{GM}^{j} \cdot \mu_{j}^{ARTS}$$

4. Compute product markups - Geometric average of markups

$$\mu_j = \left(\frac{1 - \omega_{GM}^j}{\mu_j^{ARTS}} + \frac{\omega_{GM}^j}{\mu_{GM}^j}\right)^{-1}$$

Estimated parameters by product

Product Category	ε_{i}		
	1992	2002	2012
Furniture	2.70	2.43	2.43
Clothing	3.07	2.83	2.48
Sporting Goods	3.73	3.77	3.20
Electronics & Appliances	4.48	5.74	4.95
Health Goods	4.38	5.30	5.09
Toys	5.55	5.91	4.91
Home Goods	4.85	4.13	3.92
Groceries	5.82	5.39	6.40

Model vs Data: change in markups

