
A Task-Based Theory of Occupations with
Multidimensional Heterogeneity ∗

Sergio Ocampo†

University of Minnesota, Department of Economics

December 27, 2018
Click Here for Most Current Version

Abstract

I develop an assignment model of occupations with multidimensional heterogeneity
in production tasks and worker skills. Tasks are distributed continuously in the skill
space, whereas workers have a discrete distribution with a finite number of types.
Occupations arise as bundles of tasks optimally assigned to a type of worker. The
model allows us to study how occupations evolve—e.g., changes in their boundaries,
wages, and employment—in response to changes in the economic environment,
making it useful for analyzing the implications of automation, skill-biased technical
change, offshoring, and skill upgrading by workers, among others. I characterize how
the wages, the marginal product of workers, the substitutability between worker
types, and the labor share depend on the assignment. In particular, I show that these
properties depend on the productivity of workers in tasks along the boundaries of
their occupations. As an application, I study the rise in automation observed in
recent decades. Automation is modeled as a choice of the optimal size and location of
a mass of identical robots in the task space. The firm trades off the cost of the robots,
which varies across the space, against the benefit of reducing the mismatch between
tasks’ skill requirements and workers’ skills. The model rationalizes observed trends in
automation and delivers implications for changes in wage inequality, unemployment,
and the labor share.
JEL: J23, J24, J31, C78, E24
Key Words: Automation, occupations, assignment, skill mismatch

∗I am most grateful to my advisors Fatih Guvenen, Jeremy Lise, Loukas Karabarbounis and David
Rahman for their guidance and continuous encouragement. I also want to thank Anmol Bhandari, Jonathan
Eaton, Gueorgui Kambourov, Burhan Kuruscu, Ellen McGrattan, Nancy Stokey, David Wiczer, and
participants at the Dissertation Interns Workshop at the St. Louis FED for their comments. I also benefitted
from long discussions with my classmates, especially Dominic Smith, Keler Marku, Emily Moschini, Juan
Herreño, Sergio Salgado, Serdar Birinci, and Kurt See. All errors are my own.

†Email: ocamp020@umn.edu; Web: https://sites.google.com/site/sergiocampod/

1

https://ocamp020.github.io/JMP_Draft.pdf
https://sites.google.com/site/sergiocampod/


1 Introduction

Occupational labels play a useful role by summarizing the set of tasks performed by a worker.
In this way, we know that dentists repair cavities, clean teeth and lecture patients about
flossing, while secretaries manage schedules and send mail. Despite their usefulness, relying
on occupations as descriptors of what workers do hides changes in the role of workers in
production. Unlike occupational labels, the tasks actually performed by workers undergo
continuous change. Dentists and secretaries perform a different collection of tasks today
than they did just decades ago. Changes in the tasks performed in an occupation carry
with them changes in the skills required from the worker, as well as changes in the worker’s
productivity and compensation.

I develop an assignment model of occupations that explicitly incorporates changes in the
set of tasks involved in an occupation. In the model, production of a final good requires
performing a collection of productive tasks, each generating a task-specific output. The
problem is to assign workers to tasks to maximize the production of the final good. Both
workers and tasks are heterogeneous along multiple dimensions as in Lindenlaub (2017).
Workers differ in the skills they possess (e.g., manual, cognitive, social, etc.) and tasks differ
in the skills that are involved in performing them. The relevance of multiple types of skills
in determining labor market outcomes of individuals has been long recognized (Heckman
and Sedlacek, 1985; Heckman, Stixrud and Urzua, 2006; Autor, Levy and Murnane, 2003;
Spitz-Oener, 2006; Black and Spitz-Oener, 2010; Deming, 2017). In particular, workers’
productivity depends on the mismatch between their skills and the skills involved in the
tasks they perform (i.a., Guvenen, Kuruscu, Tanaka and Wiczer, 2015; Lise and Postel-
Vinay, 2015).

To fix ideas, consider the two-dimensional setup depicted in Figure 1, where workers and
tasks differ in cognitive and manual skills. Each point in the plane characterizes a task with
a different combination of cognitive and manual skills. While some tasks are complex in
terms of their cognitive skills and involve no manual skills, others involve using both types
of skills. Workers are represented by points scattered in the skill space, defining a given
combination of skills. Crucially, I assume that there are finitely many types of workers (e.g.,
x1, x2, x3), while tasks are continuously distributed in the skill space.1 Consequently, the
assignment of tasks to workers for production divides the space into regions (Y1, Y2, Y3),
resulting in bundles of tasks assigned to the same (type of) worker. The tasks in each bundle
form the occupation of that worker.

1This assumption is used in other task-based models of the labor market such as Rosen (1978) and
Acemoglu and Autor (2011).

2



0.2 0.4 0.6 0.8 1

Cognitive Skill

0.2

0.4

0.6

0.8

1

M
a
n

u
a
l 
S

k
il

l
x

1

x
2

x
3

Y1

Y2

Y3

Figure 1: Assignment Example
Note: The figure shows an example for an assignment in a two-dimensional skill space (cognitive and manual
skills). There are three types of workers {x1, x2, x3} and tasks are continuously distributed over the unit
square. The assignment partitions the space into three regions {Y1,Y2,Y3} each of which is an occupation.
xn performs the tasks in occupation Yn. The assignment in this figure is not necessarily optimal.

The boundaries of occupations are determined by the distribution of tasks and workers
across the skill space and the production technology. Figure 1 shows the boundaries of
occupations implied by an arbitrary assignment. The shape of the boundaries under the
optimal assignment depends on the technology for production of task-specific output, which
determines how the mismatch between workers’ skills and the skills involved in a task affects
the workers’ productivity. In particular, technology determines in which directions mismatch
is more harmful. For example, cognitive mismatch can affect productivity more than manual
mismatch, or being over-qualified can be less harmful to productivity than being under-
qualified for a task. The optimal assignment seeks to maximize production by minimizing
the skill mismatch, subject to the limited supply of workers of each type.

The model makes precise how the marginal productivity of workers, wages and the
elasticity of substitution across workers depend on the assignment. These properties
depend on the productivity of workers in tasks along the boundaries of their occupations.
Boundary tasks are marginal, in the sense that they are the last tasks to be assigned to a
worker. In general, they are the least productive among the tasks in the worker’s
occupation.2 Wage and marginal products are thus determined by productivity at the
workers’ boundary tasks (i.e., how much production increases if additional tasks were
reassigned to a worker). The elasticity of substitution is also determined by the
boundaries, with a worker only being directly substitutable with her neighbors.

2Boundary tasks are also the most productive among tasks currently unassigned to the worker.
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The model allows occupations to react to changes in the economic environment by
changing their boundaries. In turn, changes in occupations affect the employment and
wages of workers. This makes the model useful for studying the implications of
automation, skill-biased technical change, offshoring, and skill upgrading by workers,
among others. These changes in the economic environment manifest as changes in the
production technology, the distribution of workers or the distribution of tasks. For
instance, the use of information technologies (IT) and computers in the workplace make
cognitive skills more relevant in production, which then affects the skill content of
occupations.3 On the other hand, the increased educational attainment of the workforce
changes the distribution of skills across workers, which in turn affects the type of tasks
assigned to workers of different types.

The reassignment of tasks across workers that follows a change in the environment also
affects the distribution of income across workers, and between workers and firms. Who
benefits from the changes in technology or the changes in the distribution of workers and
tasks depends on how these changes affect the mismatch between workers and the tasks they
perform. For example, the adoption of IT benefits workers with high cognitive skills over
those with more manual skills. In the economy described in Figure 1, this increases the wage
of workers of type x3 relative to the wages of workers of type x1 and x2, increasing inequality.
The use of industrial machinery makes differences across workers in terms of their strength
(a type of manual skill) less relevant for production. This makes workers x1 and x2 more
substitutable with each other, reducing the edge that worker x2 had from her higher manual
skills. As a result wage inequality between x1 and x2 decreases, as does the labor share.4

As an application, I use the model to study the rise in automation observed in recent
decades.5 Automation technologies are directed towards replacing workers at specific tasks
(e.g., industrial robots taking spots in the assembly line). Because of this, automation takes
away some, but not all, of the tasks of an occupation. In a recent study, McKinsey Global
Institute (2017) reports that while 50% of tasks are automatable using currently available
technology, less than 5% of occupations are fully automatable. Consequently, automation is
more likely to transform rather than to eliminate occupations. In the model, occupations
are transformed directly by losing tasks to robots or software, and indirectly through the
reassignment of tasks across workers.6

3Changes in skill content of occupations go beyond the adoption of IT and the importance of cognitive
skills. See Atalay, Phongthiengtham, Sotelo and Tannenbaum (2018), Rendall (2018) and Deming (2017).

4As shown in Section 2, wages will be equalized downwards.
5In manufacturing, Acemoglu and Restrepo (2017) estimate that industrial robots have displaced 756,000

workers between 1993 and 2007. Simultaneously, advances in software and AI have made it possible to
automate tasks of clerical occupations and of more specialized workers like accountants.

6Other worker replacing technologies, like offshoring, operate through the same effects. See Blinder (2009)
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I model automation as a choice of the optimal size and location of a mass of identical
robots in the task space. Robots replace workers at performing tasks. Automation can be
directed through the location of the robots in the task space, which determines which tasks
are automated. The optimal choice of location and mass weighs the cost of automation,
which varies depending on the complexity of the tasks being automated, against the gains in
output from replacing workers. Automation is thus directed towards regions that exhibit high
skill-mismatch between workers and tasks. These regions are located around the boundaries
of occupations (see Figure 1). Which boundaries are affected by automation depends on the
gains in productivity relative to the cost of the robot.

As mentioned above, automation induces a reassignment across tasks. Because of this,
the workers previously performing the automated tasks are not the only ones affected. It is
optimal to reassign tasks so that only the workers with the lowest productivity are displaced
by automation, preserving the employment of more productive workers. As a consequence of
the reassignment, the mismatch between workers and tasks increases, potentially reducing
workers’ productivity and wages. As Acemoglu and Restrepo (2018a) point out, whether or
not wages decrease depends on how productive robots are at the tasks they overtake. A major
increase in productivity due to automation can increase workers’ marginal product, increasing
wages, while moderate increases in output in the automated tasks can be dominated by the
higher mismatch experienced by workers, ultimately reducing their wages.

I estimate the model using occupational data for the U.S. labor market obtained from
O*NET (the U.S. Department of Labor Occupational Characteristics Database) and the
Bureau of Labor Statistics. Together, these data allow me to estimate the production
technology and the distribution of skills across workers and tasks. I estimate the cost of
automation using data on the automatability of occupations from Frey and Osborne
(2017), and the cost of industrial robots from the International Federation of Robotics.

The model matches the wage structure across major occupational groups7 and rationalizes
observed trends in automation. I find that it is optimal to automate tasks with a high manual
skill requirement, most of them related to manufacturing occupations such as metal workers
and industrial machine mechanics. Yet, the displacing effects of automation fall mostly
on workers who performed occupations requiring no education, such as food preparing and
serving and building maintenance. In total, 4.1% of workers are displaced by automation
in the model. I estimate the cost of automation to be $44,500 per replaced worker. This is
equivalent to 2.6% higher than the the average wage in the sample. Automating tasks with

and Blinder and Krueger (2013) for offshorability measures based on occupational characteristics.
7I divide occupations into groups based on their 2-digit Standard Occupational Classification (SOC) and

their skill requirements. See Section 5 and Appendix E for details.
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a high manual skill requirement turns out to be optimal despite there being alternative tasks
automatable at lower costs. The reason lies in the comparatively high mismatch between
workers’ skills and the skills demanded by the automated tasks.

The model also implies a decrease in wages following the automation of tasks. How much
wages decrease depends on the reassignment of tasks across workers. How close the tasks
of the worker’s occupation are to the automated tasks determines how affected the worker’s
wages are. The increase in output from the automation of tasks is not enough to offset the
negative effects of the reassignment.

Besides the application to automation, I show how the model can be used to address
other changes in the economy. I model the problem of optimal worker training as one of
paying a cost to modify a worker’s skill vector. This is similar to the automation problem
in that the choice in both problems is a location for a worker/robot in the skill space.
Unlike the automation problem, training a worker does not displace other workers, although
occupations change in response to the new skill distribution. The effect on the distribution
of wages is also different. Training a worker reduces the mismatch in the tasks she performs,
raising her marginal product. Since wage differentials reflect differences in marginal products,
training increases the differences with workers who previously earned less, and decreases the
differences with workers who previously earned more than the trained worker.

I also consider how technology can change to place more weight on certain skills. This
type of technological change is directed towards skills at which the workforce is already more
adept, as measured by the skill-mismatch between workers and tasks’. In other words, it is
optimal to specialize in skills, adapting technology to complement the skills for which the
workforce is better suited, thus raising productivity. This contrasts with automation, where
productivity increases by replacing workers at tasks they are not well suited for.

Finally, I extend the model by allowing tasks to be left unassigned. When not all tasks
are required for the production of the final good, tasks are only performed if workers are
productive enough relative to their cost (wages). This generates endogenous unemployment.
I show how the value of the minimum wage affects employment and how skill accumulation
by workers changes, and potentially expands, the set of tasks performed in the economy. One
important consequence of allowing tasks to be left unassigned is that automation ceases to
be a pure worker-replacing technology. Automation can now complement workers by taking
over tasks that are either not worthwhile for workers to perform, or that are too specialized
given the workers’ current skills.

Related literature I adopt a task approach to production as in Rosen (1978), Autor,
Levy and Murnane (2003) and Acemoglu and Autor (2011). I complement this literature by
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incorporating multidimensional heterogeneity in tasks and workers as in Lindenlaub (2017).
The main assumption I place on the model is the discreteness of the distribution of skills
across workers. This assumption is motivated by the study of occupations, which arise from
the assignment of bundles of tasks to a type of worker. The same assumption has been used
before to address different questions. For instance, Stokey (2017) develops a model with
one-dimensional heterogeneity, where a continuum of workers are assigned to finitely many
tasks, to study the effects of task biased technical change on the wage structure.

Methodologically, the closest paper to mine is Feenstra and Levinsohn (1995), who use a
similar setup in the context of a continuum of buyers choosing from a discrete set of products.
I extend their model in a labor market context to allow for a general task-output production
function and aggregation into a final good. I also provide a general proof of the existence
and uniqueness of the solution using results from optimal transport theory (Villani, 2009;
Galichon, 2016). This allows me to extend their differentiability results. Unlike Feenstra
and Levinsohn (1995), I do not consider unobserved heterogeneity across workers and tasks.
Finally, the applications to technical change, unemployment, and automation are all new.8

This paper is also related to the literature documenting the relevance of multiple skills
in shaping labor market outcomes (Heckman and Sedlacek, 1985; Heckman, Stixrud and
Urzua, 2006; Spitz-Oener, 2006; Black and Spitz-Oener, 2010; Deming, 2017). In particular,
this paper is related to papers on multidimensional skill mismatch and occupational choice,
and the specificity of human capital to occupations and skills, i.a., Poletaev and Robinson
(2008), Kambourov and Manovskii (2009), Gathmann and Schönberg (2010), Yamaguchi
(2012) Guvenen, Kuruscu, Tanaka and Wiczer (2015), Lise and Postel-Vinay (2015) and
Stinebrickner, Sullivan and Stinebrickner (2019). This literature treats the assignment of
tasks to occupations as exogenous and invariant, and focuses on informational frictions. I
endogenize the bundling of tasks into occupations, which depends on technology, and the
demand and supply of skills.

Finally, the paper adds to the literature on the effects of automation: Acemoglu and
Restrepo (2017, 2018b), Aghion, Jones and Jones (2017), Hemous and Olsen (2018), among
others. In particular, I explicitly model the multidimensional nature of skill heterogeneity.
This is relevant to determine the automatability of tasks as shown recently by Frey and
Osborne (2017).9 In turn, allowing for varying costs of automation across the task space lets
me ask about the direction of automation. In this way, the paper provides a framework to
evaluate which occupations are more likely to be affected by automation, as well as what

8In Feenstra and Levinsohn (1995)’s setup, the techniques I develop can be applied to the problem of
designing a new product (defined by a vector of characteristics) given a distribution of consumers.

9Autor, Levy and Murnane (2003) also show how multiple dimensions are relevant for explaining changes
in occupations. They focus on the decline of occupations intensive in routine-manual tasks.
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the consequences of automation can be.

2 Task Assignment Model

I present a model where occupations arise as bundles of tasks assigned to workers, and the
boundaries of occupations react endogenously to changes in technology (e.g., automation,
skill-biased technical change) and demographics (e.g., the distribution and skills of workers).
I use the model to explore how these factors change occupations, and what the effects
are on worker productivity, worker compensation, and the incentives to further adopt new
technologies.

The model builds on one-dimensional task-based models of production in the spirit of
Rosen (1978) and Acemoglu and Autor (2011), where tasks are the basic unit of
production, and tasks and workers are defined by a single dimensional measure of their
‘complexity’ or ‘skill’. I extend the basic one-dimensional framework by incorporating
multidimensional heterogeneity across workers and tasks, following Lindenlaub (2017)’s
multidimensional assignment model. In the model workers are defined by a vector of skills
representing their cognitive, manual, social ability, etc; tasks are defined by a vector of the
skills involved in performing them. Taking into account multiple skills has been shown to
be relevant when explaining educational choices (Willis and Rosen, 1979), differences in
wages within demographic categories (Heckman and Sedlacek, 1985), the role of social
(non-cognitive) skills relative to cognitive skills in various labor market outcomes
(Heckman, Stixrud and Urzua, 2006; Deming, 2017), and the decline of occupations
intensive in routine-manual tasks (Autor, Levy and Murnane, 2003).10

In the model, production involves the completion of a continuum of tasks by finitely
many types of workers. A single type of worker can then perform various tasks; I refer
to the set of tasks performed by a worker as the worker’s occupation. Which tasks are
assigned to each type of worker depends on the distribution of skills among workers and
tasks, and on how productive workers are at different tasks. The productivity of a worker
at a given task is determined in turn by how well the worker’s skills match the skills used
in performing the task. In what follows I describe in detail the role of workers, tasks and
the production technology. Then I discuss the optimal assignment and the determinants of
worker compensation.

10In the literature on skill formation and education, Cunha, Heckman and Schennach (2010) show that
taking into account only cognitive skills can lead to wrong policy recommendations regarding investment on
education.
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Setup

Workers Consider an economy populated by a continuum of workers. A worker is
characterized by the skills she possesses, as captured by a vector x ∈ S ⊂ Rd, where S is
the space of skills and d ≥ 1 is the number of skills. Vector x encodes the level of different
skills the worker has, like cognitive, manual, social, etc.

There are N types of workers in the economy: {x1, . . . , xN} ≡ X . xn is the skill vector
of workers of type n. There is a mass pn of workers of type xn, so that the total mass of

workers in the economy is P =
N∑
n=1

pn. Each worker is endowed with one unit of time. This

implies that workers of type n have a total of pn units of time available to work. Workers can
either work or be unemployed. If unemployed, a worker receives a payment w ≥ 0. Workers
supply their time inelastically at any wage w ≥ w.

Tasks There is a single final good produced in the economy that aggregates the output
of all workers across productive tasks. In particular, production of the final good involves
completing a continuum of differentiated tasks. Let Y ⊆ S denote the set of tasks used in
production. Tasks y ∈ Y differ in the skills involved in performing them, and how many
times they must be performed. One unit of time is required to perform a task once. To
make this precise, I represent a task y by a vector of skills, so that y ∈ Y ⊆ S, and denote
the density of tasks used in production by g : Y → R+. I assume throughout that:

i g : Y → R+ is an absolutely continuous (a.c.) function with an associated a.c. measure
G on Y ;

ii there are enough workers to complete all tasks, i.e. G (Y) =
∫
Y g (y) dy ≤ P ;

iii the set of tasks Y is compact.

Task-output Workers vary in their productivity across tasks depending on the match
between the skills they possess (x) and the skills involved in performing the task (y). q

describes how productive a worker with skills x is when performing task y. These differences
play a crucial role in determining the assignment of tasks to workers and through it the
overall productivity of each worker type and the substitutability across workers. As will be
discussed later in this Section, the optimal assignment will balance the desire to minimize
the mismatch between workers and the tasks they perform, with the capacity constraints
imposed by the limited availability of workers.

I will denote by q (x, y) the worker/task-specific output generated by a worker of type x
performing task y. If a task is not assigned to any worker, then no output is generated for
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that task (abusing notation: q (∅, y) = 0 for all y ∈ Y). Further properties of the task-output
function q : X × Y → R+ will be specified later.

Assignment As mentioned above, production of the final good combines output from all
workers. The output of a worker depends in turn on which task she performs, according
to the productivity of the worker implied by q. Because of this, the production of the final
good will depend on how tasks are assigned to workers. The assignment of tasks to workers
is described by a function T : Y → X , so that task y is performed by worker T (y) ∈ X .

Many tasks can be assigned to the same worker type. I collectively refer to the set of
tasks performed by a type of worker as the occupation of the worker. The assignment T
determines which tasks are bundled into the occupation of each worker. The occupation of
workers of type xn is:

Yn = T−1 (xn) = {y ∈ Y |xn = T (y)} (1)

Occupations form a partition of the space of tasks into at most N cells.11 Figure 1 shows
an example of an assignment that partitions the space of tasks into three occupations,
corresponding to three worker types.

An assignment is deemed feasible if workers have enough time to supply all the time
demanded by their occupation. This time is given by the number of tasks in the worker’s
occupation. The demand for worker n’s time is:

Dn =

∫
Yn
dG (2)

An assignment is feasible if Dn ≤ pn for all n ∈ {1, . . . , N}.

Remark. The definition of the assignment function implicitly assumes that all tasks are
assigned to a worker in X . This is without loss given the way in which output from all
worker/task pairs is aggregated into the final good (see equation 3 below). I will expand on
this in the next subsection where I also discuss how to explicitly include the possibility of
not performing some of the tasks.

Final good production The production of a final good aggregates the output from all
worker/task pairs through a Cobb-Douglas technology.12 Given an assignment T , total

11It is possible that Yn = ∅, so that no task is assigned to worker xn.
12The aggregator does not need to be of the Cobb-Douglas type. Results hold for aggregators of the CES

family: F (T ) =
(∫

(q (T (y) , y))
σ−1
σ dG (y)

) σ
σ−1

, with σ ≥ 1. See Appendix B.
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output is:

F (T ) = exp

∫
Y

ln q (T (y) , y) dG

 (3)

Under this technology, production of the final good only takes place if all tasks are
assigned and performed. Recall that if a task is left unassigned q (∅, y) = 0. In this sense,
technology resembles a continuous version of Kremer (1993)’s O-Ring production function.
In order to make the comparison precise, it is necessary to change the interpretation of q.
Consider a continuous production line indexed by y ∈ Y , at each point in the production
line a fatal error can occur that terminates the production process in failure. The arrival
rate of an error is given by ln q (x, y) ≥ 0 and depends on the point in the production process
(y) and the worker assigned to that point (x). The probability that no error arrives at the
end of the whole process is given by (3). Thus, F (T ) can be interpreted as expected output
given an assignment T . See Sobel (1992) for another application of this idea.

Optimal assignment

The problem is to find a feasible assignment that maximizes output:

max
T

F (T ) s.t. ∀nDn ≤ pn (4)

The assignment determines how tasks are divided into occupations. The exact form of
the assignment depends on three factors. First, the distribution of skills in the workforce,
which is described by the skill vectors of N types of workers (xn), and the mass of workers
of each type (pn). Second, the distribution of tasks involved in production, captured by the
function g. Finally, the production technology embedded in q, which determines how workers
and tasks’ characteristics interact in production. Changes in any of these factors translate
into changes to the optimal assignment of tasks to workers, thus affecting the boundaries of
occupations and the production of the final good.

Even though the optimal assignment cannot be fully characterized without completely
specifying the environment, it is possible to guarantee the existence and uniqueness of a
solution by imposing conditions only on the production technology q. The following
proposition makes this precise:

Proposition 1. Consider the optimal assignment problem in (4).
If q is such that:

1. Every worker/task pair produces positive output: q (x, y) > 0 for all pairs (x, y) ∈
X × Y.

11



2. q (x, ·) is upper-semicontinuous in y given x ∈ X .

3. q discriminates across workers in almost all tasks: for all xn 6= x`, q (xn, y) 6= q (x`, y)

G-a.e.

Then there exists a (G−)unique solution T ? to the problem in (4). Moreover, there exist a
unique λ? ∈ RN with minλ?n = 0 such that T ? is characterized as:

T ? (y) = argmax
x∈X

{
ln q (x, y)− λ?n(x)

}
(5)

where n (x) gives the index of a type of worker x ∈ X .

Proof. The result is established by re-expressing the problem in (4) as an optimal transport problem.
The proof is divided into three Lemmas that relax the problem in (4) by allowing non-deterministic
assignments, and then construct a solution by means of the dual of the relaxed problem. The solution
is shown to be unique and to characterize a deterministic assignment T ? according to equation 5.
The Lemmas follow from applying Theorems 5.10 and 5.30 in Villani (2009) summarized in Theorem
1 of Appendix A. All Lemmas are stated and proven in Appendix B.

The first two conditions on q in Proposition 1 are technical and ensure that the theory
of duality applies to the problem. The value of λ? is obtained from the solution to the
dual problem to 33. The third condition plays a crucial in role in establishing the existence
and uniqueness of an optimal assignment function T ?. The condition makes it possible to
distinguish between workers in each task by demanding injectivity of q in x given y. It plays
the same role as the ‘twist condition’ of Carlier (2003), the condition for positive assortative
matching in Lindenlaub (2017), and the single-dimensional Spence-Mirrlees single-crossing
property. However, the injectivity condition I assume is less restrictive than the ‘twist
condition’ since it does not involve differentiability of q, moreover, it is simpler to verify in
practice since there are finitely many types of workers.

The characterization of the optimal assignment in 5 allows me to solve the problem in a
task-by-task basis, and give a more explicit characterization of the occupations in terms of
the production technology q:

Yn = {y ∈ Y | ∀` ln q (xn, y)− λ?n ≥ ln q (x`, y)− λ?`} (6)

Tasks are optimally assigned to workers that are more productive at performing them. That
is, workers with lower skill mismatch. The role of the multiplier λ? is to penalize the output
of a worker in a given task to balance the demand for that type of worker with the limited
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supply of hours (pn). The boundaries of an occupation are formed by task y ∈ ∂Yn for which
the inequality in (6) is met with equality for some k.

Even though it is possible not to perform a task, by leaving it unassigned, this does
not happen under the optimal assignment. It is optimal to assign all tasks because there
is no production of the final good if one task is left unassigned (recall that q (∅, y) = 0 for
all y). In Section 4, I consider an alternative interpretation of the production technology
under which tasks can be left unassigned.13 Doing so gives rise to endogenous unemployment
in the model. Unemployment depends on how many (and which) tasks are not performed
in the optimal assignment. The results in Proposition 1 do not change by considering the
possibility of leaving tasks unassigned, but worker’s compensation does change. I expand on
this in the next subsection and in Section 4.

Indirect production function

The production technology described above depends not only on how many workers of each
type are used but also on which tasks are performed by each of them; unlike the ‘canonical’
production function where the roles of each input (in this case each type of worker) are
predetermined and unchanging. In the model described above the amount of an input (a
type of worker) used in production and what that input is used for are not the same (Autor,
2013). As a consequence, the relation between inputs and output depends on how the tasks
are assigned to workers, and how the assignment itself changes as the inputs vary.

The aggregate role of workers in production is captured by the value of the assignment
problem (4). The value of the problem defines an indirect production function that depends
on the availability of workers in the economy:

V (p1, . . . , pN) = max
T

F (T ) s.t. ∀nDn ≤ pn (7)

Function V describes how production changes when the composition of the workforce
changes, allowing for workers to be re-assigned optimally across tasks.

The properties of workers in production, such as their marginal product and the
substitutability across different types of workers, are determined by how the assignment
reacts to changes in the supply (distribution) of workers. In particular, the properties of
workers in production depend on their productivity along the boundaries of occupations,
and on how those boundaries react to changes in the environment.

13When a task is left unassigned it is taken out of the mix of tasks instead of having output be zero. This
amounts to changing the set over which the integral in (3) is taken.
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Marginal products and worker compensation

The marginal product of workers of type n is obtained from V as the change in output if the
supply of worker’s of type n (pn) were to increase.14 The marginal product is given by the
percentage increase in output obtained from adding more workers of the given type. This is
made clear by relating the marginal product to the solution of the dual problem (34):

MPn =
∂V (p1, . . . , pN)

∂pn
= F (T ?)λ?n (8)

The result follows from the envelope theorem (Milgrom and Segal, 2002) and is proven in
Lemma 4 in Appendix B.

To see how the value of λ? relates to the productivity of each type of worker, we must
first determine how the assignment responds to an increase in the supply of workers. When
the supply of workers of type n increases, the additional workers are only used if tasks are
re-assigned to them from other workers. The first tasks to be reassigned are those in the
boundaries of occupations. Consider the occupations of two types of workers, n and `, all
tasks in the boundary of the occupations, i.e. y ∈ Yn ∩ Y`, satisfy:

λ?n − λ?` = ln q (xn, y)− ln q (x`, y) (9)

Then the difference in the multipliers λ?n and λ?` is given by the log difference in task
output along the boundary between workers n and `. That is, the percentage increase (or
decrease) in output if the tasks along the boundary are re-assigned from ` to n.15 It is
only optimal to make use of the additional supply of workers if output increases along the
boundary of worker’s n occupation (∂Yn).

If tasks are reassigned to the additional type n workers, workers along the boundaries of
Yn are displaced. This process generates an excess supply of workers of other types, giving
rise to a new round of re-assignment along the boundaries of these workers. Following the
process reveals an ordering of workers by productivity, with the least productive worker
being displaced by increases in the supply of more productive workers. As a consequence,
the least productive worker has zero marginal product.16 Increases in the supply of that

14This definition of marginal product takes into account how the assignment changes optimally in response
to the increase in the supply of workers of type n. It is also possible to define an arbitrary measure for the
marginal product of a type n worker at a given task y, given some arbitrary assignment T . I discuss it in
Appendix C.

15It is useful to consider an example with finitely many tasks, say {y1, y2}. Then total output is given by
F (T ) = q1 (xn) q2 (x`). If the assignment changes by having worker xn perform both tasks the new output

is F
(
T
′
)

= q2(xn)
q2(x`)

F (T ). Then ln
F
(
T
′)

F (T ) = ln q2(xn)
q2(x`)

= λn−λ`, so that output increases by 100 (λn − λ`) % .
16The property that the least productive worker has zero marginal product is induced by the capacity
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type of workers do not increase output because the additional workers are left unassigned
(unemployed).

The total gain in output from the initial increase in the supply of workers of type n takes
into account the increase in output from all the re-assignments. Using the relation in (9),
and recalling that minλk = 0, we get a total increase in output of λn as in (8).

The value of the marginal product affects how workers are compensated. To see this
consider how the optimal assignment of tasks to workers can be implemented by a price-
taking firm seeking to maximize profits. The firm’s problem is:

max
T

F (T )−
N∑
n=1

wnDn (T )

where wn is the wage paid to a worker of type n, and Dn is the demand for workers of type
n, given by (2). This problem is equivalent to the optimal assignment problem in (4) if the
wages correspond to the multipliers of the feasibility constraint of each worker type. This is
the case if wages are of the form:

wn = F (T ?)λ?n + κ where κ ≥ w (10)

The wages that decentralize the optimal assignment are given by the marginal product of
each worker under the optimal assignment, plus a constant that guarantees that all workers
receive at least their outside option. The level of the wages is not pinned down in the
problem because only the difference in wages affects the assignment (see equation 6). Recall
that in order to produce the firm has to employ a total of G (Y) hours, independently of
which workers are hired. So, if all wages increase by κ the total wage bill increases by κG (Y)

regardless of the assignment. From the point of view of the firm the constant κ acts as a
fixed cost, and thus, it has no effect on the assignment.17

An alternative to determining the level of wages in the economy is to allow for tasks to
remain unassigned as presented in Section 4, or because of the introduction of automation
or offshoring as presented in Section 3.1. The threat of leaving a task unassigned lowers the

constraint on the set of tasks and the times each task can be performed. It is also what motivates the
normalization of the multiplier λ in proposition 1.

17The indeterminacy of the level of worker compensation is a common feature of assignment models
(Sattinger, 1993). Only total surplus and differences across workers are pinned down by the optimality
conditions. This result is not a feature of the discreteness in the distribution of workers, see Lindenlaub
(2017). The level of worker compensation depends on additional assumptions. For example, having excess
workers (P > G (Y)) implies that (at least) some type of worker will be partially unassigned (unemployed),
driving down the wage for that type of worker to w. This will be the case when I introduce automation in
Section 3.1. Once the wage of one type of worker is known the other wages are implied by differences in
their marginal product (see equation 9).
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wage of the least productive worker to its outside option, effectively pinning down κ = w

as the worker with the lowest productivity has zero marginal product. Which tasks are
performed under the optimal assignment is then a function of w. A higher outside option
for workers makes unprofitable to perform more tasks and can induce unemployment among
workers of different types.

Substitutability across workers

The substitutability of different types of workers in production plays an important role in
policy analysis, and in determining the effects of changes to technology and the distribution
of skill supply and demand. The substitutability is usually measured by the elasticity of
substitution, which, under the ‘canonical’ production function is typically assumed to be
constant and invariant to changes in technology. This is the case when labor is combined
through a CES aggregator as in Katz and Murphy (1992) (see Acemoglu and Autor (2011)
for more references). Yet, the substitutability between different types of workers depends on
the characteristics of the assignment, and reacts endogenously to changes in technology and
the distribution of workers and tasks.

Explicitly modeling the assignment of tasks to workers makes it possible to measure
how substitutable workers are depending on which tasks they perform. This includes how
substitutable are ‘low’ and ‘high’ skilled workers, or workers specialized in cognitive vs
manual skills. Intuitively, workers performing similar tasks are more substitutable, as are
workers with similar skills. In order to make these results precise, I compute the elasticity
of substitution under the optimal assignment.

Since there are in general more than two types of workers the appropriate measure of
substitutability is given by the Morishima elasticity of substitution (Blackorby and Russell,
1981, 1989).18 The elasticity of substitution between workers of type n and ` is:

M`n = E`n − Enn (11)

where E`n = MPn
D`

∂D`
∂MPn

is the cross elasticity of demand for worker k with respect to a
change in the marginal product of worker n.19 Changes in the marginal product of worker

18See Baqaee and Farhi (2018) for a recent application of the Morishima elasticity in an input-output
network setting.

19The Morishima elasticity of substitution measures the effect on the ratio of optimal demands for two
inputs (in this case two types of workers, D`/Dn) given by a (proportional) change of the ratio of marginal
products (MPn/MP`). Recall that marginal products and wages move together. When there are more than
two workers the direction of the change in the ratio of marginal products matters since the demands for
inputs changes differently if MPn or MP` vary, see Blackorby and Russell (1989, pg 885). Because of this
the elasticity is in general asymmetric. I consider a change in the ratio of marginal products in the direction
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xn are captured by changes in λ?n (see equation 8). Knowing this, it becomes clear from
the characterization of occupations in (6) that Enn < 0 and En` ≥ 0. That is, increasing λ?n
decreases the demand for worker xn and (weakly) increases the demand for other workers.
From the point of view of worker compensation, increasing λ?n raises the cost of worker
n, causing the firm to substitute it for other workers. Because of this the elasticity of
substitution is always positive in the model.20

Yet, the relevant measure for direct substitutability between workers is the cross-elasticity
En`. In a setting with more than two inputs, the ratio D`/Dn can change in response to changes
in the marginal product of xn without the demand for worker ` being affected. Because of
this, the elasticity of substitution between workers n and ` is at least equal to Enn, being
only greater if there is direct substitution between the two workers, that is, if the demand
for worker ` changes when the marginal product of n changes. As shown in proposition 2
this happens only if workers n and ` share a boundary.

To obtain the magnitude of the elasticity of substitution between two workers it is
necessary to determine how much their demands change with the value of λ?. Looking
again at the characterization of occupation in (6) the change in the demand will depend on
how sensitive the boundaries of the occupation are to changes in λ?n. The sensitivity of the
boundaries depends in turn on the slope of the production function q evaluated at the
boundary tasks, see (9). Specifying a functional form on q becomes necessary to completely
characterize Enn and Ekn.

Linear-Quadratic task-output production function

I now introduce a specific functional form for task-output. I follow Tinbergen (1956),
Feenstra and Levinsohn (1995) and Lindenlaub (2017) in assuming a linear-quadratic
production function:

q (x, y) = exp
(
a
′

xx+ a
′

yy − (x− y)
′
A (x− y)

)
(12)

The output from all worker/task pairs is combined into a final good according to the Cobb-
Douglas aggregator in (3).

Under (12) the productivity of a worker at a given task depends on the skill mismatch
between the worker’s skills (x) and the skills involved in performing the task (y), measured

of MPn:

M`n =
∂ ln Dn/D`

∂ lnMPn
=

MPn

D`

∂D`

∂MPn
− MPn

Dn

∂Dn

∂MPn
= E`n − Enn

20Workers satisfy the Kelso and Crawford (1982) gross substitutes condition.
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by the weighted distance between worker and task’s skills.21 Matrix A controls the weights
of each skill in the mismatch; it is assumed to be symmetric and positive definite. The
higher the weight of a skill the more important it is for production; mismatch in that skill
hurts production more. The linear terms (a′xx and a′yy) capture more skilled workers having
an absolute advantage in production, and the value of output generated by tasks involving
higher skill levels being higher.

The functional form in (12) greatly simplifies the characterization of occupations in the
optimal assignment.22 In particular, boundaries take the form of hyperplanes whose normal
vectors depend on matrix A and the difference in skills between neighboring workers. This
is made clear by replacing (12) in condition (9). The boundary between the occupations of
workers xn and x` is:

y ∈ Yn ∩ Y` ←→ 0 = y
′
A (x` − xn)︸ ︷︷ ︸
Normal Vector

−1

2

(
x
′

`Ax` − x
′

nAxn + a
′

x (x` − xn) + λ?` − λ?n
)

︸ ︷︷ ︸
Intercept

(13)

Figure 2a shows the form of the optimal assignment when q is given by (12). A worker
will perform the tasks closest to her skills, for which she has the least mismatch, conditioned
on the limited supply of workers (feasibility constraint in 4). The location of the boundaries
depends on the value of the multipliers λ?, but the slope depends on the relationship between
workers’ skills and the production technology embodied by A. Figure 2b illustrates this by
increasing the value of λ?3. When λ?n increases the boundaries of the occupation of worker
n will shift ‘inward’ in a parallel fashion, reducing the demand for xn and increasing the
demand for all its neighbors. If an occupation Ym does not share a border with Yn, it is not
directly affected by changes in λ?n (see the boundaries of Y2 in Figure 2b).

The geometric structure induced by adopting the functional form in (12) makes it possible
to characterize the change in demand following a change in λ? in a general way (Feenstra and
Levinsohn, 1995). The change in demand is always given by the area of a (hyper)trapezoid,
formed as the plane that defines the boundary between occupations moves (see Figure 2b).

I exploit the geometric structure of the problem to compute closed-form expressions for
21The dependance of production on the mismatch between worker and task skills is similar in spirit to

Lazear (2009)’s skill weights approach, where he studies job-specific skills, and to the skill mismatch studies
of Guvenen et al. (2015) and Lise and Postel-Vinay (2015), who study earnings differential across occupations
and the accumulation of skills by workers.

22Under (12) there is an equivalence between the optimal assignment and the partition induced by a
power diagram. A power diagram partitions a space into cells that minimize the power between a node (x)
associated with the cell and the points y in the cell. The outcome is a partition of the space into convex
polyhedra defined by hyperplanes. The power function between two points is pow (x, y) = d (x, y)

2−µ, where
d (x, y) is a distance and µ ∈ R. This relation is noted by Galichon (2016, ch. 5) and is treated formally by
Aurenhammer et al. (1998).
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(a) Optimal assignment (b) Changes in demand when λ?3 increases

Figure 2: Assignment Example - Quadratic Mismatch Loss
Note: The figures shows the assignment in a two-dimensional skill space (cognitive and manual skills).
Five types of workers are considered {x1, . . . , x5} with mass P = {0.3, 0.2, 0.3, 0.1, 0.1}. Tasks are uniformly
distributed over the unit square, i.e Y = [0, 1]

2 and g (y) = 1 for all y. The production function q is given
by (12) with A = I2, the value of ax and ay does not change the optimal assignment.

the derivates of demand (Proposition 2). The cross derivative of demand depends on how
exposed two workers are to one-another, measured by the length of their boundary, and how
similar their skills are, measured by the weighted distance between their skill vectors (xn
and x`). When the demand for a worker changes, it is optimal to make the adjustment along
the boundaries. Because of this, workers with longer boundaries are more substitutable;
moreover, workers are only directly substitutable with their occupational neighbors. How
much the boundary reacts to a change in demand depends on how similar workers are at
performing tasks. The closer the skills of the workers are, the more substitutable along their
boundary. Finally, the second part of the proposition follows from noting that the set of
tasks is fixed, so the total effect of the change in demand as λn changes must be zero.

Proposition 2. Let λ ∈ RN be a vector of multipliers. If q is continuous then Dn is
continuously differentiable with respect to λ and:

i ∀ 6̀=n ∂Dn
∂λ`

= area(Yn∩Y`)

2
√

(xn−x`)
′
A′A(xn−x`)

=

∫
Yn∩Y`

dG

2
√

(xn−x`)
′
A′A(xn−x`)

≥ 0

ii ∂Dn
∂λn

= −
∑̀
6=n

∂D`
∂λn

< 0

The proof of Proposition 2 is presented in Appendix B, it extends the results of Feenstra
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and Levinsohn (1995) by applying Reynolds’ transport theorem (see Theorem 2 in Appendix
A) to compute the change in demand for arbitrary configurations of workers (x).

Using part two of Proposition 2 the expression for the Morishima elasticity becomes:

M`n =

(
1 +

D`

Dn

)
E`n +

∑
m 6=n,`

Dm

Dn

Emn (14)

The elasticity of substitution between workers xn and x` is a weighted average of the cross-
elasticities of demand of all workers, with the weights given by the demand of each type of
worker relative to worker n’s demand. The elasticity includes the direct substitution effect
between n and `, and the secondary effects induced by the substitution of worker n for other
workers (m 6= n, `). When two workers do not share a boundary (Yn ∩ Y` = ∅) the direct
effect disappears since the cross-demand elasticity is zero, but the elasticity of substitution is
not zero because it takes into account the changes in the assignment through the boundaries
of Yn. When there are only two types of workers the second term vanishes in (14), and,
noting that ∂Dn

∂λn
= −∂D`

∂λn
= ∂D`

∂λ`
= −∂Dn

∂λn
, we get symmetry.

Adopting the functional form in (12) also makes it possible to characterize the differences
in marginal products across workers in terms of the differences in skills and skill mismatch.
Manipulating equation (13) and recalling that minλn = 0 it is possible to get the following
expression for λn:

λn = ax′ (xn − x)︸ ︷︷ ︸
Difference in Skills

− (xn − yn)
′
A (xn − yn)︸ ︷︷ ︸

xn mismatch at boundary

−
(
x− y

)′
A
(
x− y

)︸ ︷︷ ︸
x mismatch at boundary︸ ︷︷ ︸

Difference in Mismatch

(15)

where x are the skills of the lowest paid worker (the worker with λm = 0), and yn and y are
boundary tasks of workers xn and x respectively.

The marginal product of a worker is defined relative to the marginal product of the lest
productive worker. This follows from the ordering of workers discussed earlier. Assigning
additional tasks to workers of type xn implies taking tasks away from workers of type x.
Under (12) the marginal product of a worker depends on skill level, relative to those of the
least productive worker, and on the mismatch at the boundary tasks.

3 Directed technical change

Changes in technology are a major factor in shaping the way in which tasks are assigned
to workers. For instance, the increase of information technology (IT) in the workplace
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has shifted focus from manual to cognitive skills, and changed the distribution of tasks
across occupations (e.g., clerical and secretarial jobs). More directly, automation technologies
and offshoring have replaced workers in performing certain tasks across manufacturing jobs,
customer services, and accounting among others.

I consider two forms of technical change and study how they affect the division of tasks
into occupations. Innovation in worker replacing technology (such as robots, software, AI,
offshoring) lead to the automation of tasks and the reassignment of (remaining) tasks to
workers. Innovation in skill-enhancing technology, such as IT in the modern workplace, or
the power loom in the 18th and 19th centuries, changes the productivity of workers across
tasks, inducing a reassignment of tasks to reduce mismatch across occupations. In both cases,
technical change is followed by changes in the role of workers in production, affecting their
productivity and substitution patterns. The assignment also determines how substitutable
workers are with alternative forms of production (e.g., robots, software).

Both types of technical change can be directed (towards specific tasks or skills) with the
aim of increasing production. In both cases, production is increased the most by reducing
the mismatch in between tasks and workers, whether by directing automation towards the
tasks with the highest mismatch or by increasing the weight on skills for which the workforce
is better suited.

The answer to which tasks are optimally automated, and which skills become more
important for production, depends on the joint distribution of skills requirements across
tasks and skill endowments of workers, and its interaction within the production technology.
Moreover, the answer depends on how changes in technology influence the assignment of
tasks to workers. I consider the directed technical change problem in the rest of this section.

3.1 Directed automation

I introduce automation technology in the form of a robot that can replace workers in
performing tasks.23 The robot is modeled as a flexible technology that can be adapted to
perform different types of tasks. This captures a key property of current technologies like
industrial robots or advanced AI programs, which can be reprogrammed or adapted to
carry out a variety of tasks (Acemoglu and Restrepo, 2017; Frey and Osborne, 2017). It
also relates to other technologies, like offshoring, which, as automation, replace workers at
the task they perform in their ‘local’ labor market (Blinder, 2009; Blinder and Krueger,

23I focus on the short-term effects of automation keeping the distribution of tasks fixed, abstracting from
the potential gains from adding new tasks, or from performing more the existing tasks with the displaced
workers. Acemoglu and Restrepo (2018b) study the effects of automation in an environment with changes
in the set of tasks.
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2013). The automation problem consists of designing a robot and optimally assigning tasks
among the workers and the robot to maximize production. Tasks assigned to the robot are
automated.

I treat the robot as a new type of worker. The key difference is that it is possible to
choose the robot’s skills and supply. I denote by r ∈ Rd the skills of the robot and by pr ≥ 0

its supply. The automation technology is embodied by a cost function Ω : Rd
+ × R+ → R,

so that the cost of producing a mass pr of a robot with skills r is given by Ω (r, pr). Many
changes in the patterns of automation can be seen as changes in the cost of automation (Ω).
For instance, recent advances in artificial intelligence are reducing the cost of automating
tasks intensive in cognitive skills (McKinsey Global Institute, 2017; Frey and Osborne, 2017),
while previous innovations like the conveyer belt allowed for the automation of tasks involving
manual skills.

Once the robot is designed the set of available workers is expanded to include it: XR =

{x1, . . . , xN , r}. Accordingly, the assignment is now described by a function TR : Y → XR.
The assignment of tasks to the robot will, of course, depend on how productive the robot is
relative to the available workers. It is better to design robots so that they replace workers at
tasks where skill mismatch is high, and worker productivity is low. These tasks are located
along the boundaries of occupations. Automation is thus less likely to occur at ‘core’ tasks
of an occupation, for which the worker is best suited. I denote by qR : Rd × Y → R the
production technology of the robot so that a robot r performing task y produce qR (r, y).

When tasks are automated the total demand for labor decreases,24 inducing
unemployment among workers. Which workers become unemployed depends on the way in
which the assignment reacts to the introduction of the robot. As tasks are assigned to the
robot, the workers who would have performed those tasks are directly displaced. Yet, these
workers do not necessarily become unemployed since they can take over the tasks of other
workers. The end result of this process depends on the substitutability and relative
productivities of the workers in the economy. It is the workers with the lowest marginal
product who will become displaced (unemployed) as a response to the introduction of the
robot, even if the tasks in their occupation are not directly affected by automation. This
follows from the order in which workers are substituted from one another described in the
previous section when discussing the marginal product of workers.

The automation problem is to choose jointly the skills and mass of the robot (r, pr), and
24This is a consequence of the assumption that the set of tasks to be performed (Y) is fixed, as is the

distribution of tasks (G).
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the new assignment (TR) to maximize output, net of the automation cost (Ω):

max
{r,pr,TR}

FR (TR, r)− Ω (r, pr) s.t. ∀nDn ≤ pn DR ≤ pr (16)

where:

FR (TR, r) = exp

 ∫
Y\YR

ln q (TR (y) , y) dG+

∫
YR

ln qR (r, y) dG

 (17)

and
YR = T−1

R (r) DR =

∫
YR
dG

It is convenient to think of the problem in two steps, first solving for an optimal
assignment given a set of workers and a robot, and then choosing the optimal skills and
mass of the robot taking into account the effect on the optimal assignment. In this way,
the problem of finding an optimal assignment can be simplified making use of the results in
Proposition 1. Taking as given the robot skills and mass (r, pr), the optimal assignment is
necessarily characterized by a vector µ? ∈ RN+1:25

TR (y) = xn ←→∀` ln q (xn, y)− µ?n ≥ ln q (x`, y)− µ?` (18)

∧ ln q (xn, y)− µ?n ≥ ln qR (r, y)− µ?R

This assignment satisfies the capacity constraints of all robots and the workers.
Abusing notation the problem is then:

max
{r,pr}

FR (µ? (r, pr) , r)− Ω (r, pr) (19)

where µ? depends on the value of r and pr, and takes into account how the optimal assignment
reacts to changes in the robot skills and mass. The first order conditions of the problem
are now derived using the envelope theorem of Milgrom and Segal (2002) and Reynolds’
transport theorem (Theorem 2 in the Appendix):26

∇ (FR (µ? (r, pr) , r)− Ω (r, pr)) = ∇FR (µ?, r)−∇Ω (r, pr) = 0d+1×1

25This strategy has been exploited extensively by the optimal sensor placement literature under quadratic
loss functions. Under that loss function the optimal assignment is necessarily a power diagram, see
Aurenhammer et al. (1998, Thm . 1) and Xin et al. (2016, Thm. 1).

26See Xin et al. (2016) for further applications in the theory of optimal power diagrams with capacity
constraints. Proposition 3 in Appendix B provides an alternative derivation for the result based on de Goes
et al. (2012). The alternative proof is more tedious, but being more explicit it makes it clear how changing
the robot’s skills affects output.
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I first focus on the the derivative of output with respect to the robot’s skills:

∂ (FR (µ? (r, pr) , r)− Ω (r, pr))

∂r
= FR (µ? (r, pr) , r)

∫
YR

∂ ln qR (r, y)

∂r
dG− ∂Ω (r, pr)

∂r
= 0d×1

(20)

The marginal cost of changing the robot’s skills is balanced with the gain in output the
change in skills induces.

The first term in (20) accounts for the change in output across all tasks assigned to the
robot. Changing the robot’s skills changes the productivity of the robot across tasks, in
general increasing it for some tasks and decreasing it for others, as changing r can increase
mismatch for some of the tasks in YR. Thus, the first term gives the net gain in output from
a change in the robot’s skills. Unlike previous results, all of the tasks assigned to the robot
matter, and not only those in the boundary of the automated region.

It is convenient to use an explicit functional form for qR to fix ideas. Take for instance the
production functioned presented in (12). Assuming that qR (r, y) = q (r, y), the first order
condition can be expressed as:

∂ (FR (µ? (r, pr) , r)− Ω (r, pr))

∂r
= 2FRDR

(ax
2
− A (r − bR)

)
− ∂Ω (r, pr)

∂r
= 0d×1

where bR =

∫
YR

ydG

DR
is the centroid (or barycenter) of the automated area. Absent other

considerations it is optimal to set the robot’s skills to the centroid of the automated region,
this minimizes the (quadratic) loss from skill mismatch, thus maximizing the robot’s
output.27 The robot’s skills deviate from the centroid to account for gains from having
higher skills (ax), and for the cost of automation (∂Ω(r,pr)/∂r).

The first order condition with respect to pr takes the usual form of equating marginal
product to marginal cost. As in (8), the marginal product is MPR = FRµ

?
R:

∂F

∂pr
= FR (µ? (r, pr) , r)µ

?
R −

∂Ω (r, pr)

∂pr
= 0 (21)

Note, however, that the automation problem in (16) is not concave in r and thus
condition (20) is only necessary and not sufficient (Urschel, 2017). The first order condition
is descriptive of the properties that the robot’s skills must satisfy relative to the automated
region, but it does not pin down the set of tasks to be automated. Regardless, the problem

27This result is shared by the literature on the optimality of centroidal Voronoi diagrams and is exploited
extensively in optimal sensor placement problems. It is also linked to K-means and other vector quantization
methods.
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(a) Symmetric weights (b) Asymmetric weights

Figure 3: Directed Automation Example - Quadratic Automation Cost
Note: The figures show the result of the automation problem taking the robot’s mass as given in a two-
dimensional skill space (cognitive and manual skills). Three types of workers are considered {x1, x2, x3} with
mass P = {0.5, 0.3, 0.2}. Tasks are uniformly distributed over the unit square, i.e Y = [0, 1]

2 and g (y) = 1

for all y. The production function q is given by (12) with A = I2, ax = [0.2, 0.1]
′
and ay = [0, 0]

′
. The

automation cost function is: Ω (r) = r
′
ARr, with AR diagonal. The mass of the robot is fixed at pr = 0.05.

The assignment without the robot is presented in grey.

can be solved numerically using a version of Lloyd’s algorithm (Lloyd, 1982). The
algorithm consists of finding the optimal assignment for a given value of r and pr, then
adjusting r and pr to satisfy their respective first order conditions. The process is repeated
until convergence. This algorithm has been proven to converge monotonically to a local
minimum of the objective function (see Du et al. (2010) and references therein). Urschel
(2017) gives sufficient conditions that can be checked for convergence to a global
minimum.28

Figure 3 presents the solution to the automation problem assuming that q and qR are
given by (12), and that the automation cost is quadratic in the robot’s skills: Ω (r) = r

′
ARr.

The two panels differ only on the weights of cognitive and manual skills in the automation
cost function. To keep the example simple I fix the mass of the robot exogenously.

Panel 3a assumes symmetric weights. It is then optimal to automate the tasks around
the center vertex of the original assignment (without the robot). These are the tasks with

28In practice there are only finitely many candidates for a global minimum, making the selection of the
solution simple. It is optimal to automate tasks around one of the vertices of the partition induced by the
initial assignment (without automation). Aurenhammer (1987) shows there at most 2n-5 of these vertices
in a diagram when the production function is quadratic in x and y, d = 2 and n ≥ 3.
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the highest mismatch. Yet, because of the cost of endowing the robot with high cognitive
and manual skills, it is not optimal to have placed the robot’s skills in the automated area.
The introduction of the robot displaces all three workers from the tasks being automated,
but not all types of workers become unemployed. The assignment reacts endogenously to
the automation, favoring the more productive workers (x2 and x3) over the least productive
worker (x1). The boundaries of the occupations adjust, re-assigning tasks along the
boundaries of Y1 to workers of type x2 and x3. Only x1 is displaced after tasks are
reassigned.

Panel 3b assumes asymmetric weights, with a higher weight on automating cognitive
tasks. It is no longer optimal to automate the tasks in the center vertex due to the high cost
of automating cognitive skills. Nevertheless, the automated tasks are still located along the
boundary of occupations. In this case around the vertex formed by Y1, Y2 and the boundary
of the task space. Since these tasks involve less cognitive skills it is possible to locate the
robot’s skills closer to the centroid of the automated region. As in panel 3a automation
takes away tasks from workers, in this case only from x1 and x2. The assignment reacts to
automation by reassigning tasks along the boundary of Y1 towards more productive workers.
Again, x1 is the only type of worker displaced by automation.

The two examples in Figure 3 capture a general feature of the automation problem: it is
optimal to automate tasks around the vertices of the original assignment (without the robot)
since those are the tasks with the highest mismatch. Which tasks are optimally automated
is jointly determined by the original assignment and the properties of the cost function.

Wages and the labor share The effect of automation on wages is ambiguous. First,
automation induces a reassignment across tasks. Because of this, the workers previously
performing the automated tasks are not the only ones affected. The reassignment weakly
increases the mismatch between workers and tasks. It is easy to show that introducing the
robot relaxes the assignment problem, and weakly decreases the value of the multipliers λ?

associated with each worker. The increase in the mismatch (reduction of λ?) reduces wages.
Second, automation reduces the skill mismatch for the tasks being automated, increasing
overall output. This increases the marginal product of all workers, and thus their wages.

As Acemoglu and Restrepo (2018a) point out, whether or not wages decrease depends
on how productive robots are at the tasks they overtake. A major increase in productivity
due to automation can increase workers’ marginal product, increasing wages, while
moderate increases in output in the automated tasks can be dominated by the higher
mismatch experienced by workers, ultimately reducing their wages.
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Regardless of the change in wages, the labor share decreases because of the decrease in
λ?. The labor share is given by:

LS =

N∑
n=1

wnDn

F (T )
=

N∑
n=1

λ?nDn +
w

F (T )
G (Y) (22)

Both terms decrease with automation. Higher mismatch for workers reduces λ?, lower
demand for workers reduces D, and the second term decreases as output increases.

Worker training

The problem of worker training bears many similarities to the automation problem described
above. In particular, the main question behind worker training, which skills should a worker
have, is the same question behind the automation problem. The answer in both cases comes
from the desire to reduce the mismatch between tasks and workers. The same way that
the robot’s skills are chosen to minimize the mismatch in the automated area, the worker’s
skills are chosen to minimize mismatch across the tasks in her occupation. Crucially, as the
skills of the worker change the assignment will change, altering the tasks in the worker’s
occupation.

Formally, the problem of optimal worker training is the same as that of choosing the
robot’s skills in (16), after appropriately modifying the cost function. Consider the problem
of training worker n by choosing new skills x̃ ∈ S:

max
{x̃,T}

F (T, x̃)− Γ (x̃|xn, pn) s.t. ∀`D` ≤ p` (23)

where the cost of changing skills (Γ) depends on the workers’ current skills and mass.
Following the same steps as in the automation problem, the first order condition of the
problem is:

F (λ? (x̃) , x̃)

∫
Yn

∂ ln q (x̃, y)

∂x̃
dG (y)− ∂Γ (x̃|xn, pn)

∂x̃
= 0d×1 (24)

The interpretation is the same as before, with the first term capturing the net gains in
output from changing the workers’ skills. The objective is to minimize skill mismatch across
the tasks in the worker’s occupation given the cost of changing the workers’ skills. If q is
given by (12) this is achieved by setting x̃ to the centroid of the occupation, and adjusting for
the weight of skills in production (ax) and the marginal cost of changing the worker’s skills.
Even if acquiring skills was costless, it is not always optimal to increase the worker’s skills,
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doing so can generate its own costs as mismatch increases with respect to the boundary tasks
of the worker’s occupation. The problem is further complicated by the ambiguous effects on
total output, since training one worker can induce higher mismatch for other workers, as the
assignment changes. Because of this, condition (24) is only necessary, and not sufficient, for
characterizing the optimal worker training.

The worker training problem is particularly useful when thinking about the introduction
of new tasks. New tasks are likely to involve skills for which no worker is particularly well
suited, inducing higher mismatch at early stages of adoption. It is then optimal to train
workers to acquire skills that better match the changes in their occupations brought up
by the new tasks.29 The introduction of new technologies, like computers and IT, changes
occupations by directly modifying the tasks carried out by workers. This is potentially a
major disruption since the workforce is likely not to have the right combination of skills
to perform the new tasks. This hurts the population groups who experience the highest
mismatch while benefiting those whose skills align more with the new technology. In order
to reduce the mismatch workers must train into new skills, more aligned with the new tasks.
This training process will, in turn, modify occupations, changing the bundling of tasks and
the roles of each type of worker in production.

3.2 Skill enhancing technology

Technical change can also complement the current skills of workers. This is the case with
the introduction of software that complements cognitive over manual skills in the
completion of tasks, or heavy machinery, such as cranes, that complements dexterity over
brawn. Unlike automation, this type of technical change affects the productivity of workers
across tasks without displacing them. But, as with automation, technical change is
followed by a reassignment of tasks geared towards reducing the mismatch between workers
and the tasks they perform. Workers who are more adept at the skills favored by the new
technologies increase their productivity, while other workers lose their comparative edge.
Changes in the boundaries of occupations are thus directed toward reducing the mismatch
in the skills complemented by new technologies.

Just as with automation this type of technical change can also be directed. Which
skills to favor depends on the joint distribution of workers and task, and the mismatch
across different skills. In order to maximize production, it is optimal to weight more those
skills for which mismatch is lowest, concentrating technology on enhancing the skills at
which the workforce already excels. This contrasts with the way in which automation is

29This resembles the skill process of workers in Lise and Postel-Vinay (2015), where workers converge to
the skill requirements of their occupations as they spend more time performing it.
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directed. Instead of replacing workers at the tasks they are ill-suited for, technology enhances
the worker’s productivity by weighting the skills with a better match, while reducing the
importance of the skills that the workforce lacks.

To make the discussion precise, I impose additional structure on how skill mismatch
affects production. Consider two skills, cognitive and manual, and a production technology
q as in (12). The relative importance of skills is then governed by matrix A, which I will
assume to be diagonal taking the form:

A =

[
α 0

0 1− α

]
where α ∈ [0, 1]. Higher α makes cognitive match more important for production, while
simultaneously reducing the importance of manual skill match. The problem is to choose
the value of α optimally to maximize output, taking into account the cost of changing
technology and the changes in the assignment of tasks to workers:

max
{T,α}

F (T, α)−Υ (α) s.t. ∀nDn ≤ pn (25)

The optimality condition for α can be obtained using the same techniques as before. The
optimal α satisfies:

F (T, α) (Mm −Mc)−
∂Υ (α)

∂α
≥ 0 (26)

Where Ms is total mismatch in skill s: Ms =
N∑
n=1

∫
Yn (xn,s − ys)2 dy. The first term captures

how much production would increase if α increases. The net gain in production is determined
by the difference in total mismatch by skill, which depends on the assignment and the
distribution of tasks and workers. If, for a given assignment, there is more mismatch in
the manual dimension (Mm > Mc), the workforce is biased towards cognitive skills. It is
then optimal to direct technical change towards cognitive skills by increasing α. In this way,
technology reinforces the workforce’s bias by giving more weight to skills for which there is
a better match. The gain in output is balanced by the marginal cost of changing α. Absent
that cost it is optimal to shift all the weight towards one of the skills. Specializing production
to depend only on the skill with the lowest mismatch in the workforce.

Figure 4 shows how the assignment of tasks to workers changes when the weight of
cognitive skills increases. The boundaries of occupations shift and become less sensitive
to differences in manual skills, discriminating across workers based on differences in their
cognitive skills (as α→ 1 the boundaries become vertical). As this happens workers’ marginal
product and substitutability change. Worker x3 becomes less substitutable with others, as
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Figure 4: Example - Increase in the Weight of Cognitive Skills
Note: The figure shows the result of an increase in the weight of cognitive skills in a two-dimensional
skill space (cognitive and manual skills). Three types of workers are considered {x1, x2, x3} with mass
P = {0.5, 0.3, 0.2}. Tasks are uniformly distributed over the unit square, i.e Y = [0, 1]

2 and g (y) = 1 for
all y. The production function q is given by (12) with A = diag (α, 1− α), the value of ax and ay does not
change the optimal assignment.

her cognitive skills differ from those of workers x1 and x2; recall from Proposition 2 that the
elasticity of substitution decreases with the weighted distance between workers’ skills. On
the other hand, workers x1 and x2 become more substitutable, since they differ mostly in
their manual skills, which are now less important in production.

These changes relate to observed patterns following the adoption of IT in production.
There is a higher premium for workers with high cognitive skill (like college graduates), and a
lower premium for manual intensive workers relative to low skill workers (Katz and Murphy,
1992). As shown in Section 2, the difference in marginal products (and compensation) across
workers is a function of the differences in output at the boundaries. From equation 9:

ln q (xn, y)− ln q (x`, y)︸ ︷︷ ︸
Diff. in Output

= a
′

x (xn − x`)︸ ︷︷ ︸
Diff. in Skills

−
(

(xn − y)
′
A (xn − y)− (x` − y)

′
A (x` − y)

)
︸ ︷︷ ︸

Diff. in Mismatch

When technology weights more cognitive skills, differences in cognitive skills are amplified
through the mismatch term, while differences in manual skills are down-weighted. As a
consequence, differences in marginal products and compensation become more influenced by
differences in cognitive skills.
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4 Tasks and Unemployment

In Section 2 I assume that if a task is not assigned to any worker there is no output
(q (∅, y) = 0). This, together with the way output is aggregated into the final good
(equation 3) implies that there is no production unless all tasks are assigned. An
alternative approach is to consider the aggregation only across tasks which are performed,
the ones assigned to a worker. In this way, it is possible to leave tasks unassigned without
shutting down the production of the final good. A consequence of leaving tasks unassigned
is that some workers are left unemployed. Which workers are unemployed, as well as the
level of unemployment, depends on the assignment.

To formalize this idea consider an alternative to the final good technology described in
equation 3:

F (T ) = exp

 ∫
Y\Y∅

ln q (T (y) , y) dG

− 1 (27)

where the assignment T is extended so that tasks can be unassigned, i.e. T : Y → X ∪ {∅},
and Y∅ denotes the set of tasks left unassigned, i.e. Y∅ = T−1 ({∅}). In this way, only the
tasks that are assigned are considered in the aggregation. The level of the production needs
to be adjusted since leaving tasks unassigned opens the possibility for a free lunch. If only
a measure-zero set of tasks is assigned the integral in (27) is equal to zero, regardless of the
assignment, and output is therefore 1. The subtraction takes care of this.

Its immediate that the result from the aggregation in (27) is equivalent to having q (∅, y) =

1 in the original formula 3, extending T to take values over X and the unassigned option.
That way tasks that are left unassigned (assigned to the empty set) don’t add to the integral,
obtaining the integral in (27) as a result. Adopting this convention turns out to be useful
because it allows me to apply Proposition 1 in the same way as in Section 2. Leaving a task
unassigned is equivalent to assigning it to a worker ‘∅’, which is in infinite supply, has an
outside option of zero, and produces q (∅, y) = 1 in all tasks.

The main difference with the results of Section 2 is that the level of the worker’s outside
option (w) affects the assignment. To simplify calculations I will assume in this section that
the outside option is given by a fraction of total output: w (T ) = λF (T ).30 Under this
assumption there exists a vector λ? ∈ RN

+ such that minλ?n = 0 and occupations are given
by:

Yn = {y ∈ Y | ∀` ln q (xn, y)− λ?n ≥ ln q (x`, y)− λ?` ∧ ln q (xn, y)− λ?n ≥ λ} (28)
30Without this assumption it is not possible to determine the value of λ independently of the assignment

T . The term λ in (28) has to be replaced by w/F (T ).
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This is the equivalent to condition (6), it differs in the introduction of the second inequality,
which compares the output of worker n in the task with the minimum payment the worker
must receive. The second inequality comes from ensuring that it is profitable to assign the
task; the outcome if the task is unassigned is ln q (∅, y) = 0, and the compensation of the
worker depends on λ?n + λ. The unassigned tasks are:

Y∅ = {y ∈ Y | ∀n ln q (xn, y)− λ?n < λ} (29)

A necessary condition for a task to be assigned is that q (xn, y) ≥ 1, and the higher λ is, the
fewer tasks are assigned for production.

As in Section 2, the marginal product of a worker is given as in equation (8) and its
compensation is given by wn = λ?nF (T ?) + w.

To fix ideas consider q as in (12), depending on the quadratic mismatch between worker
and task’s skills. Under that technology:

ln q (x, y) = a
′

xx+ a
′

yy − (x− y)
′
A (x− y)

This provides a clear geometrical interpretation for which tasks are left unassigned. Workers
will be assigned to a task only if it the mismatch is no greater than a′xx + a

′
yy − λ.31 This

condition guarantees that enough output is produced by the worker for it to be profitable
to perform the task and cover the worker’s outside option. However, the condition does not
imply that the task will be assigned to the worker, this depends on the comparison between
workers’ productivity as in Section 2 (see the first inequality in equation 28).

Which tasks to perform will depend critically on which tasks are more productive given
current technology. This idea is captured by ay, which determines which tasks generate more
output, regardless of which worker performs them.32 A higher cognitive weight in ay makes
cognitive intensive tasks more likely to be performed. For example, one of the effects of the
increased use of information technology is to make cognitive intensive tasks more productive;
as a consequence, it becomes optimal to perform more cognitive intensive tasks. Opposite
changes can occur on the relevance of manual intensive tasks in production, shifting workers
from manual to cognitive intensive tasks.

Figure 5 shows the optimal assignment in the model allowing for tasks to be
unassigned, and workers to be unemployed. The two panels differ on the weight of task

31With ay = 0, a task will be assigned only if it lies in a ‘circle’ of radius
√
a′xx around the skills of the

worker. The shape of the ‘circle’ depends on the weights in matrix A.
32When all tasks must be performed the value of ay does not affect the assignment. This is immediate

from replacing (12) into 6.
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(a) Symmetric Weights - αy = 1/2 (b) Asymmetric Weights - αy = 3/4

Figure 5: Assignment Example - Unemployment
Note: The figures show the assignment in a two-dimensional skill space (cognitive and manual skills). Three
types of workers are considered {x1, x2, x3} with mass P = {0.5, 0.3, 0.2}. Tasks are uniformly distributed
over the unit square, i.e Y = [0, 1]

2 and g (y) = 1 for all y. The production function q is given by (12) with
A = I2, ax = [0.2, 0.1]

′
and ay = ay [αy, 1− αy]

′
, with ay ∈ R+ and αy ∈ [0, 1]. The worker’s outside option

is 0.

skills in determining the output of a task, as measured by ay. I assume that
ay = ay [αy, 1− αy]

′
and I vary the relative importance of skills by choosing the weight

αy ∈ [0, 1]. A higher value of αy makes cognitive intensive tasks more productive (tasks
along the 45º line do not change their productivity with αy).

Panel 5a presents the assignment under equal skill weights in ay. The grey areas represent
unassigned tasks. It is optimal not to perform tasks for which agents have high mismatch,
as in Section 3.1 these tasks are located along the boundaries of the task space, and the
vertices of the assignment. Even though the wights on ay are symmetric and the weights on
ax favor cognitive skills, most of the unassigned tasks involve high cognitive skills. This is
because of the distributions of skills in the population. In the example, there are relatively
few x3 workers, and so, performing the high-cognitive tasks comes at the cost of a greater
mismatch for workers x1 and x2, as the boundaries between them and x3 would have to shift
rightwards. Its worth noting that the assignment is such that only worker x1 is unemployed.
x1 is the least productive worker type.

In Panel 5b the weights on skills change, making cognitive intensive tasks more
productive, and manual intensive tasks less productive. As a response to this change
workers x1 and x3 take over tasks in the bottom-right corner of the space, at the expense of

33



tasks along the vertical axis. The higher productivity makes it worthwhile to reassign
workers towards cognitive intensive tasks; doing so shifts the boundaries of Y2 towards x1

and x3, and away from the vertical axis. Unemployment is still concentrated in workers of
type x1.

The effect of the minimum wage w As in Section 2 the value of the workers’ outside
option w equals the minimum wage in the economy. But, unlike the problem in Section 2,
the value of w affects the assignment. An increase in w increases wages, by increasing the
minimum wage, and reduces employment, by limiting the set of tasks that are profitable to
produce at the current wages.

The net effect on wages is nevertheless ambiguous. As the assignment of tasks changes
so does the mismatch of workers at their boundary tasks. Mismatch necessarily goes down
for the type of worker(s) that are not fully employed, but it might increase for other
workers. Moreover, since wages reflect marginal productivities relative to the least
productive workers (see equation 15), changes in the assignment can lead to a compression
of the wage distribution. Much like with the introduction of automation (Section 3.1), the
difference in productivity between the most and least productive workers can decrease.
These effects must be weighted against the increase in the level of wages coming from w to
determine the net effect on wages.

The effects on the wage distribution are similar to the ones documented for Brazil by
Engbom and Moser (2018). An increase in the minimum wage will tend to compress the
wage distribution by shifting up the level of wages from above, with small consequences for
the workers with the highest productivity.33 The total effect on employment depends on
how productive workers are at their boundary tasks. An increase in the minimum wage will
make some of these tasks unprofitable.

Automation and unassigned tasks

The characterization of automation as a worker replacing technology given in Section 3.1
changes once tasks can be left unassigned. It is now possible to direct automation towards
the tasks which were previously unassigned, that is, tasks which are not worthwhile for
workers to perform (because of low productivity), or tasks for which workers don’t have the
appropriate skills (high mismatch). If this happens, automation does not displace workers.
Moreover, performing additional tasks necessarily increases output, potentially raising
worker’s marginal products and wages.

33The changes in mismatch are higher for the workers neighboring the lowest productivity worker.
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(a) Symmetric Weights - αy = 1/2 (b) Asymmetric Weights - αy = 3/4

Figure 6: Assignment Example - Unemployment and Automation
Note: The figures show the assignment in a two-dimensional skill space (cognitive and manual skills). Three
types of workers are considered {x1, x2, x3} with mass P = {0.5, 0.3, 0.2}. Tasks are uniformly distributed
over the unit square, i.e Y = [0, 1]

2 and g (y) = 1 for all y. The production function q is given by (12) with
A = I2, ax = [0.2, 0.1]

′
and ay = ay [αy, 1− αy]

′
, with ay ∈ R+ and αy = 1/2. The worker’s outside option

is 0. The automation cost function is: Ω (r) = r
′
ARr, with AR diagonal. The mass of the robot is fixed at

pr = 0.03. The assignment without the robot is presented in grey.
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Whether or not it is optimal to automate unassigned tasks or to displace workers depends
comparing the cost of automating a task with the mismatch in the worker-task assignment.
Even though the mismatch is highest for unassigned tasks, it might be too costly to engineer
the technology necessary to automate those tasks. In general, it will turn out to be optimal
to automate tasks along the boundaries of occupations and unassigned tasks. As a result,
automation ends up partially displacing workers. To illustrate this I expand the example in
Figure 5 by solving the optimal automation problem. The results are presented in Figure 6.
Production technology is the same for workers and the robot and is given by (12). The cost
of automation is quadratic in skills as in the example in Figure 3.

Panels 6a and 6b present similar results, with the robot being placed so as to automate
part of the cognitive/manual intensive tasks that were unassigned. The robot is only partially
displacing workers since it is taking over unassigned tasks. Thus, the mass of unemployed
workers increases, but less than the mass of tasks being automated (0.01 vs 0.03). Output
increases due to the production of new tasks and the reduction in the mismatch in some of
the old tasks.

The two panels in Figure 6 also show how the incentives for automation change as
technology favoring the production of certain types of tasks change. If technological change
favors cognitive intensive tasks over manual intensive tasks, workers are reassigned away
from the latter and into the former (see Figure 5). Consequently, production can be
increased by directing automation towards manual intensive tasks, in a way that disrupts
the optimal assignment of tasks to workers the least as possible. In this scenario
technological change makes new tasks available for workers while leaving other tasks
unassigned, automation follows by taking over tasks that are no longer worthwhile for
workers to perform. 34

5 Empirical Application

I now use the model developed in Section 2 to examine U.S. occupational data. First I
estimate the model using data on occupation characteristics and wages. I then use data on
the automatability of occupations to infer the cost of automation. Finally, I make use of the

34This idea is similar in spirit to Acemoglu and Restrepo (2018b)’s race between man and machine. As
in their paper, changes in technology lead to a reassignment of workers towards more complex (and newer)
tasks, while relatively simpler (and older) tasks are automated, displacing workers in the process. My model
differs in a key aspect from theirs: the set of tasks to be performed is held fixed throughout. Yet, the
environment I present can be reinterpreted, by considering the space of existing tasks to be larger than the
set of tasks currently performed. Technological change, as well as changes in the skills of the workforce,
continuously change the set of tasks that workers perform, moving towards more complex tasks (previously
unassigned), and away from simpler tasks, that can then be automated.
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results in Section 3.1 to solve for the optimal direction of automation.

Data sources The main source of data for the estimation of the model is the 2010 version
of O*NET.35 The O*NET is the U.S. Department of Labor Occupational Characteristics
Database, it contains information on attributes of 974 occupations. Attributes characterize
the knowledge, skills, and abilities that are used to perform the tasks that make up an
occupation. The data reports the importance of 277 such attributes, as rated by analysts
with expertise in each occupation.36

I complement the O*NET data with tabulations from the 2010 Occupational Employment
Statistics (OES), provided by the Bureau of Labor Statistics.37 The OES include data on
employment and average annual wages by occupation for non-military occupations. It covers
a total of 796 occupations with total employment of 127.1 million workers.

I merge the two datasets matching the SOC and title of each occupation. The resulting
data contains 800 occupations with total employment of 119 million workers. The
discrepancy between the number of occupations in the original OES data and the final
sample I use is explained by the higher detail of occupations in the O*NET data. In
particular, the OES data lumps smaller or specialized occupations into an ‘all other’
category. I am able to match these categories to individual occupations contained in the
O*NET sample. The loss of employment is also explained by the ‘all other’ category. Not
all of these occupations have a counterpart in the O*NET sample, unmatched occupations
are dropped from my sample since I don’t observe any of their attributes.

Occupations’ skill requirements To obtain a measure of the skill requirements of each
occupation I proceed in two steps, similar to the ones used by Guvenen et al. (2015) and
Lindenlaub (2017). First, I categorize attributes into skill groups. Second, I reduce the
dimension of each group by taking the first principal component of the group of attributes
as my measure of skill.38 For the exercise below I will only consider two skill groups, namely
cognitive and manual skills. In total, I use 69 cognitive attributes, and 47 manual attributes,
the complete list of attributes is reported in Appendix D. Figure 7a shows the skill measure

35Data is available at: https://www.onetcenter.org/db_releases.html
36My data does not allow me to address the variation in task composition and skill requirements within

occupations documented in Autor and Handel (2013) and Stinebrickner et al. (2019). Yet, since my analysis
is aggregate as shown in the rest of this section, this should not impede obtaining valuable conclusions out
of the exercise.

37Data is available at: https://www.bls.gov/oes/tables.htm
38I weight occupations by employment when performing principal component analysis on them. The results

are not noticeably affected if I do not weight occupations. I have also repeated this exercise by focusing on
6 hand-picked attributes for each skill group and using their average value as the measure of skill. There is
no change in the general distribution of skills.
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(a) Occupation Skill Measure (b) Tasks’ Skill Requirement Distribution

Figure 7: Occupation Skill Measures and Task Distribution
Note: The left panel shows the cognitive and manual skill components of the 800 occupations in my sample.
Each point in the graphs corresponds to one occupation. Occupational skill requirements are computed
respectively as the first principal component of cognitive and manual occupational attributes.
The right panel shows the level curves of the distribution of tasks’ skill requirements, inferred from the
distribution of skill components of occupations, weighted by employment.

of the 800 occupations in the sample in the cognitive-manual skill space.39

Distribution of tasks I take the distribution of skill requirements across occupations as
informative of the underlying (continuous) distribution of skill requirements across tasks. I
construct a non-parametric estimate of the distribution of skill requirements (g) by smoothing
the (weighted) distribution of skill requirements of occupations with a Gaussian kernel. The
level curves of the resulting function are presented in Figure 7b. Darker regions have a higher
density.

Distribution of workers I use occupational data to infer the distribution of workers in
the economy. To do so I group the occupations in my sample into five categories based on
the Standard Occupational Classification (SOC) 2-digit code and the skills requirements of
the occupations. The list of occupations in each category is presented in Appendix E.

Figure 8a presents the occupations in the sample grouped by educational requirement.
The first group, composed by occupations in food serving and preparation, personal care
and building maintenance is characterized by relatively low cognitive requirements and an

39 The correlation between the constructed measure of skills is -0.23.
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Figure 8: Occupations by Educational Requirement Categories
Note: The left panel shows the cognitive and manual skill components of the 800 occupations in my sample
by category. Each point in the graphs corresponds to one occupation. Occupational skill requirements are
computed respectively as the first principal component of cognitive and manual occupational attributes. The
right panel highlights sample occupations in each group.

intermediate level of manual requirements. These occupations require (in general) no
education.40 As a group these occupations account for 19% of employment in the sample.
The second group is composed by sales personnel, office workers and clerks. These
occupations are characterized by relatively low cognitive and manual requirements and is
accounts for 28% of the employment. The third group is mostly composed by
manufacturing occupations and is characterized b ya high manual requirement. It also
includes transportation and repair occupations. It accounts for 22% of employment. The
last two groups are composed by professional occupations, such as doctors, lawyers,
managers, educators, scientists and engineers. The groups are divided based on the manual
requirements of the occupations, respecting the 2-digit SOC classification. They account
for 14% and 17% of employment respectively. Figure 8b highlights occupations sample
occupations of each group.

I interpret each category of O*NET occupations as representing the tasks performed
by a type of worker. I infer the mass (pn) and skills (xn) of each type of worker from the

40The O*NET includes information on the education requirement of occupations, classifying each in one
of five categories: less than high-school, high-school, vocational training (trade-school), college and post-
graduate education. The code for the educational requirement of the occupation is 2D1. For occupations
with missing educational requirement I use O*NET’s job zone classification to impute the value. Job zones
are a mixture of educational and experience requirements for an occupation. The five job zone categories
overlap to a great extent with the educational requirement variable.
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Figure 9: Distribution of Workers by Educational Requirement Categories
Note: The figure shows the estimate for worker’s skill (xn) and mass (pn) and the underlying occupations
in the five categories. Worker’s skill (xn) is computed as the employment-weighted average of the cognitive
and manual skill requirements of the occupations in the worker’s category. Worker’s mass (pn) is computed
as the employment share of the occupations in the worker’s category.

occupations in its category. Thus, the mass of each type of worker is the share of employment
of the occupations in the category; the skills of each type of worker are obtained as the
employment-weighted average of the skill requirements of the occupations in the category.41

Figure 9 presents the resulting distribution of workers in the skill space. Each worker should
be interpreted as the average worker of the occupations in each category.

Production technology and assignment Task output is parametrized as in (12) with
αy = [0 , 0]

′
and A a diagonal matrix:

q (x, y) = exp
(
a
′

xx− (x− y)
′
A (x− y)

)
where: A =

[
Acc 0

0 Amm

]
(30)

There are then four parameters to estimate characterizing the role of mismatch in production
(Acc and Amm) and the effect of skills in wages (ax). I estimate the parameters in a two-step
procedure. First choosing the ratio Acc/Amm to minimize the classification error between the
model’s assignment and the data over the category of occupations. Then, the scale of the
mismatch (Amm) and the value of ax are estimated to match wages by occupational category.

Recall from equation (13) that under this technology the boundaries of occupations are
41Other studies, like Lindenlaub (2017), also use O*NET’s occupational skill requirements as a measure

of workers’ skills. In contrast, studies like Lise and Postel-Vinay (2015) and Guvenen et al. (2015) use
worker-side data from the NLSY to compute workers’ skills.
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given by hyperplanes, whose normal vectors are defined by A. Thus the ratio Acc/Amm fully
determines the assignment given the estimated distribution of tasks’ skill requirements (g),
and the distribution of workers (xm, pn). For a given value of Acc/Amm it is possible to classify
each occupation in the sample according to the type of worker it is assigned to. I choose the
value of Acc/Amm to minimize the classification error between the model’s assignment and the
observed educational requirement of the occupation.

Having estimated Acc/Amm it is possible to use wage data to estimate the remaining
parameters. To do this, we first relate the value of Amm and ax to the multipliers λ
associated with the optimal assignment. From (13) it is possible to obtain an equation for
λn as a function of skills and mismatch with respect to the lowest paid worker:

λn = ax′ (xn − x)− (xn − yn)
′
A (xn − yn)︸ ︷︷ ︸

xn mismatch

+
(
x− y

)′
A
(
x− y

)︸ ︷︷ ︸
x mismatch

(31)

where x are the skills of the lowest paid worker, and yn and y are boundary tasks of workers
xn and x respectively.

The second and third terms in (31) give the mismatch of workers xn and x at the
boundaries of their occupations. Although mismatch is not directly observable, it can be
backed out using only the estimate of Acc/Amm since it determines the boundaries of the
assignment. Its easy to show from (13) that the multipliers of the assignment with ax = ~0

and A0 = diag (Acc/Amm, 1) provide an exact measure of the mismatch terms in (31):

Amm
(
λ0
n − λ0

)
= Amm

((
x− y

)′
A0
(
x− y

)
− (xn − yn)

′
A0 (xn − yn)

)
=
(
x− y

)′
A
(
x− y

)
− (xn − yn)

′
A (xn − yn)

where λ0 is the multiplier vector of the auxiliary assignment and λ0 is the multiplier of the
lowest paid worker.42

Finally, it is possible to construct an empirical measure of the multipliers λ from (10):

λ̂n =
wn −min` (w`)

F (T )

where the value of κ is pinned down by the lowest observed wage since min` (λ) = 0, and

42No that even though λ = 0 it is not necessarily the case that λ0 = 0. λ0 measures only the mismatch
along the boundaries relative to the worker with the highest mismatch. λ0 = 0 only for the worker(s) with
the highest mismatch. In contrast, λ also includes the importance of worker’s skills in production, measured
by ax. The worker with the highest mismatch is not necessarily the lowest paid worker if her skills are high
enough.
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Table 1: Estimates of Production Technology

Acc Amm acx amx
1.7 2.8 1.7 0.15

Note: Estimated values for the parameters of the production technology in (30). Acc and Amm give the
weight of cognitive and manual mismatch respectively. acx and amx give the weight of worker’s cognitive and
manual skills on marginal products and wages.
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Figure 10: Assignment

Note: The figure shows the assignment of tasks to workers in the cognitive-manual skill space given the
output task technology in (30) and the parameter estimates in Table 1.

F (T ) is a measure of total output.43 Wages are taken as the employment-weighted average
of the average annual wage across occupations in each educational requirement category.
The estimates of Amm and ax are then obtained from the fitting the following linear relation:

λ̂n = ax′ (xn − x) + Amm
(
λ0
n − λ0

)
Table 1 shows the estimates for the parameters of the production technology for task

output, and Figure 10 shows the assignment given those estimates. The value weight on
cognitive mismatch (Acc) is 0.59 times the weight on manual mismatch (Amm). The value of
ax reflects the pattern of higher wages for more cognitive demanding occupational categories,
thus having acx > amx . An increase in cognitive skill of 0.01 implies an increase in wages of
1.7% more of total output, compared to a 0.15% increase for an equal increase in manual

43Following Karabarbounis and Neiman (2014) I take output as corporate sector value added, measured as
60% of GDP for 2010. This implies a labor share of 62% for the full BLS sample, and 57% for my matched
O*NET sample. The difference is explained by the loss of employment and the lower average wage of my
sample, $42000 compared with $44000 2010 dollars.
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Table 2: Wages in the estimated model

Wages x1 x2 x3 x4 x5

Data 23.4k 34.1k 36.9k 68.3k 68.3k
Model 23.4k 34.3k 37.6k 67.6k 68.7k

Note: The table presents the average annual wages in 2010 dollars across occupations in each educational
requirement category, and the implied wages for each worker type under the assignment shown in Figure 10.

skills.

Table 2 presents the wage of each category in the data and the ones implied by the
assignment under the estimated task output technology. The wage of the first category is
matched by construction by setting κ so as to match it. The other wages are obtained as in
(10). In general, wages in the model overestimate the level of observed wages, but differences
are small.

Cost of automation Occupations vary in how automatable they are depending on the
combination of skills that are required to perform the tasks that compose them. I use
estimates of the automatability of occupations provided by Frey and Osborne (2017) to
estimate the cost of automation.44 The main assumption is that the cost of automation is
inversely related to the degree of automatability of an occupation. Figure 11a shows the
occupations in my sample with darker points reflecting lower indices of automatability. I
infer the shape of the cost function non-parametrically by fitting a Gaussian kernel to Frey
and Osborne (2017)’s automatability index on the cognitive-manual skill space. Figure 11b
shows the level curves of the estimated cost function.

I scale the automation cost function to match the average cost of an industrial robot per
replaced worker to the cost of automation in manufacturing occupations (SOC code 51). I
obtain the average cost of an industrial robot from the International Federation of Robotics
(IFR) annual report.45 The cost is $147,883 for 2010. I take the worker replacement ratio
from Acemoglu and Restrepo (2017) who estimate that an industrial robot replaces between
4 and 6.2 workers. I take their preferred estimate of 5.1. Finally, I assume that the cost
function is linear in the mass of the robot.

44Frey and Osborne (2017) provide an index of automatability for the occupations in the 2010 O*NET
based attributes related to ‘computerization bottlenecks’. The index goes from 0 to 1 and gives the likelihood
that an occupation is fully automatable given its attributes.

45See the executive summary in https://ifr.org/free-downloads/
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Figure 11: Cost of Automation

(a) Automatability Index by Occupation (b) Cost of Automation - Level Curves

Note: The left panel shows the occupations in Frey and Osborne (2017)’s sample discriminated by their
automatability index. The index measures the likelihood that an occupation is automatable given current
technology. Darker occupations correspond to lower indices of automatability, or occupations which are less
likely to be automatable.
The right panel shows the level curves of the cost function inferred from the automatability index of
occupations. Darker regions correspond to higher automation costs.
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Figure 12: Assignment with Optimal Robot Placement
Note: The figure shows the assignment of tasks to workers and the robot in the cognitive-manual skill space
given the estimated automation cost. The shaded region corresponds to automated tasks, it accounts for
4.1% of tasks. x1 workers are displaced by automation.

Automation problem Figure 12 shows the assignment under the optimal robot
placement. It is optimal to automate manual intensive task along the upper edge of the
skill space, placing the robot at r = [0.56 , 0.97]. The automated region accounts for 4.1%
of the tasks (pr = 0.041), displacing the same share of workers.46 The cost of the robot is
$44,500 per unit of replaced-workers. Output increases 2.3% as a result of the decrease in
the mismatch.

Even though the automated tasks are those with high manual requirements, mostly in
the region of manufacturing, repair and installing occupations (under the third category),
it is the workers of type x1 who are displaced under the new assignment. In order to keep
workers x3 employed the boundaries of occupations change, and as a consequence wages
decrease, reflecting the drop in marginal productivity of workers relative to x1 workers. The
change in wages is presented in Table 3. Recall from (9) that marginal products are given by
differences in productivity across workers. As the assignment changes and workers with lower
productivity are displaced, two effects come into play. First, the mismatch at the boundaries
decreases for the displaced workers. Second, the new assignment implies higher mismatch
for workers affected by automation but reassigned to new tasks (as x3). Both effects decrease
the difference between workers’ productivity at the boundaries, reducing wages. Although
in general these effects can be counteracted by the increase in output is not large enough as
to increase wages.

46Occupations that fall in the automated region include steel and metal workers, machine operators in the
plastic industry, construction carpenters and continuous mining machine operators.
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Table 3: Wages after Automation

x2 x3 x4 x5

∆%Wages -2.0% -12.1% -1.5% -0.6%
Note: The table presents the percentage change of wages for each worker type after automation. x1 workers
do not have changes in their wage.

(a) Mismatch without Automation (b) Mismatch with Automation

Figure 13: Mismatch and the Assignment of Tasks to Workers
Note: The figures show the level curves of mismatch across tasks under the assignment without automation
(left panel) and with automation (right panel). Darker regions correspond to higher mismatch.

Finally, it is worth noting that the tasks being automated are not those for which the cost
of automation is lowest. As was mentioned in Section 3.1, the automation problem balances
the cost of automation with the benefits that stem from the decrease in the mismatch in
the assignment. It is by decreasing mismatch between tasks’ skill requirements and workers’
skills that output increases. Figure 13 shows the level curves of the mismatch across tasks
for the assignment with and without automation. The reduction of mismatch compensates
for the cost of the robot along the upper end of the skill space.

6 Concluding Remarks

I develop a framework to study occupations, where production takes place by assigning
workers to tasks in a multidimensional setting. Occupations arise from the assignment
process, instead of being taken as a preexisting feature of production. Because of this, the
framework incorporates endogenous changes in the boundaries of occupations in response
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to changes in the economic environment. This flexibility is particularly important when
addressing the consequences of worker replacing technologies like automation or offshoring.
These technologies replace workers in some, but not all, of the tasks they perform,
transforming occupations.

The model makes precise the role of tasks in defining the marginal product, compensation,
and substitutability of workers. All these properties are shaped by how productive workers
are at the tasks along the boundaries of their occupations. These are the tasks for which
the workers are the least productive, and at which they are directly substitutable for other
workers.

The model also makes it possible to ask about the optimal direction of automation, i.e.,
which type of tasks should be automated. I use data on occupations and automatability
for the U.S. economy. The model rationalizes observed trends in the automation of manual
intensive tasks. These tasks are automated despite there being cheaper tasks to automate
because of the gains in out induces by reducing the mismatch between workers’ skills and
tasks’ skill requirements.
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A Mathematical Preliminaries

I include definitions and theorems that are relevant for the proofs in the text and in Appendix
B.

Definition 1. [Probability Space] A probability space is a triplet (A,A, µ) of a set A, a
σ-algebra A on that set and a probability measure µ : A → [0, 1]. When the σ-algebra is
understood (generally as the Borel σ-algebra) it is omitted.

Definition 2. [Polish Space] A set A is a polish space if it is separable (allows for a dense
countable subset) and metrizable topological space (there exists at least one metric that
induces the topology).

Definition 3. [Coupling] Let (Y , G) and (X , P ) be two probability spaces. A coupling
π of G and P is a joint distribution on (X × Y) such that

∫
X×Y dπ (x, y) = G (Y ) for all

Y ∈ B (Y) and
∫
X×Y dπ (x, y) = P (X) for all X ∈ B (X ), where B (A) denotes the Borel

sets of A. So π gives G and P as marginals. Let Π (P,G) be the set of all couplings of P and
G. When the assignment is given by an assignment function the coupling is deterministic.

Definition 4. [h-transform] Let h : X × Y → R be a function. The h-transform of a
function f : X → R is given by:

fh (y) = sup
x∈X
{h (x, y)− f (x)}

Definition 5. [h-convex] A function f : X → R is said to be h-convex if there exists a
function g : Y → R such that:

f (x) = sup
y∈Y
{h (x, y)− g (y)}

Definition 6. [h-subdifferential] The h-subdifferential of a function v : Y → R is defined
as the set ∂hv (y) =

{
x ∈ X | v (y) + vh (x) = h (x, y)

}
.

The following theorem joins results from optimal transport on the existence of a solution
to the Monge-Kantorovich problem and the applicability of Kantorovich’s duality to the
mass transportation problem:

Theorem 1. Villani (2009, Thm. 5.10 and Thm 5.30) Let (Y , G) and (X , P ) be two Polish
probability spaces and let h : X × Y → R ∪ {−∞} be an upper semicontinuous function.

Consider the optimal transport problem:

sup
π∈Π(G,P )

∫
X×Y

h (x, y) dπ (x, y)
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where function h (x, y) describes the gain (or surplus) of transporting a unit of mass from y

to x, and Π (G,P ) denotes the set of couplings of G and P .
If there exist real valued lower semicontinuous functions a ∈ L1 (P ) and b ∈ L1 (G):

∀(x,y)∈X×Y h (x, y) ≤ a (x) + b (y)

then:

1. There is duality:

sup
π∈Π(G,P )

∫
X×Y

h (x, y) dπ (x, y) = inf
(λ,v)∈L1(P )×L1(G)

λ(x)+v(y)≥h(x,y)

∫
X
λ (x) dP (x) +

∫
Y
v (y) dG (y)

= inf
w∈L1(P )

∫
X
λ (x) dP (x) +

∫
Y
λh (y) dG (y)

= inf
v∈L1(G)

∫
X
vh (x) dP (x) +

∫
Y
v (y) dG (y)

where Π (G,P ) is the set of couplings of G and P and fh denotes the h-transform of
function f :

fh (y) = sup
x∈X

h (x, y)− f (x)

The functions w and v are h-convex since they are the h-transform of one another.

2. If, furthermore, h is real valued (h : X × Y → R) and the solution to the Monge-
Kantorovich problem is finite

(
maxπ∈Π(G,P )

∫
X×Y h (x, y) dπ (x, y) <∞

)
then there is

a measurable h-monotone set Γ ⊂ X × Y47 such that for any π ∈ Π (G,P ) the following
statements are equivalent:

(a) π is optimal.

(b) π is h-cyclically monotone.

(c) There is a h-convex function λ such that λ (x) +λh (y) = h (x, y) π-almost surely.

(d) There exist λ : X → R and v : Y → R such that λ (x) + v (y) ≥ h (x, y) with
equality π-almost surely.

(e) π is concentrated in Γ.

3. If, h is real valued (h : X × Y → R) and there are functions c ∈ L1 (P ) and d ∈ L1 (G)

such that:
∀(x,y)∈X×Y c (x) + d (y) ≤ h (x, y)

47If a, b and h are continuous then Γ is closed.
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then the dual problem has a solution. There is a function w that attains the infimum.

4. (this part from Villani (2009, Thm. 5.30))If:

(a) h is real valued (h : X × Y → R)

(b) the solution to the Monge-Kantorovich problem is finite:

max
π∈Π(G,P )

∫
X×Y

h (x, y) dπ (x, y) <∞

(c) for any h-convex function v : Y → R ∪ {−∞} the subdifferential ∂hv (y) is single
valued G-almost everywhere

Then

(a) there is a unique (in law) optimal coupling π of (G,P ).

(b) the optimal coupling is deterministic: T : Y → X .

(c) the optimal coupling is characterized by the existence of a function h- convex
function v such that T (y) = ∂hv (y).

Finally, Reynold’s transport theorem is used extensively in the text:

Theorem 2. [Reynolds’ Transport Theorem] The rate of change of the integral of a
scalar function f within a volume V is equal to the volume integral of the change of f , plus
the boundary integral of the rate at which f flows though the boundary ∂V of outward unit
normal n:

∇
∫
V

f (x) dV =

∫
V

∇f (x) dV +

∫
∂V

f (x) (∇x · n) dA
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B Proofs

Outline of the poof (Proposition 1) As is common in assignment problems, I first relax
the problem in 4 to allow for non-deterministic assignments, see Kantorovich (2006) and
Koopmans and Beckmann (1957). An assignment is then a joint measure over workers/task
pairs: π : X × B (Y) → R+, where B (Y) denotes the Borel sets of Y . An assignment π is
deemed feasible if it is a coupling of measures P and G, see definition 3 in Appendix A.
In terms of the assignment problem π must guarantee that workers have enough time to
perform all the time demanded by their occupations, and each task is completed at most
once. Letting Π (P,G) be the set of feasible assignments:

π ∈ Π (P,G) ←→ ∀n
∫
Y
dπ (xn, y) ≤ pn ∀Y ∈B(Y)

N∑
n=1

∫
y∈Y

dπ (xn, y) ≤ G (Y ) (32)

Note that the second condition can be simplified to:
N∑
n=1

π (xn, {y}) ≤ g (y).

The problem is now to choose a coupling π ∈ Π (P,G) to maximize output. I further
simplify the problem by applying natural logarithm to the objective function. Doing so
reveals the linearity of the problem in the choice variable π. The relaxed optimization
problem is:

max
π∈Π(P,G)

N∑
n=1

∫
Y

ln q (xn, y) dπ (xn, y) (33)

Lemma 1 applies Theorem 5.10 of Villani (2009) to establish duality for the problem:

max
π∈Π

N∑
n=1

∫
Y

ln q (xn, y) dπ (xn, y) = inf
(λ,v)∈RN×L1(G)

wn+v(y)≥ln q(xn,y)

N∑
n=1

λnpn +

∫
Y
ν (y) dG (34)

= inf
λ∈RN

N∑
n=1

λnpn +

∫
Y

max
n
{ln q (xn, y)− λn} dG

λ and ν are the multipliers (or potentials) of the problem. Lemma 2 establishes that a
solution to the dual problem (λ?, v?) exists. The levels of λ? and ν? are only determined
up to an additive constant. Both the assignment and the value of the dual problem do
not change if λ is increased by a constant κ for all workers and ν decreased by the same
amount for all tasks. I normalize the value of the minimum λ? to zero. This is convenient
when relating the value of λ? to the marginal product of workers and the wages in the
decentralization of the optimal assignment.
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The first two conditions on the production function q ensure that the value of the
primal problem (33) and the dual problem (34) are finite, this is the key step in verifying
the conditions for Theorem 5.10 of Villani (2009). In particular, the first condition avoids
indeterminacies when evaluating the natural logarithm of q for any worker/task pair.

The solution to the dual problem provides a way to construct the optimal assignment T ?.
Lemma 3 applies Theorem 5.30 of Villani (2009) to construct T ? as the sub-differential of v?.
The third condition on the production function q is crucial to establish single-valuedness of
the sub-differential of v?. This gives the formula for the optimal assignment in (5). Galichon
(2016, Ch. 5.3) presents an algorithm to solve the dual problem in (34).

I now turn to the general proof of the problem.

General setting Consider the set up of Section 2. There are N types of workers
{x1, . . . xN} ≡ X , there is a mass pn of workers of type xn. The mass of workers is
described by a (discrete) measure P so that P (xn) = pn. There is a continuum of tasks
y ∈ Y distributed continuously according to an absolutely continuous measure
G : B (Y)→R+. Y is assumed compact.

Output is produced by completing tasks. A worker of type xn performing task y produced
q (xn, y). q : X × Y → R is a real-valued function. Output for all worker/task pairs is
aggregated into a final good:

F (π) =


(∑N

n=1

∫
(q (xn, y))

σ−1
σ dπ (xn, y)

) σ
σ−1 if σ > 1

exp

(∑N
n=1

∫
Y

ln q (xn, y) dπ (xn, y)

)
if σ = 1

where π ∈ Π (P,G) is a coupling of P and G (see definition 3). The coupling π describes the
assignment: a mass π (x, y) of workers of type x is assigned to task y.

The problem is to maximize output of the final good by choosing an assignment of tasks
to workers π. I first transform the objective function so that the problem takes the form of
a Monge-Kantorovich problem:

max
π∈Π(P,G)

∫
h (x, y|σ) dπ (x, y) (35)

where h (x, y|σ) =

(q (x, y))
σ−1
σ if σ > 1

ln q (x, y) if σ = 1
.

The following proposition establishes duality for this problem:

Lemma 1. If q satisfies the following properties:
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1. σ > 1 or all workers can produce in some task: ∀x∃y q (x, y) > 0

2. q (x, ·) is upper-semicontinuous in y given x ∈ X .

Then, the following equalities hold:

max
π∈Π(P,G)

∫
(h (x, y|σ))

σ−1
σ dπ (x, y) = inf

(λ,v)∈RN×L1(G)

λn+v(y)≥q(xn,y|σ)

N∑
n=1

λnpn +

∫
Y
v (y) dG (y)

= inf
λ∈RN

N∑
n=1

λnpn +

∫
Y

max
n
{q (xn, y|σ)− λn} dG (y)

Proof. This follows from applying theorem 1 (Villani, 2009, Thm. 5.10). Note that Y ⊂ Rn and X
is finite they are both Polish spaces. h (x, y|σ) is upper semicontinuous because f (x) = x

σ−1
σ and

f (x) = lnx are continuous and monotone increasing, and q is upper semicontinuous.
It is left to verify that there exist real valued lower semicontinuous functions a ∈ L1 (P ) and

b ∈ L1 (G):
∀(x,y)∈X×Y h (x, y|σ) ≤ a (x) + b (y)

For this let a (x) = maxy∈Y {h (x, y|σ)} and b (y) = 0 . The max in the definition of a is well defined
because h is upper semicontinuous and Y is compact, furthermore a is finite (either σ > 1 or, if σ = 1,
h is finite for at least some y guaranteeing a a final value). Function a is immediately continuous
with respect to the discrete topology. The desired equalities follow from part 1 of Theorem 1.

The dual problem is then to find a value associated with each type of worker {λ1, . . . , λN}.
The problem is:

inf
λ∈RN

N∑
n=1

λnpn +

∫
Y
v (y) dG (y) where: v (y) = max

n∈{1,...,N}
{h (x, y|σ)− λn} (36)

I show that the dual problem has a solution and I use that solution to construct a solution
to the Monge-Kantorovich problem in (35). Furthermore, the solution will take the form of a
deterministic transport, and the implied assignment function is the solution to the problem
(4) in the main text. Part 3 of Theorem 1 establishes that solution to the dual problem (36)
exists.

Lemma 2. If q satisfies the following properties:

1. σ > 1 or all workers can produce in all tasks: q (x, y) > 0 for all pairs (x, y) ∈ X × Y.

2. q (x, ·) is upper-semicontinuous in y given x ∈ X .
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Then there exists λ? ∈ RN such that:

λ? ∈ argmin
λ∈RN

N∑
n=1

λnpn +

∫
Y

(
max

n∈{1,...,N}
{h (x, y|σ)− λn}

)
dG (y)

Proof. This follows from applying part 3 of theorem 1 (Villani, 2009, Thm. 5.10). The function
h (x, y|σ) is required to be real valued. When σ > 1 this is verified since q is real valued. When
σ = 1 it is verified under the additional condition that q (x, y) > 0 for all (x, y) ∈ X × Y.

It is left to find functions c ∈ L1 (P ) and d ∈ L1 (G) such that:

∀(x,y)∈X×Y c (x) + d (y) ≤ h (x, y|σ)

For this let c (x) = 0 and d (y) = minn {h (x, y|σ)}. The minimum is well defined since X is finite.

The final part of Proposition 1 is obtained from applying Theorem 5.30 of Villani (2009),
reproduced as part 4 of Theorem 1. The result is established under the conditions that
both (F (x, y))

σ−1
σ and the Monge-Kantorovich problem (35) have finite value and the F -

subdifferential of w is single-valued G-almost everywhere.

Lemma 3. If q is such that:

1. σ > 1 or all workers can produce in all tasks: q (x, y) > 0 for all pairs (x, y) ∈ X × Y.

2. q (x, ·) is upper-semicontinuous in y given x ∈ X .

3. q discriminates across workers in almost all tasks: if q (xn, y) = q (xm, y) then xn = xm

G-a.e.

Then there exists λ? ∈ RN that solves the dual problem (36). Moreover, let T be defined as:

T (y) = argmax
x∈X

{
h (x, y|σ)− λ?n(x)

}
T is single-valued G-almost everywhere and it induces a deterministic coupling
π? : X × B (Y) → R+ that is the unique (in law) solution to the Monge-Kantorovich
problem (35). π? is:

π? (xn, Y ) =

∫
Y ∩T−1(xn)

dG

Function T is an assignment function and it is the solution to the Monge transportation
problem (4).
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Proof. The proof follows from applying part 4 of Theorem 1 (from Villani (2009, Thm. 5.30)).
Finiteness of h (x, y|σ) is guaranteed if σ > 1, or if σ = 1 and q (x, y) > 0 for all pairs (x, y) ∈ X × Y.
Finiteness of the value of the Monge-Kantorovich problem is guaranteed since Y and X are both
compact, and q is upper semicontinuous on y.

It is left to verify that for any h-convex function v : Y → R∪{−∞} the h-subdifferential ∂hv (y)
is single valued G-almost everywhere. The h- subdifferential for a given y is given by:

∂hv (y) =
{
x ∈ X | vh (x) + v (y) = h (x, y|σ)

}
where vh (x) = sup

y
{h (x, y|σ)− v (y)}

Since v is h-convex we can instead use its conjugate function vh (xn) = λn. Then the
h-subdifferential is then equivalently given by:

∂hv (y) = argmax
x∈X

{
h (x, y|σ)− λn(x)

}
Since q (·, y) is injective in x given y G-a.e., and X is finite, we get that ∂hv (y) is generically a
singleton.

The following lemma establishes the relation between the multipliers of the transformed
problem (35) and multipliers of the original problem (33).

Lemma 4. Consider two constrained maximization problems:

V (m) = max
x

F (x) s.t. h (x) = m (37)

W (m) = max
x

g (F (x)) s.t. h (x) = m (38)

where F : X → R, h : X → Rn, m ∈ Rn and g : R→ R is strictly monotone. Let λ ∈ Rn be
the multiplier associated with the constraints in (37), and µ ∈ Rn the multiplier associated
with the constraints in (38). Then: µ = g

′
(F (x?))λ, where x? is a solution for (37) and

(38).

Proof. Because g is strictly monotone both problems have the same argmax, call it x? (m). The
value of each problem is:

V (m) = F (x? (m)) W (m) = g (F (x? (m)))

By the envelope theorem (Milgrom and Segal, 2002) we know that:

λ =
∂V (m)

∂m
=
∂F (x?)

∂x

∂x? (m)

∂m
µ =

∂W (m)

∂m
=
∂g (F (x?))

∂F

∂F (x?)

∂x

∂x? (m)

∂m

Joining gives the result: µ = g
′
(F (x?))λ.

I now present the proof for the differentiability of demand:
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Proposition 2. Let λ ∈ RN be a vector of multipliers. If q is continuous then Dn is
continuously differentiable with respect to w and:

i ∂Dn
∂wm

= area(Yn(w)∩Ym(w))

2
√

(xn−xm)
′
A′A(xn−xm)

≥ 0

ii ∂Dn
∂wn

= −
∑
m6=n

∂Dm
∂wn

< 0

Proof. First note that since the space of tasks Y is fixed it holds that
N∑
n=1

Dn =
∫
Y dy so the sum of

demands is constant. Then:
∂Dn

∂wn
+
∑
m6=n

∂Dm

∂wn
= 0

which gives part (ii) of the proposition, the relation between the demand’s own price derivative and
the cross derivatives of other demands.

The rest of the proof follows from an application of Reynolds’ Transport Theorem (Theorem 2).
In order to apply Reynolds’ theorem recall that Dm =

∫
Ym ρ (y) dy, where ρ is the density of tasks

in the space. In our case ρ (y) = 1. So the volume is Ym and the function is the density of tasks.
The second term in the theorem measures the rate at which the density flows in and out of the

volume. The density flows out and into other workers as tasks are reassigned. Consider the flow
into of Ym and out of Yk. The flow is in the direction A(xk−xm)√

(xk−xm)
′
A′A(xk−xm)

and through the shared

boundary of Ym and Yk, given by Ym ∩ Yk. Note that when prices change the hyperplanes that
define the boundaries of the demand sets move in parallel.

Applying the theorem:

∂Dm

∂wn
=

∫
Ym

∂ρ (y)

∂wn
dy +

∑
k 6=m

∫
Ym∩Yk

ρ (y)


∂y · A(xk−xm)√

(xk−xm)
′
A′A(xk−xm)

∂wn

 dy

Note that for all y ∈ Ym ∩ Yk lie in a plane perpendicular to A (xk − xm). Then they can be
always expressed as y = yλ + a~v where a ∈ R, ~v is a vector perpendicular to A (xk − xm) and
yλ = (1− λ)xk + λxm is such that yλ ∈ Ym ∩ Yk. Then the change y ∈ Ym ∩ Yk is equal to the
change in yλ.

∂Dm

∂wn
=
∑
k 6=m

∫
Ym∩Yk

ρ (y)


∂yλ · A(xk−xm)√

(xk−xm)
′
A′A(xk−xm)

∂wn

 dy

The value of λ is obtained from the equation for the hyperplane that defines Ym ∩ Yk:

λ =
(xm − xk)

′
A (xm − xk) + wm − wk

2 (xm − xk)
′
A (xm − xk)
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so:
∂yλ · xk−xm√

(xk−xm)
′
(xk−xm)

∂wn
=


1

2

√
(xn−xm)

′
A′A(xn−xm)

if k = n

0 otw

Replacing:

∂Dm

∂wn
=

∫
Ym∩Yn ρ (y) dy

2

√
(xn − xm)

′
(xn − xm)

=
area (Yn (w) ∩ Ym (w))

2

√
(xn − xm)

′
(xn − xm)

which completes the proof.

Proposition 3. Consider the automation problem in 16 and let µ ∈ RN+1 characterize an
assignment according to 18. If q is differentiable then the first order conditions of the problem
are:

FR (µ, r)

∫
YR

∂ ln q (r, y)

∂r
dy − ∂Ω (r, pr)

∂r
= 0 [r]

FR (µ, r)µR −
∂Ω (r, pr)

∂pr
= 0 [pr]

Proof. After replacing TR for µ in the problem, and abusing notation, the corresponding Lagrangian
is:

max
{r,pr,µ,Λ}

L = FR (µ, r)− Ω (r, pr) +
N∑
n=1

Λn (pn −Dn) + ΛR (pr −DR) (39)

The multipliers of the workers/robot capacity constraints are given by the vector Λ ∈ RN+1.
The first order condition of interest is with respect to the skills of the robot:

∂L
∂r

=
∂FR (µ, r)

∂r
− ∂Ω (r, pr)

∂r
−

N∑
n=1

Λn
∂Dn

∂r
− ΛR

∂DR

∂r
(40)

Following de Goes et al. (2012) and using the result in Lemma 4 the first order condition becomes:

∂L
∂r

=
∂FR (µ, r)

∂r
− ∂Ω (r, pr)

∂r
− FR (µ, r)

(
N∑
n=1

µn
∂Dn

∂r
− µR

∂DR

∂r

)
(41)

I proceed by computing separately the first term of the first order condition:

∂FR (µ, r)

∂r
= FR (µ, r)

(
N∑
n=1

∂
∫
Yn ln q (xn, y) dy

∂r
+
∂
∫
YR ln q (r, y) dy

∂r

)
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Each of the derivatives follows from Reynold’s theorem.

∂
∫
Yn ln q (xn, y) dy

∂r
=

∫
Yn

∂ ln q (xn, y)

∂r
dy +

∫
Yn∩YR

ln q (xn, y)
∂y · cnr
∂r

dy

=

∫
Yn∩YR

ln q (xn, y)
∂y · cnr
∂r

dy

where cnr = 2A(xn−r)√
(xn−r)

′
A(xn−r)

′ is the normal vector to the direction in which the boundary is moving.

In a similar way:

∂
∫
YR ln q (r, y) dy

∂r
=

∫
YR

∂ ln q (r, y)

∂r
dy +

N∑
n=1

∫
Yn∩YR

ln q (xn, y)
∂y · crn
∂r

dy

where crn = −cnr. Joining and reorganizing we get:

1

FR (µ, r)

∂FR (µ, r)

∂r
=

∫
YR

∂ ln q (r, y)

∂r
dy +

N∑
n=1

∫
Yn∩YR

(ln q (xn, y)− ln q (r, y))
∂y · cnr
∂r

dy

Note now that by the definition of the boundary ln q (xn, y)− ln q (r, y) = µn−µr for all y ∈ Yn∩YR.
Then:

1

FR (µ, r)

∂FR (µ, r)

∂r
=

∫
YR

∂ ln q (r, y)

∂r
dy +

N∑
n=1

(µn − µr)
∫
Yn∩YR

∂y · cnr
∂r

dy

Finally note that ∂Dn
∂r =

∫
Yn∩YR

∂y·cnr
∂r dy, which follows from applying Reynold’s Theorem (again)

to Dn.
1

FR (µ, r)

∂FR (µ, r)

∂r
=

∫
YR

∂ ln q (r, y)

∂r
dy +

N∑
n=1

(µn − µr)
∂Dn

∂r

When the location of the robot (r) is changed, there is a change in output due to the change in
mismatch inside the region previously assigned to the robot (YR), that is given by the first term.
There is also a change in the demand for workers, only workers who are neighbors of the robot are
affected. When their demand is affected, the demand of the robot changes in the opposite direction.
The demand for worker n changes by ∂Dn

∂r , that is valued by the planner at λn− λr. Recall that λn
is the shadow price of the supply of a worker.

It is left to spell out the first term:∫
YR

∂ ln q (r, y)

∂r
dy =

∫
YR

∂a
′
xr − (r − y)

′
A (r − y)

∂r
dy

=

∫
YR

(ax − 2Ar + 2Ay) dy

= 2DR

(ax
2
−A (r − bR)

)
where bR =

∫
YR

ydy

DR
is the barycenter (centroid, average or center of mass) of the tasks assigned to

r.
It is now possible to obtain the first order condition of the problem with respect to the location
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of the robot. Note that since the total demand is constant it holds that:

∂DR

∂r
= −

N∑
n=1

∂Dn

∂r

then:
∂L
∂r

=
∂FR (µ, r)

∂r
− ∂Ω (r, pr)

∂r
− FR (µ, r)

(
N∑
n=1

(µn − µR)
∂Dn

∂r

)
(42)

Replacing for ∂FR(µ,r)
∂r we get:

∂L
∂r

= 2FR (µ, r)DR

(ax
2
−A (r − bR)

)
− ∂Ω (r, pr)

∂r
(43)

The first order condition does not include the effect of r on the demand for workers since the
gains cancel with the reductions/increases of slack in the feasibility constraints.

This is a necessary condition for an optimum. It does not fully characterize the solution. In
fact, there can be, in general, multiple solutions to the problem. The first order condition is also
silent about the location of the region assigned to r. Instead, it prescribes the relationship between
the region’s centroid and the location of r. It is convenient to see what happens when ax = 0 and
∂Ω(r,pr)

∂r = 0. Then the necessary condition reduces to make r equal to the barycenter of its region.
The first order condition with respect to pr is:

∂F

∂pr
= FR (µ, r)µR −

∂Ω (r, pr)

∂pr

The first order condition with respect to µ requires more work, but it follows from applying
again Reynolds’ Transport Theorem.

∂F

∂µn
= pn −Dn
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C Marginal Product

The marginal product of a worker gives the change in output if more workers of that type
are used in production. The change in output depends on the tasks that are assigned to
additional workers.48 Because of this, it is possible to define the marginal product at a
given task, and under some initial assignment. In the main text, I consider the notion of
equilibrium marginal products, where the assignment is not taken as given, but it is allowed
to react optimally to changes in the supply of workers.

Consider the marginal product of a worker of type xk at task y, given an assignment T .
Since task y has no mass, output does not change if the task is re-assigned to a worker of
type xk. The marginal product is measured by adding a mass of workers of type xk and
assigning them to a region around task y, replacing the workers previously assigned to those
tasks. The marginal product at y is obtained as the change in output when the mass of
added workers tends to zero.

Proposition 4. [Marginal Product] Let T be a deterministic assignment and fix a task
y ∈ Yo

n. The marginal product of a worker of type xk at task y is:

MP (xk, y|T ) = F (T ) (ln q (xk, y)− ln q (xn, y))

where F (T ) = exp
(∫

ln q (T (y) , y) dG
)
and T (y) = xn.

When task y is re-assigned from xn to xk output changes by ln q (xk, y)− ln q (xn, y). The
marginal product takes into account the opportunity cost of assigning task y to xk, which
comes from the capacity constraint of tasks. The derivative of output takes into account the
scale of production at the current assignment. Task y is required to be in the interior of Yn
for technical reasons. If y ∈ Yn ∩Ym it becomes necessary to specify the region around y to
which xk will be assigned.

The proof of the result is complicated because the task y has dimension zero in the space
of tasks, which has dimension d ≥ 1. Before showing the general proof for the result, I
consider the one-dimensional case where the argument is simpler. I further assume that
y ∼ U ([0, 1]). When d = 1 the production function can be written as:

F (T ) = exp

(∫ 1

0

ln q (T (y) , y) dy

)
Fix a task y ∈ (0, 1) and consider adding a mass ε of workers of type xk. Workers are

48Unlike traditional production functions, the amount of an input used by the firm in production and what
that input is used for are not the same.
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assigned to the set Cy,ε =
{
y | |y − y| < ε

2

}
=
[
y − ε

2
, y + ε

2

]
. The new assignment is:

Tε (y) =


T (y) if y /∈ Cy,ε
0 if y ∈ Cy,ε ∧ x 6= xk

1 if y ∈ Cy,ε ∧ x = xk

The change in output is:

F (Tε)− F (T ) = F (T )

exp

y+ ε
2∫

y− ε
2

(ln q (xk, y)− ln q (T (y) , y)) dy

− 1


The marginal product is:

MP (xk, y|T ) =
∂F (Rε)

∂ε

∣∣∣∣
ε=0

= lim
ε→0

F (Rε)− F (T )

ε

replacing and applying L’Hôpital’s rule:

MP (xk, y|T ) = F (R)

∂ exp

(
y+ ε

2∫
y− ε

2

(ln q (xk, y)− ln q (T (y) , y)) dy

)
∂ε

∣∣∣∣∣∣∣∣∣∣∣
ε=0

The derivative follows from Leibniz’s rule. Generically y ∈ Yo
n and:

MP (xk, y|T ) = F (T )

[
1

2

(
ln q

(
xk, y +

ε

2

)
− ln q

(
T (y) , y +

ε

2

))
+

1

2

(
ln q

(
xk, y −

ε

2

)
− ln q

(
T (y) , y − ε

2

))]
ε=0

= F (T ) (ln q (xk, y)− ln q (xn, y))

If y ∈ Yn ∩ Ym the marginal product takes into account that xk replaces different types of
workers around y:

MP (xk, y|T ) = F (T )

(
ln q (xk, y)− ln q (xn, y) + ln q (xm, y)

2

)
In multiple dimensions, the treatment of the boundary cases becomes intractable, except in
very specific cases for which similar expressions are obtained.
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I now provide the general proof of the result.

Proof. Recall that the space of skills is of dimension d. Changing the assignment of tasks to workers
in any region of dimension less than d will have no impact on output. To compute the effect on output
of the added workers it is necessary to proceed one dimension at a time. Consider a region formed
as a hypercube around y, with sides of length εi, denote this region by Cy,ε =

{
y | ∀i |yi − yi| ≤ εi

2

}
.

Note that as all εi → 0 the region Cy,ε → {y}. The assignment is modified as in the one-dimensional
example:

Tε (y) =


T (y) if y /∈ Cy,ε
0 if y ∈ Cy,ε ∧ x 6= xk

1 if y ∈ Cy,ε ∧ x = xk

The difference in production between the two assignments is:

F (Tε)− F (T ) = F (T )

exp

y1+
ε1
2∫

y1−
ε1
2

· · ·

yd+
εd
2∫

yd−
εd
2

(ln q (xk, y)− ln q (T (y) , y)) dy

− 1


I proceed by computing the change in output when the region Cy,ε changes. The change has to
be computed one dimension at a time. If all dimensions are changed simultaneously the change in
F goes to zero (this can be verified directly using Reynold’s transport theorem- Theorem 2). The
change in output when Cy,ε changes in the dth dimension is:

∂F (Tε)

∂εd
= F (T )

y1+
ε1
2∫

y1−
ε1
2

· · ·

yd−1+
εd
2∫

yd−1−
εd
2

1

2

ln q

xk,
 y1

...
yd + ε

2


− ln q

T
 y1

...
yd + ε

2

 ,

 y1
...

yd + ε
2





+
1

2

ln q

xk,
 y1

...
yd − ε

2


− ln q

T
 y1

...
yd − ε

2

 ,

 y1
...

yd − ε
2



 dy1 . . . dyd−1


Applying the same procedure iteratively we obtain the change in output as xk is assigned to

tasks around y in all directions:

MP (xk, y|T ) =
∂dF (Tε)

∂ε1 · · · ∂εd

∣∣∣∣
ε=0

= F (T ) (ln q (xk, y)− ln q (xn, y))
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D List of Cognitive and Manual Attributes

Cognitive Manual

Code Attribute Code Attribute

Worker Characteristics - Abilities

1A1a2 Written Comprehension 1A1e1 Speed of Closure

1A1a4 Written Expression 1A1e2 Flexibility of Closure

1A1b1 Fluency of Ideas 1A1e3 Perceptual Speed

1A1b2 Originality 1A1f1 Spatial Orientation

1A1b3 Problem Sensitivity 1A1f2 Visualization

1A1b4 Deductive Reasoning 1A1g1 Selective Attention

1A1b5 Inductive Reasoning 1A1g2 Time Sharing

1A1b6 Information Ordering 1A1g1 Selective Attention

1A1b7 Category Flexibility 1A1g2 Time Sharing

1A1c1 Mathematical Reasoning 1A2a1 Arm-Hand Steadiness

1A1c2 Number Facility 1A2a2 Manual Dexterity

1A1d1 Memorization 1A2a3 Finger Dexterity

1A2b1 Control Precision

1A2b2 Multi-limb Coordination

1A2b3 Response Orientation

1A2b4 Rate Control

1A2c1 Reaction Time

1A2c2 Wrist-Finger Speed

1A2c3 Speed of Limb Movement

1A3a Physical Strength Abilities

1A3a1 Static Strength

1A3a2 Explosive Strength

1A3a3 Dynamic Strength

1A3a4 Trunk Strength

1A3b1 Stamina

1A3c1 Extent Flexibility

1A3c2 Dynamic Flexibility

1A3c3 Gross Body Coordination

1A3c4 Gross Body Equilibrium

Worker Characteristics - Interests

1B1b Investigative
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1B1c Artistic

1B1e Enterprising

Worker Requirements - Basic Abilities

2A1a Reading Comprehension

2A1b Active Listening

2A1c Writing

2A1d Speaking

2A1e Mathematics

2A1f Science

2A2a Critical Thinking

2A2b Active Learning

2A2c Learning Strategies

2A2d Monitoring

Worker Requirements - Cross-Functional Skills

2B2i Complex Problem Solving 2B3d Installation

2B3a Operations Analysis 2B3h Operation and Control

2B3b Technology Design 2B3j Equipment Maintenance

2B3c Equipment Selection 2B3l Repairing

2B3e Programming

2B3g Operation Monitoring

2B3k Troubleshooting

2B4e Judgment and Decision Making

2B4g Systems Analysis

2B4h Systems Evaluation

Resource Management Skills

2B5a Time Management

2B5b Management of Financial Resources

2B5c Management of Material Resources

2B5d Management of Personnel Resources

Knowledge

2C1a Administration and Management 2C1b Clerical

2C1c Economics and Accounting 2C2a Production and Processing

2C3a Computers and Electronics 2C3c Design

2C3b Engineering and Technology 2C3d Building and Construction

2C4a Mathematics 2C3e Mechanical

2C4b Physics 2C9a Telecommunications
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2C4c Chemistry 2C10 Transportation

2C4d Biology

2C4f Sociology and Anthropology

2C4g Geography

2C5a Medicine and Dentistry

2C6 Education and Training

2C7a English Language

2C7b Foreign Language

2C7c Fine Arts

2C7d History and Archeology

2C7e Philosophy and Theology

2C8a Public Safety and Security

2C8b Law and Government

Generalized Work Activities

4A1b2 Inspecting Equipment- Structures-

or Material

4A1a2 Monitor Processes- Materials- or

Surroundings

4A1b3 Estimating the Quantifiable

Characteristics of Products- Events-

or Information

4A1b1 Identifying Objects- Actions- and

Events

4A2a1 Judging the Qualities of Things-

Services- or People

4A3a1 Performing General Physical

Activities

4A2a2 Processing Information 4A3a2 Handling and Moving Objects

4A2a3 Evaluating Information to Determine

Compliance with Standards

4A3a3 Controlling Machines and Processes

4A2a4 Analyzing Data or Information 4A3a4 Operating Vehicles- Mechanized

Devices- or Equipment

4A2b1 Making Decisions and Solving

Problems

4A3b4 Repairing and Maintaining

Mechanical Equipment

4A2b2 Thinking Creatively 4A3b5 Repairing and Maintaining

Electronic Equipment

4A2b3 Updating and Using Relevant

Knowledge

4A3b6 Documenting/Recording Information

4A2b4 Developing Objectives and Strategies 4A4c1 Performing Administrative Activities

4A2b5 Scheduling Work and Activities

4A2b6 Organizing- Planning- and

Prioritizing Work
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4A3b1 Interacting With Computers

4A4c3 Monitoring and Controlling

Resources
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E List of Occupational Groups

The following table shows the classification of 2010 SOC occupations into the five groups
used in Section 5. The two tables below further divide SOC occupations 11 and 19 into the
groups used in x4 and x5. Employment shares are computed for 2010 from BLS tabulations.

SOC Code Occupation Title Employment Share

x1

31 Healthcare Support Occupations 3.2%

35 Food Preparation and Serving Related Occupations 9.2%

37 Building and Grounds Cleaning and Maintenance 3.5%

39 Personal Care and Service Occupations 2.8%

x2

41 Sales and Related Occupations 10.6%

43 Office and Administrative Support Occupations 17.7%

x3

45 Farming, Fishing, and Forestry Occupations 0.3%

47 Construction and Extraction Occupations 4.2%

49 Installation, Maintenance, and Repair Occupations 4.0%

51 Production Occupations 6.5%

53 Transportation and Material Moving Occupations 7.0%

x4

11 Management Occupations (Selected) 2.3%

17 Architecture and Engineering Occupations 1.7%

19 Life, Physical, and Social Science Occupations (Selected) 0.4%

27 Arts, Design, Entertainment, Sports, and Media Occupations 1.4%

29 Healthcare Practitioners and Technical Occupations 5.8%

33 Protective Service Occupations 2.6%

x5

11 Management Occupations (Selected) 2.3%

13 Business and Financial Operations Occupations 3.0%

15 Computer and Mathematical Occupations 2.8%

19 Life, Physical, and Social Science Occupations (Selected) 0.4%

21 Community and Social Service Occupations 1.4%

23 Legal Occupations 0.8%

25 Education, Training, and Library Occupations 6.3%
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The following table presents the Management Occupations (SOC-11) that are selected
for group x4:

SOC Code Occupation Title

11102100 General and Operations Managers

11103100 Legislators

11302100 Computer and Information Systems Managers

11305100 Industrial Production Managers

11307102 Storage and Distribution Managers

11901101 Nursery and Greenhouse Managers

11901102 Crop and Livestock Managers

11901103 Aquacultural Managers

11901200 Farmers and Ranchers

11902100 Construction Managers

11903999 Education Administrators, All Other

11905100 Food Service Managers

11906100 Funeral Directors

11907100 Gaming Managers

11908100 Lodging Managers

11911101 Clinical Nurse Specialists

11919999 Managers, All Other

19406100 Social Science Research Assistants
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The following table presents the Management Occupations (SOC-11) that are selected
for group x5:

SOC Code Occupation Title

11101100 Chief Executives

11201100 Advertising and Promotions Managers

11202100 Marketing Managers

11202200 Sales Managers

11203100 Public Relations Managers

11301100 Administrative Services Managers

11303101 Treasurers and Controllers

11303102 Financial Managers, Branch or Department

11304000 Human Resources Managers

11304100 Compensation and Benefits Managers

11304200 Training and Development Managers

11306100 Purchasing Managers

11307101 Transportation Managers

11903100 Education Administrators, Preschool and Child Care Center/Program

11903200 Education Administrators, Elementary and Secondary School

11903300 Education Administrators, Postsecondary

11904100 Engineering Managers

11912100 Natural Sciences Managers

11913100 Postmasters and Mail Superintendents

11914100 Property, Real Estate, and Community Association Managers

11915100 Social and Community Service Managers

19406100 Social Science Research Assistants
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The following table presents the Life, Physical, and Social Science Occupations (SOC-19)
that are selected for group x4:

SOC Code Occupation Title

19101200 Food Scientists and Technologists

19101300 Soil and Plant Scientists

19102100 Biochemists and Biophysicists

19102200 Microbiologists

19102300 Zoologists and Wildlife Biologists

19102999 Biological Scientists, All Other

19103101 Soil and Water Conservationists

19103102 Range Managers

19103103 Park Naturalists

19103200 Foresters

19109999 Life Scientists, All Other

19203100 Chemists

19203200 Materials Scientists

19204100 Environmental Scientists and Specialists, Including Health

19204300 Hydrologists

19209999 Physical Scientists, All Other

19303999 Psychologists, All Other

19309102 Archeologists

19309999 Social Scientists and Related Workers, All Other

19401101 Agricultural Technicians

19401102 Food Science Technicians

19402100 Biological Technicians

19403100 Chemical Technicians

19404101 Geophysical Data Technicians

19404102 Geological Sample Test Technicians

19405101 Nuclear Equipment Operation Technicians

19405102 Nuclear Monitoring Technicians

19409100 Environmental Science and Protection Technicians, Including Health

19409200 Forensic Science Technicians

19409300 Forest and Conservation Technicians

19409999 Life, Physical, and Social Science Technicians, All Other
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The following table presents the Life, Physical, and Social Science Occupations (SOC-19)
that are selected for group x5:

SOC Code Occupation Title

19101100 Animal Scientists

19104100 Epidemiologists

19104200 Medical Scientists, Except Epidemiologists

19201100 Astronomers

19201200 Physicists

19202100 Atmospheric and Space Scientists

19204200 Geoscientists, Except Hydrologists and Geographers

19301100 Economists

19302100 Market Research Analysts

19302200 Survey Researchers

19303200 Industrial-Organizational Psychologists

19304100 Sociologists

19305100 Urban and Regional Planners

19309101 Anthropologists

19309200 Geographers

19309300 Historians

19309400 Political Scientists

19406100 Social Science Research Assistants
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