
Appendix E. The Shapley-Owen-Shorrocks Decomposition

Given an arbitrary function Y = f (X�,X�, ...,Xn), the Shapley-Owen-Shorrocks
decomposition is a method to decompose the value of f (·) into each of its arguments
X�,X�, ...,Xn. Intuitively, the contribution of each argument if it were to be “removed”
from the function. However, because the function can be nonlinear, the order in which
the arguments are removed matters in general for the decomposition. The function f
can be the outcome of a regression, like the predicted values or sum of square
residuals, or the output of a structural model, such as a counterfactual value for a
variable given a list of model parameters or components, or a transformation of the
sample, for example the Gini coe�cient.

The Shapley-Owen-Shorrocks decomposition is the unique decomposition
satisfying two important properties. First, the decomposition is exact decomposition
under addition, letting Cj denote the contribution of argument Xj to the value of the
function f (·),
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so that Cj/ f (·) can be interpreted as the proportion of f (.) that can be attributed to Xj .��
Second, the decomposition is symmetric with respect to the order of the arguments.
That is, the order in which the variable Xj is removed from f (·) does not alter the value
of Cj .

The decomposition that satis�es both those properties is
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where n is the total number of arguments in the original function f , Sk \ {Xj } is the set
of all “submodels” that contain k arguments and exclude argument Xj .�� For example,

Sn–� \ Xn = f (X�,X�, ...,Xn–�)
S� \ Xn = { f (X�), f (X�), ..., f (Xn–�)}.

��The interpretation holds as long as f is non-negative. If f can take negative values, then the
interpretation of Cj under the exact additive rule can be misleading as some arguments can have Cj < �.
��We abuse notation here. A submodel is an evaluation of function f with only some of its arguments.

This language is motivated by the function corresponding in practice to the outcome of a regression or
structural model. Formally, when we write f (X�), we mean f (X�, ;�, ..., ;n), where we assume the j-th
argument of the function can always take on a null value denoted ;j . In our regression example below,
this null value corresponds to a zero valued regressor or parameter. In the case of the structural model,
this null value can correspond to setting some parameters to a predetermined value or excluding certain
model components, like the adjustment of prices or a speci�c shock agents face.
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The decomposition in (E.�) accounts for all possible permutations of the
decomposition order. Thus, (n–k–�)!k!n! can be interpreted as the probability that one of
the particular submodel with k variables is randomly selected when all model sizes are
all equally likely. For example, if n = �, there are submodels of size {�, �, �}. In particular,
there are �� permutation of models that exclude each variable: {(�, �)| {z }
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Nonlinear example

We illustrate the value of this decomposition with a simple nonlinear model including
n = � variables:

Y = f (X�,X�,X�) = �� + ��X� + ��X� + ��X�X�. (E.�)

The objective is to decompose the value of Y into the contribution (or partial e�ect) of
each variable.
Removing X�

There are four possible models that exclude X�—one with no variable, two with one
variable, and one with two variables:

k = � : ��
k = � : {�� + ��X� , ��}
k = � : �� + ��X� + ��X�X�

In all four models, the partial e�ect of including X� is always f (s [ X�) – f (s) = ��X�.
This re�ects the fact that the order in which variables are included does not matter to
construct C�:
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Thiswould be the same for any argumentXj entering linearly into f an arbitrary number
of variables: Y = f (X�,X�,X�,X�, ...,Xn) = �� + ��X� + ��X� + ��X�X� +

Pn
j =� �j Xj . The

only di�erence is that the number of submodels grows exponentially, �n–�, but the
partial e�ect of including Xj for some j 2 {�, ...,n} is always Cj = �j Xj .
Removing X�
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In this case, the partial e�ect can be decomposed into all the possible ways X� can
be added into the model, f (s [ X�) – f (s), these are

k = � (;�, ;�) : �� + ��X� – �� = ��X�
k = � (X�, ;�) : �� + ��X� + ��X� – (�� + ��X�) = ��X�
k = � (;�,X�) : �� + ��X� + ��X�X� – �� = ��X� + ��X�X�
k = � (X�,X�) : �� + ��X� + ��X� + ��X�X� – (�� + ��X�) = ��X� + ��X�X�

Here, the partial e�ects of adding X� are not the same across submodels because X�
enters nonlinearly into the original model. The symmetric property of the
decomposition takes care of this.
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The result is quite intuitive. ��X� appears in all submodels; hence, its probability
of appearing in the decomposition is �. ��X�X� appears in two of the four submodels;
hence, its probability of appearing is �/�. Weighting each term by its probability of
appearing in the decomposition ensures symmetry.
Removing X�

We proceed in the same way for X� as we did for X�. There are four submodels. In
two of them, the e�ect of adding X� is null, because X� is not in the model. In the two
remaining submodels, the e�ect is ��X�X�. Hence,

C� =
�
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��X�X�. (E.�)

Finally, we verify the decomposition:

C� + C� + C� = ��X� +
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= ��X� + ��X� + ��X�X�
= f (X�,X�,X�) – ��
= f (X�,X�,X�) – f (;�, ;�, ;�).

Note: The decomposition is additive with respect to the reference “null” model
where none of the variables is included. This is made apparent in the previous result,
where the decomposition does not include the value of ��.
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R-Squared

Finally, we consider a decomposition of the coe�cient of determination in the linear
model. Our use of the decomposition applies this for a nonlinear model (combining the
insights from this and the preceding example).

Consider a linear regression model with n regressors and i = �, ...,M observations,
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and de�ne the average value of y as y ⌘
PM

i=� yi/M and the predicted value
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where we assume that all regressors have zero mean so that �̂� = y.
The function of interest is f (X�, . . . ,XK) = R�, de�ned as the explained sum of

squares SSE over the total sum of squares SST
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This makes it clear that the function being decomposed is nonlinear even though the
model that generates it is itself linear.

Note: The reference value for the R� in the Shapley-Owen-Shorrocks decomposition
is given by the model without regressors, satisfying
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so that, in this case, the decomposition recovers the level of the R� of the full model
(with all variables), unlike the previous example.

Details of the decomposition when n = � Consistent with the previous example,
we show the decomposition for n = � regressors. As before, we abuse notation by
only listing the arguments being included in each submodel. The contribution of each
variable is:
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Summing across all the contributions we obtain back R�(X�,X�,X�),

R�� + R
�
� + R

�
� = R

� = f (X�,X�,X�). (E.��)

Note: The value of the contribution di�ers from the standard de�nition of partial R-
squared. This is because the partial R-squared is an all-else-being-equal comparison of
excluding regressor Xj from the regression. It does not satisfy the exact decomposition
requirement or (when applied iteratively) the symmetry requirement.
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