A Task-Based Theory of Occupations with Multidimensional Heterogeneity

Sergio Ocampo

Western University

Occupations as bundles of tasks

An occupation is a bundle of tasks performed by a worker (Rosen, 1978)

- Professors research, teach, present, etc.
- Surgeons perform surgery, diagnose, etc.

Which tasks are bundled into an occupation? Which worker performs them?

- Workers' skills: Cognitive, manual, social, etc.
- Tasks' skill requirements:
- Need high cognitive skills to be a Professor or a Surgeon
- Need more manual skills to perform surgery than to teach

Skills and technology

Skills relevant for differences across workers:

- Levels of different skills affect wages
- Mismatch between worker's skills and tasks' skill requirements

[^0]
Skills and technology

Skills relevant for differences across workers:

- Levels of different skills affect wages
- Mismatch between worker's skills and tasks' skill requirements

Different skills affected differently by changes in technology:

- Skill-biased technical change
- Automatability of tasks

[^1]
Skills and technology

Skills relevant for differences across workers:

- Levels of different skills affect wages
- Mismatch between worker's skills and tasks' skill requirements

Different skills affected differently by changes in technology:

- Skill-biased technical change
- Automatability of tasks

Bundling of tasks into occupations both shapes effects and responds to changes

[^2]
Technology changes occupations

Tasks workers perform change \longrightarrow Affects distribution of wages and employment

- Automation takes over some, but not all, tasks of an occupation
- 50% of all tasks are currently automatable (McKinsey Global, 2017)
- Less than 5% of occupations are fully automatable
- Occupations change directly by losing tasks (stockbrokers, phone operators) and indirectly by reassigning remaining tasks (manufacturing plant operators)
- Occupations also respond to offshoring, IT, new tasks, worker training, etc.

A task-based theory of occupations

I develop a framework where boundaries of occupations are endogenous to ask:

- How are workers (wage, employment) affected by changes in occupations?
- What are the direction and effects of automation and technical change?

Framework: A multidimensional assignment model of tasks to workers

- Tractable despite multidimensional assignment (Villani, 2009; Lindenlaub, 2017)
- Highlights role of boundary tasks for wages and substitutability
- Endogenous response of occupations to technology

Roadmap

1. Task assignment model
2. Characterization of solution

- Assignment
- Productivity and wages
- Elasticity of substitution across workers

3. Applications:

- Directed Automation
- Automation and unassigned tasks
- Skill-biased technical change
- Worker training

Model overview

- Consider an economy with a mass of workers
- Workers differ in their skills: $x_{n}=\left(x_{n}^{c}, x_{n}^{m}, \ldots, x_{n}^{s}\right)$
- There are N types of workers: $\mathcal{X}=\left\{x_{1}, \ldots, x_{n}, \ldots, x_{N}\right\}$
- Production combines output from a set of tasks \mathcal{Y}
- Tasks differ in their skill requirements: $y=\left(y^{c}, y^{m}, \ldots, y^{s}\right)$
- Task output depends on which worker performs the task (skill mismatch)

Objective: Assign tasks to workers to maximize production

Workers and skill endowments

Cognitive Skill

Workers are characterized by a skill vector x_{n}

- Two skills: Cognitive and Manual
- A worker of type x_{n} is a pair:

$$
x_{n}=\left(x_{n}^{c}, x_{n}^{m}\right)
$$

- Finitely many types of workers:

$$
\mathcal{X}=\left\{x_{1}, \ldots, x_{n}, \ldots, x_{N}\right\}
$$

Workers and skill endowments

- There is a mass p_{n} of workers of type x_{n}
- Each worker has one unit of time
- Workers have an outside option $\underline{w}(x)$
- For simplicity, I set $\underline{w}(x)=\underline{w}$

Cognitive Skill

Tasks and skill requirements

Cognitive Skill

- Production requires set of tasks: \mathcal{Y}
- \mathcal{Y} assumed compact. Ex: $\mathcal{Y}=[0,1]^{2}$
- A task (y) is characterized by skills:

$$
y=\left(y^{c}, y^{m}\right)
$$

- Tasks are continuously distributed on \mathcal{Y}
- Distribution is G
- A task is completed in one unit of time

Production: Task output

Output depends on match between worker's skills and task's skill requirements:

- Function $q: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}_{+}$describes task output
- If worker x_{n} performs task y, task output is $q\left(x_{n}, y\right)$

Example:

$$
\ln \mathrm{q}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}\right)=\underbrace{a_{x}{ }^{\prime} x_{n}}_{\text {Absolute Adv. }}-\underbrace{\left(x_{n}-y\right)^{\prime} A\left(x_{n}-y\right)}_{\text {Worker/Task Mismatch }}
$$

- Matrix A controls weights of skill mismatch, A is positive definite
- Linear term $\left(a_{x}{ }^{\prime} x_{n}\right)$ affects productivity of workers across all tasks

Production

- Cobb-Douglas aggregate of output of all tasks

$$
F(T)=\exp \left(\int_{\mathcal{Y}} \ln q(T(y), y) d G\right)
$$

- All tasks must be performed to produce final good
- Production depends on assignment between tasks and workers

$$
T: \mathcal{Y} \rightarrow \mathcal{X}
$$

- Task y is performed by worker $T(y) \in \mathcal{X} \equiv\left\{x_{1}, \ldots, x_{n}\right\}$

Assignment of tasks to workers

An assignment T matches tasks to workers
\longleftarrow Example of an assignment Not necessarily optimal

- T partitions task space
- Assign each task to a worker

[^3]
Assignment of tasks to workers

Cognitive Skill

Def: Occupation $\left(\mathcal{Y}_{n}\right)$

- Tasks assigned to a worker $\left(x_{n}\right)$

$$
\mathcal{Y}_{n} \equiv T^{-1}\left(x_{n}\right)=\left\{y \mid T(y)=x_{n}\right\}
$$

Def: Demand for $x_{n}\left(D_{n}\right)$

- Time it takes to perform tasks in \mathcal{Y}_{n}

$$
D_{n} \equiv \int_{\mathcal{Y}_{n}} d G
$$

Optimal assignment

$$
V\left(p_{1}, \ldots, p_{N}\right)=\max _{T: \mathcal{Y} \rightarrow \mathcal{X}} \quad \exp \left(\int_{\mathcal{Y}} \ln q(T(y), y) d G\right) \quad \text { s.t. } D_{n}(T) \leq p_{n}
$$

Prop: If
i. $q(x, y)>0$ for all (x, y) and $q(x, \cdot)$ is upper-semicontinuous
ii. q discriminates across workers: $\forall x_{n} \neq x_{\ell}, q\left(x_{n}, y\right) \neq q\left(x_{\ell}, y\right)$ G-a.e.

Then:

- There exists a G-unique solution T^{\star}
- There exists a unique $\lambda^{\star} \in \mathbb{R}^{N}$ with $\min \lambda_{n}^{\star}=0$ s.t.:

$$
T^{\star}(y)=\underset{x \in \mathcal{X}}{\operatorname{argmax}}\left\{\ln q(x, y)-\lambda_{n(x)}^{\star}\right\}
$$

Roadmap

1. Task assignment model
2. Characterization of solution

- Assignment
- Productivity and wages
- Elasticity of substitution across workers

3. Applications:

- Directed Automation
- Automation and unassigned tasks
- Skill-biased technical change
- Worker training

Task assignment and mismatch: $d(x, y)=\left(\sum_{i=1}^{d}\left|x_{i}-y_{i}\right|^{p}\right)^{1 / p}$

Cognitive Skill

Cognitive Skill

Cognitive Skill
(a) Manhattan distance $(p=1$) (b) Euclidean distance $(p=2)$ (c) Chebyshev distance $(p \rightarrow \infty)$

Min mismatch workers' and tasks'... subject to limited supply of workers:

$$
\underbrace{D_{n}}_{\text {Demand for } x_{n}} \leq \underbrace{p_{n}}_{\text {Supply of } x_{n}}
$$

Special case: $\ln q\left(x_{n}, y\right)=a_{x}^{\prime} x_{n}-\left(x_{n}-y\right)^{\prime} A\left(x_{n}-y\right)$

Cognitive Skill

- Boundaries are hyperplanes:

$$
0=y^{\prime} \underbrace{A\left(x_{\ell}-x_{n}\right)}_{\text {Normal Vector }}-
$$

$$
\frac{1}{2} \underbrace{\left(x_{\ell}^{\prime} A x_{\ell}-x_{n}^{\prime} A x_{n}+a_{x}^{\prime}\left(x_{\ell}-x_{n}\right)+\lambda_{\ell}^{\star}-\lambda_{n}^{\star}\right)}_{\text {Intercept }}
$$

- Optimal assignment is a power diagram
- Apply computational geometry tools

Special case: $\ln q\left(x_{n}, y\right)=a_{x}^{\prime} x_{n}-\left(x_{n}-y\right)^{\prime} A\left(x_{n}-y\right)$

Cognitive Skill

- Boundaries: constant ratio of output

$$
\frac{q\left(x_{n}, y\right)}{q\left(x_{\ell}, y\right)}=e^{\lambda_{n}^{\star}-\lambda_{\ell}^{\star}}
$$

- General feature for boundary tasks
- Crucial for compensation of workers

Wages and marginal product are given by boundary tasks

$$
w_{n}=\mathrm{MP}_{n}+\underline{w}
$$

$$
\mathrm{MP}_{n} \equiv \frac{\partial V\left(p_{1}, \ldots, p_{N}\right)}{\partial p_{n}}=F\left(T^{\star}\right) \lambda_{n}^{\star}
$$

Cognitive Skill

Change in output from task reassignment

- Consider an increase in p_{3}
- Optimal: assign tasks to x_{3} along boundary
- Lowest mismatch among unassigned tasks

Wages and marginal product are given by boundary tasks

$$
w_{n}=\mathrm{MP}_{n}+\underline{w}
$$

$$
\mathrm{MP}_{n} \equiv \frac{\partial V\left(p_{1}, \ldots, p_{N}\right)}{\partial p_{n}}=F\left(T^{\star}\right) \lambda_{n}^{\star}
$$

Cognitive Skill
MP_{3} depends on productivity at boundary tasks

- Cascading by shifting boundaries
- Output change: $\lambda_{n}^{\star}-\lambda_{\ell}^{\star}$ by boundary
- λ_{3}^{\star} captures cumulative gain
- MP_{3} : increase of $100 \cdot \lambda_{3}^{\star} \%$ in output
- λ^{\star} reveals ranking of workers
- Productivity relative to lowest paid worker

Wage differentials and boundary tasks

Let $x_{n} \neq x_{\ell}$ and $y_{n} \in \partial \mathcal{Y}_{n}$ and $y_{\ell} \in \partial \mathcal{Y}_{\ell}$ be boundary tasks, then:

$$
\underbrace{\lambda_{n}^{\star}-\lambda_{\ell}^{\star}}_{\text {ff. of multipliers }}=\underbrace{\ln q\left(x_{n}, y_{n}\right)-\ln q\left(x_{\ell}, y_{\ell}\right)}_{(\log) \text { diff. of output in boundary task } y}
$$

- Workers are compensated for differences at the margin:
- If x_{n} produces 20% more than x_{ℓ}, then x_{n} receives 20% more of total output
- Wage relationship to skills (x) depends on boundary tasks (y)

Wage differentials: Quadratic production

$$
\lambda_{n}^{\star}=\underbrace{a_{x^{\prime}}\left(x_{n}-\underline{x}\right)}_{\text {Difference in Skills }}-\underbrace{(\underbrace{\left(x_{n}-y_{n}\right)^{\prime} A\left(x_{n}-y_{n}\right)}_{x_{n} \text { mismatch at boundary }}-\underbrace{(\underline{x}-\underline{y})^{\prime} A(\underline{x}-\underline{y})}_{\underline{x} \text { mismatch at boundary }}}_{\text {Difference in Mismatch }}
$$

- Marginal products and wages reflect:

1. Skill premium
2. Mismatch premium

- Differentials depend on assignment through boundary tasks

Roadmap

1. Task assignment model
2. Characterization of solution

- Assignment
- Productivity and wages
- Elasticity of substitution across workers

3. Applications:

- Directed Automation
- Automation and unassigned tasks
- Skill-biased technical change
- Worker training

Directed Automation

Automation of tasks is a worker replacing technology

- Automation by industrial robots, software
- Offshoring

Automation can be directed by choosing which tasks are automated

- "Low-Skill" tasks are not necessarily automated

It is optimal to automate tasks along the boundaries of occupations

- Replace workers at tasks with high mismatch

Directed automation: 2 steps

1. Choose robot's mass $\left(p_{r}\right)$ and location in skill space $r=\left(r^{c}, r^{m}\right)$

- Engineering the robot is costly: $\Omega\left(r, p_{r}\right)$

2. Assign tasks to workers and robot

$$
\max _{\left\{r, p_{r}, T\right\}} \underbrace{F(T, r)}_{\text {Output with Robot }}-\underbrace{\Omega\left(r, p_{r}\right)}_{\text {Automation Cost }} \quad \text { s.t. } D_{n} \leq p_{n} \quad D_{r} \leq p_{r}
$$

where: $\quad F(T, r)=\exp \left(\int_{\mathcal{Y} \backslash \mathcal{Y}_{r}} \ln q(T(y), y) d G+\int_{\mathcal{Y}_{r}} \ln q_{R}(r, y) d G\right)$

Example: Robot assignment and placement

Cognitive Skill

Assignment:

- Tasks with highest mismatch
- Vertices of original assignment

Placement:

- Balance reduction in mismatch with cost of automation

Example: Effects on employment

Cognitive Skill

Task displacement:

- Robot takes tasks from all workers
- Boundaries adjust to maintain employment of x_{2}, x_{3}
- x_{2} and x_{3} more productive
- Only x_{1} is displaced

Example: Cascade Effect

Cognitive Skill

Automation induces a cascade effect

- Workers ordered by marginal products
- Effects on employment not necessarily on workers whose tasks are automated
- Lowest productivity workers unassigned

Effect on wages is ambiguous

- Higher mismatch for workers $(\lambda \downarrow)$
- Higher output $(F(T) \uparrow)$

Roadmap

1. Task assignment model
2. Characterization of solution

- Assignment
- Productivity and wages
- Elasticity of substitution across workers

3. Applications:

- Directed automation
- Automation and unassigned tasks
- Skill-biased technical change
- Worker training

Unassigned tasks

Previous assumption: Unassigned task \longrightarrow No output $q(\emptyset, y)=0$

- Consequence: all tasks are assigned

New assumption: Tasks can be left unassigned

- Unassigned tasks are taken out of the aggregate production

$$
F(T)=\exp \left(\int_{\nu \not y_{y}} \ln q(T(y), y) d G\right)
$$

- Equivalent to assume $q(\emptyset, y)=1$

New assignment

Optimal assignment:
$T(y)=x_{n} \longleftrightarrow \forall_{\ell} \ln q\left(x_{n}, y\right)-\lambda_{n}^{\star} \geq \ln q\left(x_{\ell}, y\right)-\lambda_{\ell}^{\star} \wedge \ln q\left(x_{n}, y\right)-\lambda_{n}^{\star} \geq \underline{\lambda}$

- Where $\underline{\lambda}$ satisfies: $\underline{w}=\underline{\lambda} F(T)$

Value of \underline{w} matters for assignment

- If worker is not productive enough task is left unassigned

Workers are left unassigned (even with $\underline{w}=\underline{\lambda}=0$)

- Necessary condition for assignment: $q\left(x_{n}, y\right) \geq 1$

Assignment with unassigned tasks

Cognitive Skill

Unassigned areas in grey

- High mismatch tasks not assigned
- Increasing \underline{w} makes more tasks unprofitable
- Graph has $\underline{w}=0$
- Only x_{1} is unassigned

Unassigned tasks and automation

Cognitive Skill

Robots are not necessarily labor replacing

- Robot takes over unassigned tasks
- Increase in output:
\rightarrow Increase in wages
\rightarrow Increase in assigned tasks

Roadmap

1. Task assignment model
2. Characterization of solution

- Assignment
- Productivity and wages
- Elasticity of substitution across workers

3. Applications

- Directed automation
- Automation and unassigned tasks
- Skill biased technical change
- Worker training

Conclusion

Continuous and significant changes in organization of work

- Advances in automation make it possible to replace workers in the workplace
- New technologies biased toward workers with specific skills

I present a framework where occupations react endogenously to these changes

- Multi-dimensional worker's skills and task's skill requirements
- Differences in wages and substitution reflect productivity at boundary tasks

The framework flexibly allows for various applications:

- Automation
- Skill biased technical change

Appendix

Related Literature

- Assignment models:
- Kantorovich (1942), Koopmans \& Beckmann (1957), Sattinger (1975,1984,1993)
- Task models of the labor market:
- Rosen (1978), Acemoglu \& Autor (2011), Autor (2013), among others
- Exploit tools from Optimal Transport (Villani, 2009, Galichon, 2016) and Computational Geometry (Aurenhammer, 1987, 1991)
- I solve a Semi-Discrete Optimal Transport problem.

Proof: Existence of a deterministic optimal assignment

The proof follows from applying theorems 5.10 and 5.30 from Villani (2009)

- Before applying the Theorems note that the problem can be relaxed by considering non-deterministic assignments:

$$
\pi: \mathcal{X} \times \mathcal{B}(\mathcal{Y}) \rightarrow \mathbb{R}_{+}
$$

π describes assignment as a joint measure over worker/task pairs

- The problem is then:

$$
\max _{\pi} \exp \left(\int \ln q(x, y) d \pi(x, y)\right)
$$

$$
\text { s.t. } \forall_{n} \quad \int_{\mathcal{Y}} d \pi\left(x_{n}, y\right)=\int_{\mathcal{Y}_{n}} d y \leq p_{n} \quad \forall Y \in \mathcal{Y} \sum_{n=1}^{N} \pi\left(x_{n}, Y\right)=\int_{Y} d y
$$

- Note that this problem is linear in π

Proof: Existence of a deterministic optimal assignment

- Theorem 5.10 establishes duality for the Planner's problem if $q(x, y)>0$ and continuous for any pair (x, y)

$$
\begin{aligned}
\max _{\pi} \ln F(\pi)=\max _{\pi} \int \ln q(x, y) d \pi & =\inf _{\substack{(w, v) \in \mathbb{R}^{N} \times L^{1} \\
w_{n}+v(y) \geq \ln q\left(x_{n}, y\right)}} \sum_{n=1}^{N} \lambda_{n}(x) p_{n}+\int_{\mathcal{Y}} v(y) d y \\
& =\inf _{\lambda \in \mathbb{R}^{N}} \sum_{n=1}^{N} \lambda_{n} p_{n}+\int_{\mathcal{Y}} \max _{n}\left\{\ln q\left(x_{n}, y\right)-\lambda_{n}\right\} d y
\end{aligned}
$$

A solution to the dual problem $\left(\lambda^{\star}\right)$ is guaranteed.

- Galichon (2016) shows an algorithm to find λ^{\star} using the dual problem's FOC

Proof: Existence of a deterministic optimal assignment

- The solution of the dual problem $\left(\lambda^{\star}\right)$ gives gives the optimal assignment:

$$
\forall_{y} \quad T(y)=\arg \max _{x \in \mathcal{X}}\left\{\ln q(x, y)-\lambda_{x}^{\star}\right\}
$$

- Theorem 5.30 gives uniqueness (in law) of the assignment when q is injective given y
- $T(y)$ is a singleton for almost all y
- Workers' performance are different at almost all tasks
- The finiteness of \mathcal{X} simplifies this condition.
- The solution of the dual problem λ^{\star} is pinned up to an additive constant. Normalizing to $\min \lambda^{\star}=0$ follows from the lowest marginal product being zero.
- If there is an excess of workers $\left(\sum p_{n}>\int_{\mathcal{Y}} d y\right)$ the level of λ^{\star} is also pinned down by $\min \lambda^{\star}=0$

Marginal product: Two tasks example

- There are two workers (x_{n} and x_{ℓ}) and two tasks $\left\{y_{1}, y_{2}\right\}$
- Total output is given by $F(T)=q_{1}\left(x_{n}\right) q_{2}\left(x_{\ell}\right)$
- Worker x_{n} performs task y_{1} and worker x_{ℓ} performs task y_{2}

Change assignment by having worker x_{n} perform both tasks:

- New output is: $F\left(T^{\prime}\right)=q_{1}\left(x_{n}\right) q_{2}\left(x_{n}\right)=\frac{q_{2}\left(x_{n}\right)}{q_{2}\left(x_{e}\right)} F(T)$
- (log) Change in output is:

$$
\ln \frac{F\left(T^{\prime}\right)}{F(T)}=\ln q_{2}\left(x_{n}\right)-\ln q_{2}\left(x_{\ell}\right)=\lambda_{n}-\lambda_{k}
$$

- Output changes by $100\left(\lambda_{n}-\lambda_{k}\right) \%$

Elasticity of substitution

The (Morishima) elasticity of substitution between workers x_{n} and x_{ℓ} is

$$
M_{\ell n}=\frac{\partial \ln D_{\ell} / D_{n}}{\partial \ln \mathrm{MP}_{n}}=\underbrace{\frac{\mathrm{MP}_{n}}{D_{\ell}} \frac{\partial D_{\ell}}{\partial \mathrm{MP}_{n}}}_{\mathcal{E}_{\ell n} \text { Cross Elasticity }}-\underbrace{\frac{\mathrm{MP}_{n}}{D_{n}} \frac{\partial D_{n}}{\partial \mathrm{MP}_{n}}}_{\mathcal{E}_{n n} \text { Own Elasticity }}
$$

- $\mathcal{E}_{\ell n}$ measures direct substitution between workers

Prop.If q is differentiable with respect to y and \mathcal{Y} is convex then:
i D_{n} is differentiable wrt λ^{\star}-generalization of Feenstra \& Levinsohn (1995)
ii $\mathcal{E}_{\ell n} \geq 0$ with equality if $\mathcal{Y}_{1} \cap \mathcal{Y}_{n}=\emptyset$
Elasticity of substitution is determined by boundaries of occupations

Elasticity of substitution

- Recall that Demand for workers of type n is $D_{n}=\int_{y_{n}} d y$
- No close form for D_{n} in general.
- Yet, demand is differentiable (Feenstra \& Levinsohn, 95)

Key:

- When marginal product changes, the boundaries of the assignment shift in parallel.
- Use the shift in the boundaries to measure the change in demand.

Example: Change in demand $-\lambda_{3} \uparrow$

- When $\lambda_{3} \uparrow$ it is optimal to assign tasks away of \mathcal{Y}_{3}
- Boundaries move in parallel
- Only the neighbors of x_{3} are directly affected.

Proposition: Differentiability of Demand

Let there be at least two skills (i.e. $d \geq 2$) and $\lambda \in \mathbb{R}^{N}$ be a vector of multipliers.

If q is differentiable wrt y, and \mathcal{Y} convex then D_{n} is continuously differentiable with respect to λ.
i Change in demand for workers of type $n\left(D_{n}\right)$ when their λ_{n} changes:

$$
\frac{\partial D_{n}}{\partial \lambda_{n}}=-\sum_{m \neq n} \frac{\partial D_{m}}{\partial \lambda_{n}}
$$

- Demand for workers of type n comes from tasks reallocated from other workers.
ii $\frac{\partial D_{\ell}}{\partial \lambda_{n}} \geq 0$, with equality if $\mathcal{Y}_{I} \cap \mathcal{Y}_{n}=\emptyset$

Proposition: Differentiability of Demand

Further characterization of demand requires a functional form:

$$
\mathrm{q}\left(x_{n}, y\right)=\exp \left(a_{x}^{\prime} x_{n}+-\left(x_{n}-y\right)^{\prime} A\left(x_{n}-y\right)\right)
$$

ii If q is as above:

$$
\frac{\partial D_{\ell}}{\partial \lambda_{n}}=\frac{\int_{\mathcal{Y}_{n} \cap \mathcal{Y}_{m}} d G}{2 \sqrt{\left(x_{n}-x_{m}\right)^{\prime} A^{\prime} A\left(x_{n}-x_{m}\right)}}
$$

The formula is obtained using Reynold's Transport theorem.

- Substitutability across workers:
- Increases with exposure: lenght $\left(\mathcal{Y}_{n} \cap \mathcal{Y}_{m}\right)=\int_{\mathcal{Y}_{n} \cap \mathcal{Y}_{m}} d G$
- Decreases with distance: $\left(x_{n}-x_{m}\right)^{\prime} A^{\prime} A\left(x_{n}-x_{m}\right)$
- Multidimensional setting allows for more interactions.
- In one dimension at most two substitutes.

Example: Technical change and skill abundance

Cognitive Skill

- Two workers $\left\{x_{1}, x_{2}\right\}$:
- Same manual skill and same mass
- Production technology:
$\ln q\left(x_{n}, y\right)=$

$$
a_{x}^{\prime} x_{n}-\left(x_{n}-y\right)^{\prime} A\left(x_{n}-y\right)
$$

- Increase cognitive weight and reduce manual weight in A
- Effect on wages depends on mismatch along boundary:
- Initial diff. in prod: $\lambda_{2}-\lambda_{1}=5.97 \%$
- Final diff. in prod: $\lambda_{2}-\lambda_{1}=2.91 \%$

Directed automation - Optimality conditions

Necessary conditions for a solution:

$$
2 F(T, r) D_{r}\left(\frac{a_{x}}{2}-A\left(r-b_{r}\right)\right)-\Omega_{r}\left(r, p_{r}\right)=0
$$

$$
[r]
$$

$$
-\Omega_{p_{r}}\left(r, p_{r}\right)+\mu_{r}=0
$$

$\left[p_{r}\right]$
$b_{r}=\frac{\int_{\mathcal{Y}_{r}} y d G}{D_{r}}$: Mean (barycenter) of tasks assigned to robot $\left(\mathcal{Y}_{r}\right)$ μ_{r} : Robot's marginal product

- The optimal location of the robot is such that it is in the (weighted) center of its region, which minimizes mismatch, adjusted by the weight given to skills in production $\left(a_{x}\right)$ and the cost of those skills $\left(\Omega_{r}\right)$

Directed automation - Optimality conditions

Necessary conditions for a solution:

$$
2 F(T, r) D_{r}\left(\frac{a_{x}}{2}-A\left(r-b_{r}\right)\right)-\Omega_{r}\left(r, p_{r}\right)=0 \quad[r]
$$

$b_{r}=\frac{\int_{y_{r}} y d G}{D_{r}}$: Mean (barycenter) of tasks assigned to robot $\left(\mathcal{Y}_{r}\right)$ μ_{r} : Robot's marginal product

- Optimal location of the robot is such that it is in the (weighted) center of its region, which minimizes mismatch, adjusted by the weight given to skills in production $\left(a_{x}\right)$ and the cost of those skills $\left(\Omega_{r}\right)$

Directed automation - Optimality conditions

Necessary conditions for a solution:

$$
\begin{aligned}
2 F(T, r) D_{r}\left(\frac{a_{x}}{2}-A\left(r-b_{r}\right)\right)-\Omega_{r}\left(r, p_{r}\right) & =0 \\
-\Omega_{p_{r}}\left(r, p_{r}\right)+\mu_{r} & =0
\end{aligned}
$$

[r] $\left[p_{r}\right]$
$b_{r}=\frac{\int_{y_{r}} y d G}{D_{r}}:$ Mean (barycenter) of tasks assigned to robot $\left(\mathcal{Y}_{r}\right)$ μ_{r} : Robot's marginal product

- Optimal location of the robot is such that it is in the (weighted) center of its region, which minimizes mismatch, adjusted by the weight given to skills in production $\left(a_{x}\right)$ and the cost of those skills $\left(\Omega_{r}\right)$

Directed automation - Optimality conditions

Necessary conditions for a solution:

$$
\begin{array}{rrr}
2 F(T, r) D_{r}\left(\frac{a_{x}}{2}-A\left(r-b_{r}\right)\right)-\Omega_{r}\left(r, p_{r}\right) & =0 & {[r]} \\
-\Omega_{p_{r}(}\left(r, p_{r}\right)+\mu_{r} & =0 & {\left[p_{r}\right]}
\end{array}
$$

$b_{r}=\frac{\int_{y_{r}} y d G}{D_{r}}$: Mean (barycenter) of tasks assigned to robot $\left(\mathcal{Y}_{r}\right)$ μ_{r} : Robot's marginal product

- Robot's mass is increased (higher p_{r}) until marginal cost of $\left(\Omega_{p_{r}}\right)$ equals robot's marginal product (μ_{r})

Skill Biased Technical Change

Skill biased technical change

$$
\mathrm{q}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}\right)=\exp (a_{x}^{\prime} x_{n}-\underbrace{\left(x_{n}-y\right)^{\prime} A\left(x_{n}-y\right)}_{\text {Worker/Task Mismatch }}) \quad \text { where: } \mathrm{A}=\left[\begin{array}{cc}
\alpha & 0 \\
0 & 1-\alpha
\end{array}\right]
$$

- Technology changes how skill mismatch affects production: A
- α controls relative importance of cognitive mismatch in production
- Use of machinery \longrightarrow Reduce importance of manual mismatch ($\alpha \uparrow$)
- Use of computers \longrightarrow Increase importance of cognitive mismatch ($\alpha \uparrow$)
- Two types of effects:
- Direct effect through productivity of workers at boundary tasks
- Reassignment effect through changes in the tasks performed by workers

Direct and reassignment effects of $\alpha \uparrow$

Cognitive Skill

Direct effect:

- Differences in wages depend on differences on cognitive skills
- Technical change does not necessarily benefit abundance of skill
- x_{1} and x_{2} become more substitutable

Reassignment effect:

- Minimize cognitive mismatch

Direction of skill biased technical change

- The relative importance of skills is governed by matrix A
- In what follows I impose additional structure on A :

$$
A=\left[\begin{array}{cc}
\alpha & 0 \\
0 & 1-\alpha
\end{array}\right]
$$

- Higher α makes cognitive match more important for production
- Changing α enhances the workforce by putting more weight on skills for which the workforce is better suited
Choose: skill weight (α) and assignment (π) to maximize output

Technology is chosen to minimize mismatch

The optimal α satisfies:

$$
F(\pi, r)\left(M_{m}-M_{c}\right)-h_{\alpha}(\alpha) \geq 0
$$

Where M_{s} is total mismatch in skill $s: M_{s}=\sum_{n=1}^{N} \int_{\mathcal{Y}_{n}}\left(x_{n, s}-y_{s}\right)^{2} d y$

- Total mismatch depends on assignment and distribution of tasks and workers
- If there is more mismatch in the manual dimension $\left(M_{m}>M_{c}\right)$:
- The workforce is biased (in equilibrium) towards cognitive skills
- Technical change is directed towards cognitive skills ($\alpha \uparrow$)
- Technology reinforces bias by weighting skills with better match

Higher weight on cognitive skills

Information technology and computer use change the way tasks are completed

- Higher weight on cognitive skills

Effect on workers:

- Cognitive differences across workers have larger effects on output
- Workers with high cognitive skills benefit
- Wage differences across workers with different cognitive skills increase
- Differences in manual skills are less important
- Wage differentials between workers with different manual skills shrink

Example: Higher weight on cognitive skills

Cognitive Skill

Assignment biased towards minimizing cognitive mismatch

- Partition is more "vertical"
- Tasks using high cognitive skills reallocated to x_{3}
- Wage of x_{3} workers $\uparrow 12.3 \%$
- Wage premium of cognitive-intensive worker \uparrow

$$
50 \% \longrightarrow 70 \%
$$

Example: Higher weight on cognitive skills

Cognitive Skill

Differences between x_{1} and x_{2} are less important

- Similar cognitive skills $\rightarrow x_{1}$ and x_{2} more substitutable
- Wage of x_{2} workers $\downarrow 6.8 \%$
- Wage of x_{1} workers unchanged

Optimal Worker Training

Optimal worker training

The automation framework applies to the question of worker training:

- What skills (\tilde{x}) should be given to a worker?
- Choose new skills \tilde{x} for worker x_{n}, instead of robot skills (r)

Higher gains from training workers with higher mismatch

- Change skills to reduce mismatch, more skills are not always better

Changing skills of one worker changes assignment of other workers

- Mismatch can increase for other workers \longrightarrow ambiguous effect on wages

Optimal worker training

The problem is to choose skills for the worker (\tilde{x}) and a new assignment (π):

$$
\max _{\{\tilde{x}, T\}} F(T, \tilde{x})-h\left(\tilde{x} \mid x_{n}, p_{n}\right)
$$

- $h\left(\tilde{x} \mid x_{n}, p_{n}\right)$ is the cost of changing skills x_{n} to \tilde{x} for p_{n} workers
- I am assuming that all (p_{n}) workers of type x_{n} are trained
- The problem is the same if the workers are into M groups
- An additional cost for specialization must be added, increasing in M

The optimality condition is:

$$
0=2 F(T, \tilde{x}) D_{n}\left(\frac{a}{2}-A \tilde{x}+A b_{n}\right)-\frac{\partial h\left(\tilde{x} \mid x_{n}, p_{n}\right)}{\partial \tilde{x}}
$$

Increase in specialization

Increase in specialization

- Changes in college education tend towards higher specialization:
- Increase in post-graduate education
- Increase in the number of majors
- Specialized workers tend to earn higher wages
- Specialized workers perform a smaller set of tasks and have lower mismatch
- Specialization in only one skill can bring costs
- As some workers specialize the assignment changes for all workers
- Occupation boundaries tasks respond to new distribution of workers

Example: Specialization increases wages

Example: Specialization increases wages

Break up the mass of cognitive-intensive

Example: Specialization increases wages

Cognitive Skill

- Av. wage of specialized workers $\uparrow 3.4 \%$

Gain differs across workers

- Top worker gains the most: Mismatch $\downarrow+$ Skills \uparrow
- Bottom worker looses: Mismatch $\downarrow+$ Skills \downarrow

Wage bill $\uparrow 0.7 \%$
Labor share stable 47.5\% to 47.6\%

Automation and specialization

- Specialization can hurt workers when tasks are automated
- Automation can be concentrated in tasks assigned to a specialized worker
- The worker is displaced or reassigned
- Mismatch increases for the worker after reassignment
- Consider the specialization example from before, with automation

Example: Automation and specialization

Example: Automation and specialization

- Wages go down more than in previous

Cognitive Skill

Changes in Worker Supply

Example: Increase in cognitive intensive workers

Cognitive Skill

More cognitive-intensive workers and less low-skilled workers

- The supply of worker x_{3} increases: $p_{3} \uparrow$ from 20% to 25%
- The supply of worker x_{1} decreases: $p_{1} \downarrow$ from 50% to 45%

Example: Increase in cognitive intensive workers

Cognitive Skill

The assignment changes by adjusting wages

- $w_{3} \downarrow(6 \%) x_{3}$ takes over more tasks, poorer matches
- w_{1} is unchanged
- $w_{2} \downarrow(2.5 \%)$ to clear market

Higher output: $\uparrow 1 \%$

- x_{3} higher productivity $\left(a_{x}\right)$ compensates higher mismatch

Example: Increase in cognitive intensive workers

Cognitive Skill

Wage bill goes down (0.6\%)

- Despite change in workforce $x_{1} \rightarrow x_{3}$

Labor share goes down:

$$
47.5 \% \rightarrow 46.8 \%
$$

- Lower wages and higher output

[^0]: Heckman \& Scheinkman (1987); Autor, Levy \& Murnane (2003); Spitz-Oener (2006); Poletaev \& Robinson (2008); Kambourov \& Manovskii (2009); Black \& Spitz-Oener (2010); Yamaguchi (2012); Heckman \& Kautz (2012)); Deming (2017); Guvenen, Kuruscu, Tanaka \& Wiczer (2020); and Lise \& Postel-Vinay (2020).

[^1]: Heckman \& Scheinkman (1987); Autor, Levy \& Murnane (2003); Spitz-Oener (2006); Poletaev \& Robinson (2008); Kambourov \& Manovskii (2009); Black \& Spitz-Oener (2010); Yamaguchi (2012); Heckman \& Kautz (2012)); Deming (2017); Guvenen, Kuruscu, Tanaka \& Wiczer (2020); and Lise \& Postel-Vinay (2020).

[^2]: Heckman \& Scheinkman (1987); Autor, Levy \& Murnane (2003); Spitz-Oener (2006); Poletaev \& Robinson (2008); Kambourov \& Manovskii (2009); Black \& Spitz-Oener (2010); Yamaguchi (2012); Heckman \& Kautz (2012)); Deming (2017); Guvenen, Kuruscu, Tanaka \& Wiczer (2020); and Lise \& Postel-Vinay (2020).

[^3]: Cognitive Skill

