Appendix E. The Shapley-Owen-Shorrocks Decomposition

Given an arbitrary function $Y=f\left(X_{1}, X_{2}, \ldots, X_{n}\right)$, the Shapley-Owen-Shorrocks decomposition is a method to decompose the value of $f(\cdot)$ into each of its arguments $X_{1}, X_{2}, \ldots, X_{n}$. Intuitively, the contribution of each argument if it were to be "removed" from the function. However, because the function can be nonlinear, the order in which the arguments are removed matters in general for the decomposition. The function f can be the outcome of a regression, like the predicted values or sum of square residuals, or the output of a structural model, such as a counterfactual value for a variable given a list of model parameters or components, or a transformation of the sample, for example the Gini coefficient.

The Shapley-Owen-Shorrocks decomposition is the unique decomposition satisfying two important properties. First, the decomposition is exact decomposition under addition, letting C_{j} denote the contribution of argument X_{j} to the value of the function $f(\cdot)$,

$$
\begin{equation*}
\sum_{j=1}^{n} C_{j}=f\left(X_{1}, X_{2}, \ldots, X_{n}\right) \tag{E.1}
\end{equation*}
$$

so that $C_{j} / f(\cdot)$ can be interpreted as the proportion of $f($.$) that can be attributed to X_{j} .{ }^{40}$ Second, the decomposition is symmetric with respect to the order of the arguments. That is, the order in which the variable X_{j} is removed from $f(\cdot)$ does not alter the value of C_{j}.

The decomposition that satisfies both those properties is

$$
\begin{equation*}
C_{j}=\sum_{k=0}^{n-1} \frac{(n-k-1)!k!}{n!}\left(\sum_{s \subseteq S_{k} \backslash\left\{X_{j}\right\}:|s|=k}\left[f\left(s \cup X_{j}\right)-f(s)\right]\right), \tag{E.2}
\end{equation*}
$$

where n is the total number of arguments in the original function $f, S_{k} \backslash\left\{X_{j}\right\}$ is the set of all "submodels" that contain k arguments and exclude argument $X_{j} .{ }^{41}$ For example,

$$
\begin{aligned}
S_{n-1} \backslash X_{n} & =f\left(X_{1}, X_{2}, \ldots, X_{n-1}\right) \\
S_{1} \backslash X_{n} & =\left\{f\left(X_{1}\right), f\left(X_{2}\right), \ldots, f\left(X_{n-1}\right)\right\} .
\end{aligned}
$$

[^0]The decomposition in (E.2) accounts for all possible permutations of the decomposition order. Thus, $\frac{(n-k-1)!k!}{n!}$ can be interpreted as the probability that one of the particular submodel with k variables is randomly selected when all model sizes are all equally likely. For example, if $n=3$, there are submodels of size $\{0,1,2\}$. In particular, there are 2^{2} permutation of models that exclude each variable: $\{\underbrace{(0,0)}_{k=0}, \underbrace{(1,0),(0,1)}_{k=1}, \underbrace{(1,1)}_{k=2}\}$.

$$
\begin{aligned}
& k=0: \frac{(n-k-1)!k!}{n!}=\frac{(3-0-1)!0!}{3!}=\frac{1}{3} \\
& k=1: \frac{(n-k-1)!k!}{n!}=\frac{(3-1-1)!1!}{3!}=\frac{1}{6} \\
& k=2: \frac{(n-k-1)!k!}{n!}=\frac{(3-2-1)!2!}{3!}=\frac{1}{3}
\end{aligned}
$$

Nonlinear example

We illustrate the value of this decomposition with a simple nonlinear model including $n=3$ variables:

$$
\begin{equation*}
Y=f\left(X_{1}, X_{2}, X_{3}\right)=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3} X_{2} \tag{E.3}
\end{equation*}
$$

The objective is to decompose the value of Y into the contribution (or partial effect) of each variable.
Removing X_{1}
There are four possible models that exclude X_{1}-one with no variable, two with one variable, and one with two variables:

$$
\begin{aligned}
& k=0: \beta_{0} \\
& k=1:\left\{\beta_{0}+\beta_{2} X_{2}, \beta_{0}\right\} \\
& k=2: \beta_{0}+\beta_{2} X_{2}+\beta_{3} X_{3} X_{2}
\end{aligned}
$$

In all four models, the partial effect of including X_{1} is always $f\left(s \cup X_{1}\right)-f(s)=\beta_{1} X_{1}$. This reflects the fact that the order in which variables are included does not matter to construct C_{1} :

$$
\begin{equation*}
C_{1}=\sum_{k=0}^{2} \frac{(3-k-1)!k!}{3!}\left(\sum_{\left.s \subseteq S_{k} \backslash\left\{X_{3}\right\}\right\}:|s|=k}\left[f\left(s \cup X_{j}\right)-f(s)\right]\right)=\beta_{1} X_{1} \tag{E.4}
\end{equation*}
$$

This would be the same for any argument X_{j} entering linearly into f an arbitrary number of variables: $Y=f\left(X_{1}, X_{2}, X_{3}, X_{4}, \ldots, X_{n}\right)=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3} X_{2}+\sum_{j=4}^{n} \beta_{j} X_{j}$. The only difference is that the number of submodels grows exponentially, 2^{n-1}, but the partial effect of including X_{j} for some $j \in\{4, \ldots, n\}$ is always $C_{j}=\beta_{j} X_{j}$. Removing X_{2}

In this case, the partial effect can be decomposed into all the possible ways X_{2} can be added into the model, $f\left(s \cup X_{2}\right)-f(s)$, these are

$$
\begin{aligned}
& k=0\left(\emptyset_{1}, \emptyset_{3}\right): \beta_{0}+\beta_{2} X_{2}-\beta_{0}=\beta_{2} X_{2} \\
& k=1\left(X_{1}, \emptyset_{3}\right): \beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}-\left(\beta_{0}+\beta_{1} X_{1}\right)=\beta_{2} X_{2} \\
& k=1\left(\emptyset_{1}, X_{3}\right): \beta_{0}+\beta_{2} X_{2}+\beta_{3} X_{2} X_{3}-\beta_{0}=\beta_{2} X_{2}+\beta_{3} X_{2} X_{3} \\
& k=2\left(X_{1}, X 3\right): \beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{2} X_{3}-\left(\beta_{0}+\beta_{1} X_{1}\right)=\beta_{2} X_{2}+\beta_{3} X_{2} X_{3}
\end{aligned}
$$

Here, the partial effects of adding X_{2} are not the same across submodels because X_{2} enters nonlinearly into the original model. The symmetric property of the decomposition takes care of this.

$$
\begin{align*}
C_{2} & =\underbrace{\frac{1}{3} \beta_{2} X_{2}}_{k=0}+\underbrace{\frac{1}{6}\left(\beta_{2} X_{2}\right)+\frac{1}{6}\left(\beta_{2} X_{2}+\beta_{3} X_{2} X_{3}\right)}_{k=1}+\underbrace{\frac{1}{3}\left(\beta_{2} X_{2}+\beta_{3} X_{2} X_{3}\right)}_{k=2} \tag{E.5}\\
& =\beta_{2} X_{2}+\frac{1}{2} \beta_{3} X_{2} X_{3}
\end{align*}
$$

The result is quite intuitive. $\beta_{2} X_{2}$ appears in all submodels; hence, its probability of appearing in the decomposition is $1 . \beta_{3} X_{2} X_{3}$ appears in two of the four submodels; hence, its probability of appearing is $1 / 2$. Weighting each term by its probability of appearing in the decomposition ensures symmetry.
Removing X_{3}
We proceed in the same way for X_{3} as we did for X_{2}. There are four submodels. In two of them, the effect of adding X_{3} is null, because X_{2} is not in the model. In the two remaining submodels, the effect is $\beta_{3} X_{2} X_{3}$. Hence,

$$
\begin{equation*}
C_{3}=\frac{1}{2} \beta_{3} X_{2} X_{3} . \tag{E.6}
\end{equation*}
$$

Finally, we verify the decomposition:

$$
\begin{aligned}
C_{1}+C_{2}+C_{3} & =\beta_{1} X_{1}+\left(\beta_{2} X_{2}+\frac{1}{2} \beta_{3} X_{2} X_{3}\right)+\left(\frac{1}{2} \beta_{3} X_{2} X_{3}\right) \\
& =\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{2} X_{3} \\
& =f\left(X_{1}, X_{2}, X_{3}\right)-\beta_{0} \\
& =f\left(X_{1}, X_{2}, X_{3}\right)-f\left(\emptyset_{1}, \emptyset_{2}, \emptyset_{3}\right) .
\end{aligned}
$$

Note: The decomposition is additive with respect to the reference "null" model where none of the variables is included. This is made apparent in the previous result, where the decomposition does not include the value of β_{0}.

R-Squared

Finally, we consider a decomposition of the coefficient of determination in the linear model. Our use of the decomposition applies this for a nonlinear model (combining the insights from this and the preceding example).

Consider a linear regression model with n regressors and $i=1, \ldots, M$ observations,

$$
\begin{equation*}
y_{i}=\mathbf{x}_{i}^{\prime} \beta+u_{i}=\beta_{0}+\sum_{j=1}^{n} \beta_{j} x_{i j}+u_{i}, \tag{E.7}
\end{equation*}
$$

and define the average value of y as $\bar{y} \equiv \sum_{i=1}^{M} y_{i} / M$ and the predicted value

$$
\begin{equation*}
\hat{y}_{i}=\mathbf{x}_{i}^{\prime} \hat{\beta}=\hat{\beta}_{0}+\sum_{j=1}^{n} \hat{\beta}_{j} x_{i j} \tag{E.8}
\end{equation*}
$$

where we assume that all regressors have zero mean so that $\hat{\beta}_{0}=\bar{y}$.
The function of interest is $f\left(X_{1}, \ldots, X_{K}\right)=R^{2}$, defined as the explained sum of squares $S S E$ over the total sum of squares $S S T$

$$
\begin{equation*}
R^{2}\left(X_{1}, X_{2}, . ., X_{n}\right)=\frac{S S E}{S S T}=\frac{\sum_{i=1}^{M}\left(\hat{y}_{i}-\bar{y}\right)^{2}}{\sum_{i=1}^{M}\left(y_{i}-\bar{y}\right)^{2}} \tag{E.9}
\end{equation*}
$$

This makes it clear that the function being decomposed is nonlinear even though the model that generates it is itself linear.

Note: The reference value for the R^{2} in the Shapley-Owen-Shorrocks decomposition is given by the model without regressors, satisfying

$$
\begin{equation*}
R^{2}(\emptyset)=\frac{\sum_{i}^{M}\left(\hat{\beta}_{0}-\bar{y}\right)^{2}}{\sum_{i}^{M}\left(y_{i}-\bar{y}\right)^{2}}=0 \tag{E.10}
\end{equation*}
$$

so that, in this case, the decomposition recovers the level of the R^{2} of the full model (with all variables), unlike the previous example.

Details of the decomposition when $\mathbf{n}=3$ Consistent with the previous example, we show the decomposition for $n=3$ regressors. As before, we abuse notation by only listing the arguments being included in each submodel. The contribution of each variable is:

$$
\begin{align*}
R_{1}^{2}= & \frac{1}{3}\left[R^{2}\left(X_{1}\right)-R^{2}(\emptyset)\right]+\frac{1}{6}\left(\left[R^{2}\left(X_{1}, X_{2}\right)-R^{2}\left(X_{2}\right)\right]+\left[R^{2}\left(X_{1}, X_{3}\right)-R^{2}\left(X_{3}\right)\right]\right) \\
& +\frac{1}{3}\left[R^{2}\left(X_{1}, X_{2}, X_{3}\right)-R^{2}\left(X_{2}, X_{3}\right)\right] ; \tag{E.11}
\end{align*}
$$

$$
\begin{align*}
R_{2}^{2}= & \frac{1}{3}\left[R^{2}\left(X_{2}\right)-R^{2}(\emptyset)\right]+\frac{1}{6}\left(\left[R^{2}\left(X_{1}, X_{2}\right)-R^{2}\left(X_{1}\right)\right]+\left[R^{2}\left(X_{2}, X_{3}\right)-R^{2}\left(X_{3}\right)\right]\right) \\
& +\frac{1}{3}\left[R^{2}\left(X_{1}, X_{2}, X_{3}\right)-R^{2}\left(X_{1}, X_{3}\right)\right] ; \tag{E.12}\\
R_{3}^{2}= & \frac{1}{3}\left[R^{2}\left(X_{3}\right)-R^{2}(\emptyset)\right]+\frac{1}{6}\left(\left[R^{2}\left(X_{3}, X_{2}\right)-R^{2}\left(X_{2}\right)\right]+\left[R^{2}\left(X_{1}, X_{3}\right)-R^{2}\left(X_{1}\right)\right]\right) \\
& +\frac{1}{3}\left[R^{2}\left(X_{1}, X_{2}, X_{3}\right)-R^{2}\left(X_{2}, X_{1}\right)\right] . \tag{E.13}
\end{align*}
$$

Summing across all the contributions we obtain back $R^{2}\left(X_{1}, X_{2}, X_{3}\right)$,

$$
\begin{equation*}
R_{1}^{2}+R_{2}^{2}+R_{3}^{2}=R^{2}=f\left(X_{1}, X_{2}, X_{3}\right) \tag{E.14}
\end{equation*}
$$

Note: The value of the contribution differs from the standard definition of partial Rsquared. This is because the partial R-squared is an all-else-being-equal comparison of excluding regressor X_{j} from the regression. It does not satisfy the exact decomposition requirement or (when applied iteratively) the symmetry requirement.

[^0]: ${ }^{40}$ The interpretation holds as long as f is non-negative. If f can take negative values, then the interpretation of C_{j} under the exact additive rule can be misleading as some arguments can have $C_{j}<0$.
 ${ }^{41}$ We abuse notation here. A submodel is an evaluation of function f with only some of its arguments. This language is motivated by the function corresponding in practice to the outcome of a regression or structural model. Formally, when we write $f\left(X_{1}\right)$, we mean $f\left(X_{1}, \emptyset_{2}, \ldots, \emptyset_{n}\right)$, where we assume the j-th argument of the function can always take on a null value denoted \emptyset_{j}. In our regression example below, this null value corresponds to a zero valued regressor or parameter. In the case of the structural model, this null value can correspond to setting some parameters to a predetermined value or excluding certain model components, like the adjustment of prices or a specific shock agents face.

